CN108855232A - 一种复合纳米纤维及其制备方法和应用 - Google Patents

一种复合纳米纤维及其制备方法和应用 Download PDF

Info

Publication number
CN108855232A
CN108855232A CN201810710272.9A CN201810710272A CN108855232A CN 108855232 A CN108855232 A CN 108855232A CN 201810710272 A CN201810710272 A CN 201810710272A CN 108855232 A CN108855232 A CN 108855232A
Authority
CN
China
Prior art keywords
composite nano
tio
nano fiber
solution
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810710272.9A
Other languages
English (en)
Other versions
CN108855232B (zh
Inventor
张宏
付佳伟
马雯雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201810710272.9A priority Critical patent/CN108855232B/zh
Publication of CN108855232A publication Critical patent/CN108855232A/zh
Application granted granted Critical
Publication of CN108855232B publication Critical patent/CN108855232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/10Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen in the presence of metal-containing organic complexes, e.g. chelates, or cationic ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种复合纳米纤维,分子式为(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2;制备方法包括:(1)Co(NO3)2·6H2O和Na2WO4·2H2O在磁力搅拌下,溶于0.5M NaAC/HAC缓冲溶液中,再加入NaVO3,加热,热过滤,干燥,得到Na10[Co4(H2O)2(VW9O34)2]·35H2O;(2)钛酸丁酯、聚乙烯吡咯烷酮溶解于由N,N‑二甲基甲酰胺、冰乙酸和乙酰丙酮形成的混合溶剂中,运用静电纺丝方法,获得TiO2纳米纤维;(3)将TiO2纳米纤维分散在30‑50mL乙醇中,搅拌,加入C18H37N(CH3)3·Cl,继续搅拌,得到溶液A;Na10[Co4(H2O)2(VW9O34)2]·35H2O溶于20‑40mL水中,得到溶液B;将溶液B缓慢滴加到溶液A中,搅拌20~30h,用水和乙醇洗涤,真空干燥,得到复合纳米纤维;本发明有效解决了多酸团聚问题;循环使用5次后催化效率无明显降低;与过氧化氢和离子液体[Bmim]PF6共同形成萃取催化氧化脱硫体系,表现出较高的脱硫效率和优异的可重用性。

Description

一种复合纳米纤维及其制备方法和应用
技术领域
本发明属功能纳米材料制备和催化脱硫技术领域,具体涉及一种复合纳米纤维及其制备方法和应用。
背景技术
燃油不充分燃烧释放的大量含硫化合物严重迫害了生态环境和人类健康,最大限度的降低燃油含硫量是源头治理的必然趋势。加氢脱硫因苛刻的操作条件、较高的生产成本和难于脱除杂环类含硫化合物的弊端使得其应用范围有限。因此,各种非加氢脱硫工艺不断涌现,如生物脱硫、氧化脱硫和萃取催化氧化脱硫等。其中,大量研究表明萃取催化氧化脱硫在低温常压下对顽固硫化物有较高的脱硫效率。
多酸因具有独特的结构和物理化学性质一直以来备受关注,尤其是具有较好稳定性和电子转移能力的夹心型多酸阴离子在水氧化和光催化应用方面均有报道。鉴于多酸作为同相催化剂难于分离和回收的特点,所以其在脱硫方面的研究为数不多。
为了实现催化剂的有效循环利用,使用固相基质发展异相催化剂无疑是一种有效策略。近年来,多酸负载二氧化钛纳米材料的技术方案不断被报道,例如,CN101518731B报道了一种溶胶凝胶法合成磷钨酸-二氧化钛复合纳米材料,但该方法易造成多酸的大量团聚。迄今为止,夹心型多酸负载在二氧化钛纳米纤维上形成异相催化剂在脱硫方面的应用尚未被报道。本发明在攻克多酸团聚问题的基础上,不仅明显增强了催化剂的脱硫表现,而且表现出优异的可重用性。
发明内容
本发明目的是为解决多酸作为同相催化剂难于分离和回收、负载二氧化钛纳米材料造成多酸大量团聚的问题,提供一种实现有效循环利用、最大限度的降低燃油含硫量的一种复合纳米纤维及其制备方法和应用。
一种复合纳米纤维,分子式为(OTA)10[Co4(H2O)2(VW9O34)2] /TiO2
一种复合纳米纤维的制备方法,它包括:
(1) Na10[Co4(H2O)2(VW9O34)2] ·35H2O的合成:
Co(NO3)2·6H2O 和Na2WO4·2H2O在磁力搅拌下,溶于0.5M NaAC/HAC 缓冲溶液中,再加入NaVO3,加热,热过滤,干燥20~30h,得到Na10[Co4(H2O)2(VW9O34)2] ·35H2O;
(2) TiO2纳米纤维的合成:
钛酸丁酯、聚乙烯吡咯烷酮溶解于由N,N-二甲基甲酰胺、冰乙酸和乙酰丙酮形成的混合溶剂中,运用静电纺丝方法,获得TiO2纳米纤维;
(3) (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2的合成:
将TiO2纳米纤维分散在30~50mL乙醇中,搅拌25~35min,加入C18H37N(CH3)3·Cl,继续搅拌25~35min,得到溶液A;
Na10[Co4(H2O)2(VW9O34)2]·35H2O溶于20~40mL水中,得到溶液B;
将溶液B缓慢滴加到溶液A中,搅拌20~30h,用水和乙醇洗涤,75~85℃下真空干燥10~15h,得到 (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维;
步骤1)中所述的Co(NO3)2·6H2O 1.2g、Na2WO4·2H2O为6g、NaVO3为0.27g、NaAC/HAC 为120mL;所述的加热为加热至78~82℃保持1.5~2.5h;
步骤2)所述的聚乙烯吡咯烷酮分子量为1300000;
步骤3)中所述的TiO2为0.1g、C18H37N(CH3)3·Cl为 0.04g、Na10[Co4(H2O)2(VW9O34)2]·35H2O为0.064g。
所述的一种复合纳米纤维在燃油脱硫方面的应用。
一种萃取催化氧化脱硫体系,它包括:所述的一种复合纳米纤维、过氧化氢和离子液体[Bmim]PF6
所述的一种萃取催化氧化脱硫体系, 它包括:21μL过氧化氢、1mL离子液体 [Bmim]PF6和0.01g所述的一种复合纳米纤维;
所述的过氧化氢21μL、一种复合纳米纤维0.01g。
一种复合纳米纤维燃油脱硫方法,用所述的一种萃取催化氧化脱硫体系,与燃油混合,磁力搅拌80~100min。
本发明提供了一种复合纳米纤维,分子式为(OTA)10[Co4(H2O)2(VW9O34)2] /TiO2 ;制备方法包括:
(1) Co(NO3)2·6H2O 和Na2WO4·2H2O在磁力搅拌下,溶于0.5M NaAC/HAC 缓冲溶液中,再加入NaVO3,加热,热过滤,干燥20~30h,得到Na10[Co4(H2O)2(VW9O34)2] ·35H2O;(2) 钛酸丁酯、聚乙烯吡咯烷酮溶解于由N,N-二甲基甲酰胺、冰乙酸和乙酰丙酮形成的混合溶剂中,运用静电纺丝方法,获得TiO2纳米纤维;(3)将TiO2纳米纤维分散在30~50mL乙醇中,搅拌25~35min,加入C18H37N(CH3)3·Cl,继续搅拌25~35min,得到溶液A;Na10[Co4(H2O)2(VW9O34)2]·35H2O溶于20~40mL水中,得到溶液B;将溶液B缓慢滴加到溶液A中,搅拌20~30h,用水和乙醇洗涤,75~85℃下真空干燥10~15h,得到 (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维;本发明复合纳米纤维制备方法简单且经济环保,(OTA)10[Co4(H2O)2(VW9O34)2] 通过静电作用力均匀的分布在由静电纺丝得到的TiO2纳米纤维上,有效解决了多酸团聚问题;该复合纳米纤维易于分离回收,而且循环使用5次后催化效率没有明显降低;另外,该复合纳米纤维与过氧化氢和离子液体[Bmim]PF6共同形成萃取催化氧化脱硫体系,且表现出较高的脱硫效率和优异的可重用性。
附图说明
图1 实施例1中制备的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维的XRD谱图;
图2 实施例1中制备的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维的FT-IR谱图;
图3 实施例1中制备的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维的SEM照片;
图4 实施例2中制备的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维作为催化剂时BT的转移效率变化图;
图5 实施例3中制备的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维作为催化剂时DBT的转移效率变化图;
图6 实施例4中制备的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维作为催化剂时4,6-DMDBT的转移效率变化图。
具体实施方式
本发明选用的N,N-二甲基甲酰胺、冰乙酸、乙酰丙酮和钛酸丁酯等所有试剂,以及分子量为1300000的聚乙烯吡咯烷酮和十八烷基三甲基氯化铵均为市售分析纯产品;为增进对该发明的透彻理解,下面将结合附图对所涉及的具体实施方式作进一步描述:
实施例1 (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维的制备
一种 (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维合成步骤如下:
(1) Na10[Co4(H2O)2(VW9O34)2] ·35H2O的合成:
1.2g Co(NO3)2·6H2O 和6g Na2WO4·2H2O在磁力搅拌下完全溶于120mL 0.5M NaAC/HAC 缓冲溶液 (pH=4.8) 中,再加入0.27g NaVO3,将混合溶液加热到80℃并保持2h,将热过滤出的棕色固体放在干燥箱中真空干燥24h,最后,得到Na10[Co4(H2O)2(VW9O34)2] ·35H2O;
(2) TiO2纳米纤维的合成:
以钛酸丁酯作为钛源,将其完全溶解于由N,N-二甲基甲酰胺、冰乙酸和乙酰丙酮形成的混合溶剂中,然后加入分子量为1300000的聚乙烯吡咯烷酮作为模板剂,运用静电纺丝技术得到TiO2纳米纤维;
(3) (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2的合成:
溶液A: 将0.1gTiO2纳米纤维分散在50mL乙醇中并搅拌30min,然后加入0.04g C18H37N(CH3)3·Cl,所得混合溶液继续搅拌30min;
溶液B: 0.064gNa10[Co4(H2O)2(VW9O34)2]·35H2O溶解在20mL水中;
将溶液B缓慢滴加到溶液A中,搅拌24h,获得产品用水和乙醇洗3次,然后在80℃的干燥箱中真空干燥12h;由此得到的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维呈现锐钛矿相和金红石相的混合相,见图1所示;且其具有的夹心型结构见图2所示;另外,所述的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维呈纤维状,见图3所示。
实施例2 1 (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维的制备
一种 (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维合成步骤如下:
(1) Na10[Co4(H2O)2(VW9O34)2] ·35H2O的合成:
1.2g Co(NO3)2·6H2O 和6g Na2WO4·2H2O在磁力搅拌下完全溶于120mL 0.5M NaAC/HAC 缓冲溶液 (pH=4.8) 中,再加入0.27g NaVO3,将混合溶液加热到75℃并保持2.5h,将热过滤出的棕色固体放在干燥箱中真空干燥30h,最后,得到Na10[Co4(H2O)2(VW9O34)2] ·35H2O;
(2) TiO2纳米纤维的合成:
以钛酸丁酯作为钛源,将其完全溶解于由N,N-二甲基甲酰胺、冰乙酸和乙酰丙酮形成的混合溶剂中,然后加入分子量为1300000的聚乙烯吡咯烷酮作为模板剂,运用静电纺丝技术得到TiO2纳米纤维;
(3) (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2的合成:
溶液A: 将0.1gTiO2纳米纤维分散在30mL乙醇中并搅拌35min,然后加入0.04g C18H37N(CH3)3·Cl,所得混合溶液继续搅拌35min;
溶液B: 0.064gNa10[Co4(H2O)2(VW9O34)2]·35H2O溶解在40mL水中;
将溶液B缓慢滴加到溶液A中,搅拌30h,获得产品用水和乙醇洗4次,然后在75℃的干燥箱中真空干燥15h;由此得到的(OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维呈现锐钛矿相和金红石相的混合相。
实施例3 含苯并噻吩模拟油萃取催化氧化脱硫实验
将0.10g联苯和0.21g苯并噻吩完全溶解于100mL正辛烷中,得到100mL含苯并噻吩为500ppm的模拟油品;首先,温度为50℃的条件下,将5mL模拟油品加入25mL圆底烧瓶中并将该圆底烧瓶浸入温度可控的水浴锅内并活化15min;然后,向上述烧瓶中依次加入21μL过氧化氢,1mL离子液体 [Bmim]PF6和0.01g实施例1制备的复合纳米纤维,磁力搅拌90min,且每隔10min取出上层油样进行气相色谱分析,结果显示,加入21μL的H202,反应90分钟以后,50℃下0.01g此催化剂的催化效率为79%,见图4所示;反应结束后,尽可能的将上层模拟油品倾倒,然后用二氯甲烷将烧瓶中剩余物质不断洗涤若干次后旋蒸,再将其置于干燥箱中真空干燥8h,再次得到的催化剂即可进入下一轮脱硫实验;循环使用5次后催化效率无明显降低。
实施例4 含苯并噻吩模拟油萃取催化氧化脱硫实验
将0.10g联苯和0.21g苯并噻吩完全溶解于100mL正辛烷中,得到100mL含苯并噻吩为500ppm的模拟油品;首先,温度为30℃的条件下,将5mL模拟油品加入25mL圆底烧瓶中并将该圆底烧瓶浸入温度可控的水浴锅内并活化15min;然后,向上述烧瓶中依次加入30.63μL的H202作为氧化剂,1mL离子液体 [Bmim]PF6和0.01g实施例1制备的复合纳米纤维,磁力搅拌30min;反应结束后,尽可能的将上层模拟油品倾倒,然后用二氯甲烷将烧瓶中剩余物质不断洗涤若干次后旋蒸,再将其置于干燥箱中真空干燥6h,再次得到的催化剂即可进入下一轮脱硫实验;循环使用5次后催化效率无明显降低。
实施例5 含二苯并噻吩模拟油萃取催化脱硫实验
将0.10g的联苯和0.29g的二苯并噻吩完全溶解于100mL正辛烷中,得到100mL含二苯并噻吩为500ppm的模拟油品;首先,温度为50℃的条件下,将5mL模拟油品加入25mL圆底烧瓶中并将该圆底烧瓶浸入温度可控的水浴锅内并活化15min;然后,向上述烧瓶中依次加入21μL过氧化氢,1mL离子液体 [Bmim]PF6和0.01g实施例1制备的复合纳米纤维,磁力搅拌20min,且每隔5min取出上层油样并进行气相色谱分析;结果显示:加入21μL的H202,反应20分钟以后,50℃下0.01g此催化剂的催化效率为100%,实验结果见图5所示;实验结果见图5所示;反应结束后,尽可能的将上层模拟油倾倒,接下来用二氯甲烷将烧瓶中剩余物质不断洗涤若干次后旋蒸,再将其置于干燥箱中真空干燥12h,再次得到的催化剂即可进入下一轮脱硫实验;循环使用5次后催化效率无明显降低。
实施例6含二苯并噻吩模拟油萃取催化脱硫实验
将0.10g的联苯和0.29g的二苯并噻吩完全溶解于100mL正辛烷中,得到100mL含二苯并噻吩为500ppm的模拟油品;首先,温度为70℃的条件下,将5mL模拟油品加入25mL圆底烧瓶中并将该圆底烧瓶浸入温度可控的水浴锅内并活化10min;然后,向上述烧瓶中依次加入10.21μL的H202作为氧化剂,1mL离子液体 [Bmim]PF6和0.02g实施例1制备的复合纳米纤维,磁力搅拌5min,且取出上层油样并进行气相色谱分析反应结束后,尽可能的将上层模拟油倾倒,接下来用二氯甲烷将烧瓶中剩余物质不断洗涤若干次后旋蒸,再将其置于干燥箱中真空干燥10h,再次得到的催化剂即可进入下一轮脱硫实验;循环使用5次后催化效率无明显降低。
实施例7 含4,6-二甲基二苯并噻吩模拟油萃取催化脱硫实验
将0.10g的联苯和0.33g的4,6-二甲基二苯并噻吩完全溶解于100mL正辛烷中,得到100mL含4,6-二甲基二苯并噻吩500ppm的模拟油品;首先,温度为50℃的条件下,将5mL模拟油品加入25mL圆底烧瓶中并将该圆底烧瓶浸入温度可控的水浴锅内并活化15min;然后,向上述烧瓶中依次加入21μL过氧化氢,1mL离子液体 [Bmim]PF6和0.01g实施例1制备的复合纳米纤维,磁力搅拌90min,且每隔10min取出上层油样并进行气相色谱分析,结果显示:加入21μL的H202,反应90分钟以后,50℃下0.01g此催化剂的催化效率为92%,见图6所示;反应结束后,尽可能的将上层模拟油倾倒,接下来用二氯甲烷将烧瓶中剩余物质不断洗涤若干次后旋蒸,再将其置于干燥箱中真空干燥24h,再次得到的催化剂即可进入下一轮脱硫实验。循环使用5次后催化效率无明显降低。
实施例8 含4,6-二甲基二苯并噻吩模拟油萃取催化脱硫实验
将0.10g的联苯和0.33g的4,6-二甲基二苯并噻吩完全溶解于100mL正辛烷中,得到100mL含4,6-二甲基二苯并噻吩500ppm的模拟油品;首先,温度为40℃的条件下,将5mL模拟油品加入25mL圆底烧瓶中并将该圆底烧瓶浸入温度可控的水浴锅内并活化15min;然后,向上述烧瓶中依次加入15μL的H202作为氧化剂,1mL离子液体 [Bmim]PF6和0.015g实施例1制备的复合纳米纤维,磁力搅拌60min,且每隔10min取出上层油样并进行气相色谱分析;反应结束后,尽可能的将上层模拟油倾倒,接下来用二氯甲烷将烧瓶中剩余物质不断洗涤若干次后旋蒸,再将其置于干燥箱中真空干燥15h,再次得到的催化剂即可进入下一轮脱硫实验。循环使用5次后催化效率无明显降低。
毋庸置疑,本发明的优良性能在其他应用实例中也会有显著成效,本领域的技术人员在不破坏此项发明实质和精神的前提下,可根据本发明做出各种相应的改变,但是衍生出的任何一种改变都应隶属于本发明所附加的以权利要求书为主的保护范围。

Claims (10)

1. 一种复合纳米纤维,分子式为(OTA)10[Co4(H2O)2(VW9O34)2] /TiO2
2.一种复合纳米纤维的制备方法,它包括:
(1) Na10[Co4(H2O)2(VW9O34)2] ·35H2O的合成:
Co(NO3)2·6H2O 和Na2WO4·2H2O在磁力搅拌下,溶于0.5M NaAC/HAC 缓冲溶液中,再加入NaVO3,加热,热过滤,干燥20~30h,得到Na10[Co4(H2O)2(VW9O34)2] ·35H2O;
(2) TiO2纳米纤维的合成:
钛酸丁酯、聚乙烯吡咯烷酮溶解于由N,N-二甲基甲酰胺、冰乙酸和乙酰丙酮形成的混合溶剂中,运用静电纺丝方法,获得TiO2纳米纤维;
(3) (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2的合成:
将TiO2纳米纤维分散在30-50mL乙醇中,搅拌25~35min,加入C18H37N(CH3)3·Cl,继续搅拌25~35min,得到溶液A;
Na10[Co4(H2O)2(VW9O34)2]·35H2O溶于20-40mL水中,得到溶液B;
将溶液B缓慢滴加到溶液A中,搅拌20~30h,用水和乙醇洗涤,75~85℃下真空干燥10~15h,得到 (OTA)10[Co4(H2O)2(VW9O34)2]/TiO2复合纳米纤维。
3. 根据权利要求2所述的一种复合纳米纤维的制备方法,其特征在于:步骤1)中所述的Co(NO3)2·6H2O 1.2g、Na2WO4·2H2O为6g、NaVO3为0.27g、NaAC/HAC 为120mL;所述的加热为加热至78~82℃保持1.5~2.5h。
4.根据权利要求3所述的一种复合纳米纤维的制备方法,其特征在于:步骤2)所述的聚乙烯吡咯烷酮分子量为1300000。
5. 根据权利要求4所述的一种复合纳米纤维的制备方法,其特征在于:步骤3)中所述的TiO2为0.1g、C18H37N(CH3)3·Cl为 0.04g、Na10[Co4(H2O)2(VW9O34)2]·35H2O为0.064g。
6.权利要求1所述的一种复合纳米纤维在燃油脱硫方面的应用。
7.一种萃取催化氧化脱硫体系,其特征在于,它包括:权利要求1所述的一种复合纳米纤维、过氧化氢和离子液体[Bmim]PF6
8. 根据权利要求7所述的一种萃取催化氧化脱硫体系,其特征在于,它包括:10.21-30.63μL 过氧化氢、1mL离子液体 [Bmim]PF6和0.005-0.02g权利要求1所述的一种复合纳米纤维。
9.根据权利要求8所述的一种萃取催化氧化脱硫体系,其特征在于:所述的过氧化氢21μL、一种复合纳米纤维0.01g。
10.一种复合纳米纤维燃油脱硫方法,其特征在于:用权利要求7所述的一种萃取催化氧化脱硫体系,与燃油混合,磁力搅拌5~100min。
CN201810710272.9A 2018-07-02 2018-07-02 一种复合纳米纤维及其制备方法和应用 Active CN108855232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810710272.9A CN108855232B (zh) 2018-07-02 2018-07-02 一种复合纳米纤维及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810710272.9A CN108855232B (zh) 2018-07-02 2018-07-02 一种复合纳米纤维及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108855232A true CN108855232A (zh) 2018-11-23
CN108855232B CN108855232B (zh) 2021-03-19

Family

ID=64298150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810710272.9A Active CN108855232B (zh) 2018-07-02 2018-07-02 一种复合纳米纤维及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108855232B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038642A (zh) * 2019-04-23 2019-07-23 沈阳师范大学 一种具有超深脱硫性能的TiO2@NH2-MIL-125(Ti)纳米纤维

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322483A (ja) * 2001-04-24 2002-11-08 Idemitsu Kosan Co Ltd 有機硫黄化合物含有液状油の脱硫方法
CN1798699A (zh) * 2003-05-30 2006-07-05 杰富意矿物股份有限公司 金属复合氧化物的制造方法
EP1911831A1 (en) * 2006-10-12 2008-04-16 Kocat Inc. One-pot process for the reduction of sulfur, nitrogen and the production of useful oxygenates from hydrocarbon materials via one-pot selective oxidation
CN101302442A (zh) * 2008-06-28 2008-11-12 中国海洋大学 一种协同催化氧化脱除催化裂化柴油中硫化物的方法
EP2045012A1 (en) * 2006-06-28 2009-04-08 Idemitsu Kosan Co., Ltd. Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst
CN101549288A (zh) * 2009-05-14 2009-10-07 北京化工大学 新型Dawson多酸插层水滑石复合材料及其制备方法
CN101987299A (zh) * 2009-08-06 2011-03-23 中国科学院兰州化学物理研究所 燃油氧化脱硫凹凸棒黏土负载杂多酸相转移催化剂
CN103611578A (zh) * 2013-11-21 2014-03-05 辽宁石油化工大学 活性炭负载杂多酸季铵盐柴油氧化脱硫相转移催化剂及其制备方法
CN105689003A (zh) * 2016-04-17 2016-06-22 东北师范大学 一种双亲性钒取代Keggin型杂多酸脱硫催化剂
CN105755579A (zh) * 2016-04-06 2016-07-13 东北师范大学 一种具有超深脱硫性能的磷钨酸/二氧化钛复合纳米纤维
CN105879912A (zh) * 2016-04-17 2016-08-24 东北师范大学 一种双亲性含钴夹心型杂多酸及其应用
CN107190364A (zh) * 2017-06-16 2017-09-22 东北师范大学 (DTA)7[PW10(TiO2)2O38]/TiO2复合纳米纤维及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322483A (ja) * 2001-04-24 2002-11-08 Idemitsu Kosan Co Ltd 有機硫黄化合物含有液状油の脱硫方法
CN1798699A (zh) * 2003-05-30 2006-07-05 杰富意矿物股份有限公司 金属复合氧化物的制造方法
EP2045012A1 (en) * 2006-06-28 2009-04-08 Idemitsu Kosan Co., Ltd. Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst
EP1911831A1 (en) * 2006-10-12 2008-04-16 Kocat Inc. One-pot process for the reduction of sulfur, nitrogen and the production of useful oxygenates from hydrocarbon materials via one-pot selective oxidation
CN101302442A (zh) * 2008-06-28 2008-11-12 中国海洋大学 一种协同催化氧化脱除催化裂化柴油中硫化物的方法
CN101549288A (zh) * 2009-05-14 2009-10-07 北京化工大学 新型Dawson多酸插层水滑石复合材料及其制备方法
CN101987299A (zh) * 2009-08-06 2011-03-23 中国科学院兰州化学物理研究所 燃油氧化脱硫凹凸棒黏土负载杂多酸相转移催化剂
CN103611578A (zh) * 2013-11-21 2014-03-05 辽宁石油化工大学 活性炭负载杂多酸季铵盐柴油氧化脱硫相转移催化剂及其制备方法
CN105755579A (zh) * 2016-04-06 2016-07-13 东北师范大学 一种具有超深脱硫性能的磷钨酸/二氧化钛复合纳米纤维
CN105689003A (zh) * 2016-04-17 2016-06-22 东北师范大学 一种双亲性钒取代Keggin型杂多酸脱硫催化剂
CN105879912A (zh) * 2016-04-17 2016-08-24 东北师范大学 一种双亲性含钴夹心型杂多酸及其应用
CN107190364A (zh) * 2017-06-16 2017-09-22 东北师范大学 (DTA)7[PW10(TiO2)2O38]/TiO2复合纳米纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOYANG LIU等: ""Cobalt-to-vanadium charge transfer in polyoxometalate water oxidation catalysts revealed by 2p3d resonant inelastic X-ray scattering"", 《PHYS.CHEM.CHEM.PHYS.》 *
HONGJIN LV等: ""An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038642A (zh) * 2019-04-23 2019-07-23 沈阳师范大学 一种具有超深脱硫性能的TiO2@NH2-MIL-125(Ti)纳米纤维

Also Published As

Publication number Publication date
CN108855232B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
Abazari et al. PMo12@ UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant
Julião et al. Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101 (Cr) encapsulated) conditions
Lin et al. Study on ultrasound-assisted oxidative desulfurization for crude oil
Li et al. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation
Zhai et al. Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal
Zhou et al. Metal-organic framework encapsulated high-loaded phosphomolybdic acid: A highly stable catalyst for oxidative desulfurization of 4, 6-dimethyldibenzothiophene
Rezvani et al. Oxidative desulfurization of gasoline catalyzed by IMID@ PMA@ CS nanocomposite as a high‐performance amphiphilic nanocatalyst
CN109603911A (zh) 一种功能化离子液体/沸石咪唑酯骨架复合材料及其制备方法和应用
CN101173180B (zh) 磷钨杂多季铵盐脱硫剂及其制备方法
CN108855232A (zh) 一种复合纳米纤维及其制备方法和应用
CN105879912B (zh) 一种双亲性含钴夹心型杂多酸及其应用
Wang et al. Preparation of biochar catalyst from black liquor by spray drying and fluidized bed carbonation for biodiesel synthesis
CN108940379A (zh) 双亲性Lindqvist型多酸TiO2复合纳米纤维及其制备方法和应用
CN104874376B (zh) 一种沥青多孔材料及其制备方法与应用
CN112517078A (zh) 一种mof基棉布固载化多酸催化材料及其制备方法与应用
Wu et al. Hydrothermal conversion of waste cartons into a magnetic carbon-iron composite for use as an efficient and recyclable dye adsorbent
CN101012390B (zh) 一种TiO2催化氧化实现油品脱硫的方法
Ma et al. Combination of heteropolyacid and UiO-67 (Zr) to generate heterogeneous nanocomposite catalyst for efficient oxidative desulfurization system
Zhang et al. Fabrication of Anderson-Polyoxometalates/TiO2/C3N4 heterojunction composite for efficient visible-light-driven photooxidative desulfurization
Li et al. Heteropolyacids supported on micro/mesoporous materials PMoW@ HKUST-1@ ZSM-5-MCM-41: Effective catalyst for oxidative desulfurization with oxygen
Masteri-Farahani et al. Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite with sulfonic acid for acid-catalyzed reactions
Hong et al. Intelligent light-responsive and ionic polymer functionalized polyacrylonitrile as an environmental benign catalyst for selective oxidation of benzyl alcohols
Li et al. Highly efficient preformed heteropolyacid catalysts for the deep oxidative desulfurization: MOF as a bridge role under nucleation theory
CN107777702A (zh) 一种用于氧化脱硫的多级孔杂原子磷酸铝分子筛的制备方法
CN106669844A (zh) 一种核‑壳结构氧化脱硫催化剂的合成方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant