CN108855193A - TaN/BiVO4异质结复合材料及其制备方法和应用 - Google Patents

TaN/BiVO4异质结复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN108855193A
CN108855193A CN201810812044.2A CN201810812044A CN108855193A CN 108855193 A CN108855193 A CN 108855193A CN 201810812044 A CN201810812044 A CN 201810812044A CN 108855193 A CN108855193 A CN 108855193A
Authority
CN
China
Prior art keywords
tan
bivo
preparation
heterojunction composite
tantalum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810812044.2A
Other languages
English (en)
Other versions
CN108855193B (zh
Inventor
夏立新
李思远
李娜
蒋文超
姜毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201810812044.2A priority Critical patent/CN108855193B/zh
Publication of CN108855193A publication Critical patent/CN108855193A/zh
Application granted granted Critical
Publication of CN108855193B publication Critical patent/CN108855193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及TaN/BiVO4异质结复合材料及其制备方法和应用。TaN/BiVO4异质结复合材料是采用浸渍的方法将氮化钽负载在钒酸铋上形成的异质结构的复合材料。本发明改善了单独半导体在光激发电子后,其电子和空穴再结合速率快的缺点,制备了一种TaN/BiVO4异质结复合材料,间接地加快了电荷与空穴的分离效率,进一步地提高了光激发的电子利用率,提高了光电催化效率。本发明通过修饰半导体,实现高效光电分解水。

Description

TaN/BiVO4异质结复合材料及其制备方法和应用
技术领域
本发明涉及光电解水催化领域,具体为通过制备Z-型异质结改善孤立半导体的缺陷,从而实现高效光电解水。
背景技术
全球化石能源的日益枯竭,能源危机已经日益显现出来。为了解决这一难题,人们将研究目光转移到可再生的和清洁的太阳能,利用太阳光分解水制氢已经逐渐成熟起来。但是由于种种限制因素,单纯的光解水制氢效率低,对材料的要求高,于是光电解水技术应用而生。光电解水体系主要由光敏剂、催化剂、电子受体三部分组成。
由于半导体具有良好的吸光性能,经常作为光敏剂材料,因此人们在不断地修饰改造半导体,用于实现光电解水产氢。但是半导体在光激发后产生的电子空穴对,其重结合效率较快,因此在半导体表面修饰催化剂是一种提高催化效果的方法,也可以通过形成异质结构,降低电子空穴对的再结合率,提高光电解水性能。常见的异质结结构,比如常见的三氧化钨钒酸铋异质结等其制备过程繁琐,并且光电催化效果低。
发明内容
为了解决上述技术问题,本发明的目的是改善单独半导体在光激发电子后,其电子和空穴再结合速率快的缺点,制备一种TaN/BiVO4异质结复合材料,间接地加快了电荷与空穴的分离效率,进一步地提高了光激发的电子利用率,提高了光电催化效率。
本发明采用的技术方案是:TaN/BiVO4异质结复合材料,所述的TaN/BiVO4异质结复合材料是采用浸渍的方法将氮化钽负载在钒酸铋上形成的异质结构的复合材料。
TaN/BiVO4异质结复合材料的制备方法,包括如下步骤:
1)制备钒酸铋基底:于含有硝酸铋、碘化钾和对苯醌的电沉积溶液中,采用三电极体系,在导电载体FTO上沉积一层BiOI膜,水洗,氮气吹干后,于BiOI膜上均匀滴加乙酰丙酮氧矾的DMSO溶液后,于450℃保温2h,冷却至室温后,放入无机碱溶液中浸泡30min,取出,用水冲洗,氮气吹干,得钒酸铋基底;
2)制备TaN/BiVO4异质结复合材料:将钒酸铋基底浸入氮化钽水溶胶中,60℃保持30-60min后,置于马弗炉中500℃煅烧2h。
上述的TaN/BiVO4异质结复合材料的制备方法,步骤1)中,所述的电沉积溶液的制备方法是:取适量去离子水,用硝酸调节其pH到1.7,加入硝酸铋和碘化钾,充分溶解后,加入对苯醌的乙醇溶液,充分搅拌,制成电沉积溶液。
上述的TaN/BiVO4异质结复合材料的制备方法,步骤1)中,采用三电极体系,沉积条件为:外加-0.1V vs Ag/AgCl的偏压沉积5分钟。
上述的TaN/BiVO4异质结复合材料的制备方法,步骤1)中,所述的无机碱为氢氧化钠或氢氧化钾。
上述的TaN/BiVO4异质结复合材料的制备方法,步骤2)中,所述的氮化钽的制备方法是:在氨气的条件下,将氧化钽于500℃下煅烧4h,形成氮化钽。
上述的TaN/BiVO4异质结复合材料的制备方法,其特征在于,步骤2)中,所述的氮化钽水溶胶的制备方法是:取氮化钽溶解于水中,超声,形成氮化钽水溶胶。优选的,氮化钽与水的料液比为:1g:(10-15)mL。
TaN/BiVO4异质结复合材料作为修饰电极在光催化分解水制氢中的应用。
本发明的有益效果是:本发明采用高温煅烧氧化钽的方法制备氮化钽。基于多孔性的钒酸铋,采用简单的浸渍法将氮化钽镶嵌在钒酸铋的空隙中形成异质结,相比于其他的方法,本方法在于操作简单,催化效果显著。
附图说明
图1为钒酸铋的扫描电镜图(SEM)。
图2为氮化钽的X射线衍射图(XRD)。
图3为TaN/BiVO4异质结复合材料的扫描电镜图(SEM)。
图4为TaN/BiVO4异质结复合材料在含有亚硫酸钠的线性扫描图(LSV)。
图5为TaN/BiVO4异质结复合材料在磷酸缓冲液中的线性扫描图(LSV)。
具体实施方式
为了更好地理解本发明的技术方案,特以具体的实施例作进一步详细说明,但方案不限于此。
实施例
(一)制备方法
1、电沉积溶液的制备
量取150ml去离子水,用硝酸调节其pH到1.7。加入2.91g硝酸铋和9.96g碘化钾,充分溶解后,加入20ml溶有1.49g对苯醌的乙醇溶液,充分搅拌,形成电沉积溶液。
2、钒酸铋基底的制备
采用三电极体系,外加-0.1V vs Ag/AgCl的偏压沉积5分钟,于导电载体FTO上沉积一层BiOI膜,用水清洗BiOI膜,氮气吹干。最后在BiOI膜上均匀滴加50微升的含有1.06g乙酰丙酮氧矾的DMSO溶液,于450℃保持2h。待其冷却到室温后,将其放入0.1M的氢氧化钠溶液中,大约浸泡30min后取出,用水冲洗,氮气吹干,得到淡黄色的多孔的钒酸铋基底。用氢氧化钠水溶液浸泡的目的是溶掉基底表面的五氧化钒等杂质。
3、块状氮化钽的合成
在氨气的条件下,将氧化钽于500℃下高温煅烧4h,升温速率为2℃/min,形成淡黄色的粉末,即为氮化钽。
4、氮化钽水溶胶的制备
取0.04g氮化钽溶解于50mL水中,超声,形成氮化钽水溶胶。
5、TaN/BiVO4异质结复合材料
将钒酸铋基底浸入氮化钽水溶胶中,60℃保持30-60min后,置于马弗炉中500℃煅烧2h。
(二)检测
1、图1为钒酸铋的扫描电镜图。由图1可见,钒酸铋是多孔状的均匀的结构,其孔道可以为氮化钽的负载提供适当的位置。
2、图2为氮化钽的X射线衍射图(XRD)。由图2可见,可以看到TaN的衍射峰,进一步证明氮化钽成功负载到钒酸铋上。
3、图3为TaN/BiVO4异质结复合材料的扫描电镜图(SEM),从图中可以清楚地看到块状的氮化钽均匀地负载在多孔状的钒酸铋中。进一步证明本发明的可行性。
4、图4为TaN/BiVO4异质结复合材料在含有亚硫酸钠的线性扫描图(LSV)。从图中的Linear Sweep Voltammetry(LSV)curves可以看到复合材料在含有亚硫酸钠的电解液中的光电流比单独的钒酸铋有明显的提高,进一步证明异质结的形成。
5、图5为TaN/BiVO4异质结复合材料在磷酸缓冲液中的线性扫描图(LSV),从图中的Linear Sweep Voltammetry(LSV)curves可以看出,在pH 7的磷酸缓冲溶液中,单独的钒酸铋的光催化性能较低,而TaN/BiVO4异质结复合材料其催化性能明显的提高,说明异质结能提高光解水的催化性能。

Claims (9)

1.TaN/BiVO4异质结复合材料,其特征在于,所述的TaN/BiVO4异质结复合材料是采用浸渍的方法将氮化钽负载在钒酸铋上形成的异质结构的复合材料。
2.TaN/BiVO4异质结复合材料的制备方法,其特征在于,包括如下步骤:
1)制备钒酸铋基底:于含有硝酸铋、碘化钾和对苯醌的电沉积溶液中,采用三电极体系,在导电载体FTO上沉积一层BiOI膜,水洗,氮气吹干后,于BiOI膜上均匀滴加乙酰丙酮氧矾的DMSO溶液后,于450℃保温2h,冷却至室温后,放入无机碱溶液中浸泡30min,取出,用水冲洗,氮气吹干,得钒酸铋基底;
2)制备TaN/BiVO4异质结复合材料:将钒酸铋基底浸入氮化钽水溶胶中,60℃保持30-60min后,置于马弗炉中500℃煅烧2h。
3.根据权利要求2所述的TaN/BiVO4异质结复合材料的制备方法,其特征在于,步骤1)中,所述的电沉积溶液的制备方法是:取适量去离子水,用硝酸调节其pH到1.7,加入硝酸铋和碘化钾,充分溶解后,加入对苯醌的乙醇溶液,充分搅拌,制成电沉积溶液。
4.根据权利要求2所述的TaN/BiVO4异质结复合材料的制备方法,其特征在于,步骤1)中,采用三电极体系,沉积条件为:外加-0.1V vs Ag/AgCl的偏压沉积5分钟。
5.根据权利要求2所述的TaN/BiVO4异质结复合材料的制备方法,其特征在于,步骤1)中,所述的无机碱为氢氧化钠或氢氧化钾。
6.根据权利要求2所述的TaN/BiVO4异质结复合材料的制备方法,其特征在于,步骤2)中,所述的氮化钽的制备方法是:在氨气的条件下,将氧化钽于500℃下煅烧4h,形成氮化钽。
7.根据权利要求2所述的TaN/BiVO4异质结复合材料的制备方法,其特征在于,步骤2)中,所述的氮化钽水溶胶的制备方法是:取氮化钽溶解于水中,超声,形成氮化钽水溶胶。
8.根据权利要求7所述的TaN/BiVO4异质结复合材料的制备方法,其特征在于,氮化钽与水的料液比为:1g:(10-15)mL。
9.权利要求1所述的TaN/BiVO4异质结复合材料作为修饰电极在光催化分解水制氢中的应用。
CN201810812044.2A 2018-07-23 2018-07-23 TaN/BiVO4异质结复合材料及其制备方法和应用 Active CN108855193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810812044.2A CN108855193B (zh) 2018-07-23 2018-07-23 TaN/BiVO4异质结复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810812044.2A CN108855193B (zh) 2018-07-23 2018-07-23 TaN/BiVO4异质结复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108855193A true CN108855193A (zh) 2018-11-23
CN108855193B CN108855193B (zh) 2021-04-13

Family

ID=64304142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810812044.2A Active CN108855193B (zh) 2018-07-23 2018-07-23 TaN/BiVO4异质结复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108855193B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003948A (zh) * 2019-12-09 2020-04-14 中国石油大学(华东) 一种双铁电铁酸铋/钒酸铋光电化学薄膜的制备方法
CN111762880A (zh) * 2020-07-22 2020-10-13 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080105535A1 (en) * 2004-12-13 2008-05-08 Osaka University Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light
CN101884917A (zh) * 2010-06-29 2010-11-17 于建强 一种可见光催化降解有机污染物的复合纤维材料的制备方法
CN107012474A (zh) * 2016-01-28 2017-08-04 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN108273539A (zh) * 2018-02-07 2018-07-13 江苏大学 一种Ta3N5纳米粒子杂化TiO2空心球复合光催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080105535A1 (en) * 2004-12-13 2008-05-08 Osaka University Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light
CN101884917A (zh) * 2010-06-29 2010-11-17 于建强 一种可见光催化降解有机污染物的复合纤维材料的制备方法
CN107012474A (zh) * 2016-01-28 2017-08-04 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN108273539A (zh) * 2018-02-07 2018-07-13 江苏大学 一种Ta3N5纳米粒子杂化TiO2空心球复合光催化剂及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003948A (zh) * 2019-12-09 2020-04-14 中国石油大学(华东) 一种双铁电铁酸铋/钒酸铋光电化学薄膜的制备方法
CN111003948B (zh) * 2019-12-09 2022-06-07 中国石油大学(华东) 一种双铁电铁酸铋/钒酸铋光电化学薄膜的制备方法
CN111762880A (zh) * 2020-07-22 2020-10-13 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法
CN111762880B (zh) * 2020-07-22 2021-12-10 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法

Also Published As

Publication number Publication date
CN108855193B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Yuan et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
Wang et al. All-solid-state Z-scheme Pt/ZnS-ZnO heterostructure sheets for photocatalytic simultaneous evolution of H2 and O2
Li et al. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook
Guan et al. CdS@ Ni 3 S 2 core–shell nanorod arrays on nickel foam: a multifunctional catalyst for efficient electrochemical catalytic, photoelectrochemical and photocatalytic H 2 production reaction
Tamirat et al. Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe 2 O 3 photoanode
CN105413730B (zh) 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
Li et al. A three-dimensional interconnected hierarchical FeOOH/TiO 2/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation
CN108502859B (zh) 一种复合电极的光化学制备方法
Li et al. Templating sol–gel hematite films with sacrificial copper oxide: enhancing photoanode performance with nanostructure and oxygen vacancies
Davi et al. Enhanced photoelectrochemical water oxidation efficiency of CuWO4 photoanodes by surface modification with Ag2NCN
Mollavali et al. High performance NiS-nanoparticles sensitized TiO2 nanotube arrays for water reduction
Fu et al. ZnO nanowire arrays decorated with PtO nanowires for efficient solar water splitting
Seo et al. Using a CeO2 quantum dot hole extraction-layer for enhanced solar water splitting activity of BiVO4 photoanodes
Feng et al. Switchable synthesis of p-and n-type Cu–In–S grooved pyramid-like microcrystals for unassisted photoelectrochemical water splitting
CN108686645A (zh) 一种TiO2/BiVO4异质结复合材料的制备方法和应用
Zhang et al. In-situ integration of nickel-iron Prussian blue analog heterostructure on Ni foam by chemical corrosion and partial conversion for oxygen evolution reaction
Sheng et al. Full-stainless steel mesh dye-sensitized solar cells based on core-shell ZnO/TiO2 nanorods
Peng et al. Recent progress on post-synthetic treatments of photoelectrodes for photoelectrochemical water splitting
Jang et al. Spontaneous phase transition of hexagonal wurtzite CoO: application to electrochemical and photoelectrochemical water splitting
Irfan et al. Nanoscale Advances
Kolaei et al. Decoration of CdS nanoparticles on dense and multi-edge sodium titanate nanorods to form a highly efficient and stable photoanode with great enhancement in PEC performance
CN108855193A (zh) TaN/BiVO4异质结复合材料及其制备方法和应用
Li et al. Maneuvering cuprous oxide-based photocathodes for solar-to-fuel conversion
Sohail et al. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting
CN112973665B (zh) 一种低温制备高性能单晶SrTaO2N光阳极的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant