CN108851235A - 用于液体烟油加热雾化的氮化铝加热基片 - Google Patents

用于液体烟油加热雾化的氮化铝加热基片 Download PDF

Info

Publication number
CN108851235A
CN108851235A CN201810510581.1A CN201810510581A CN108851235A CN 108851235 A CN108851235 A CN 108851235A CN 201810510581 A CN201810510581 A CN 201810510581A CN 108851235 A CN108851235 A CN 108851235A
Authority
CN
China
Prior art keywords
substrate
slurry
hole
mass ratio
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810510581.1A
Other languages
English (en)
Other versions
CN108851235B (zh
Inventor
李大海
李广坤
胡娟
汪文涛
王忠军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Ai Senda Novel Material Science And Technology Ltd
Original Assignee
Ningxia Ai Senda Novel Material Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Ai Senda Novel Material Science And Technology Ltd filed Critical Ningxia Ai Senda Novel Material Science And Technology Ltd
Priority to CN201810510581.1A priority Critical patent/CN108851235B/zh
Publication of CN108851235A publication Critical patent/CN108851235A/zh
Application granted granted Critical
Publication of CN108851235B publication Critical patent/CN108851235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • A24F47/008

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种用于液体烟油加热雾化的氮化铝加热基片,该基片通过制备第一生基片、制备第二生基片、叠片、共烧、后处理的步骤制成:制备第二生基片的步骤中,采用丝网印刷的方式将钨浆料按设计图要求印刷在第一生基片上,以形成包含加热电路的第二生基片,所述加热电路的正极、负极分别与第二生基片上的第二负极通孔、第二正极通孔内的第二钨浆料连通;本发明氮化铝加热基片具有导热快的特点,该氮化铝生瓷片不含有害物质,减少了对人体的伤害;通过高温共烧的制作工艺把加热线路埋进到基片内部,故机械强度高,与加热丝相比,加热基片为面发热,发热更均匀,且采用高温共烧制备的氮化铝加热片加热效率高,并具备干烧自清洁的特点,不需要清理,寿命更长。

Description

用于液体烟油加热雾化的氮化铝加热基片
技术领域
本发明涉及陶瓷加热基片技术领域,特别涉及一种用于液体烟油加热雾化的氮化铝加热基片。
背景技术
液体烟油加热雾化作为目前电子烟非常流行的一种吸食方式,深受资深烟民和年轻人的喜爱,产品也越来越多的出现在部分娱乐场所。市场上液体烟油加热雾都是通过金属丝进行加热,如不锈钢钢丝、镍丝、镍铬丝等。金属加热丝加热均匀性较差导致产生的烟雾雾化不充分、口味不佳,且加热丝不易清理,使用寿命也较短。
发明内容
有鉴于此,针对上述不足,有必要提出一种适用寿命长、加热均匀的用于液体烟油加热雾化的氮化铝加热基片。
一种用于液体烟油加热雾化的氮化铝加热基片,其特征在于:所述用于液体烟油加热雾化的氮化铝加热基片通过以下方法制造:
制备第一生基片:采用机械冲孔或激光切割加工,在氮化铝生瓷片上加工第一正极通孔、第一负极通孔,以制得中间基片,并对中间基片的第一正极通孔和第一负极通孔用第一钨浆料填充,以制得第一生基片;
制备第二生基片:另取一片制作好的中间基片,并采用丝网印刷的方式将第三钨浆料按设计图要求印刷在该中间生基片上,以形成包含加热电路的第二生基片,该中间生基片上的第一正极通孔、第一负极通孔分别作为第二生基片的第二正极通孔、第二负极通孔,第二生基片的第二正极通孔、第二负极通孔均采用第二钨浆料填充,所述加热电路的正极、负极分别与第二生基片上的第二正极通孔、第二负通孔内的第二钨浆料连通;
叠片:将第一生基片与第二生基片在一定压力下叠片,以形成单片结构,其中,第二生基片印刷有加热电路的侧面为结合面,第一生基片的第一正极通孔与第二生基片的第二正极通孔对准,第一生基片的第一负极通孔与第二生基片的第二负极通孔对准,第一生基片的第一负极通孔内的第一钨浆料与第二生基片的第二负极通孔内第二钨浆料连通,第一生基片的第一正极通孔内的第一钨浆料与第二生基片的第二正极通孔内第二钨浆料连通;
共烧:将上述单片结构在氮气气氛下排胶,然后高温共烧,得到氮化铝加热基片;
后处理:将单片结构两侧第一正极通孔、第一负极通孔的第一钨浆料外表面和第二正极通孔、第二负极通孔的第二钨浆料外表面先镀一层镍,再在镍镀层的外表面再镀一层金,然后采用激光切割成规则的氮化铝加热基片。
本发明氮化铝加热基片具有导热快的特点,该氮化铝生瓷片不含有害物质,减少了对人体的伤害;通过高温共烧的制作工艺把加热线路埋进到基片内部,故机械强度高,与加热丝相比,加热基片为面发热,发热更均匀,且采用高温共烧制备的氮化铝加热片加热效率高,并具备干烧自清洁的特点,故不需要清理,寿命更长。
附图说明
图1为氮化铝加热基片的结构示意图。
图2为第一生基片的示意图。
图3为第二生基片的示意图。
图中:第一生基片10、第一正极通孔11、第一负极通孔12、第一钨浆料13、第二生基片20、第二正极通孔21、第二负极通孔22、第二钨浆料23、第三钨浆料24。
具体实施方式
为了更清楚地说明本发明实施例的技术方案,下面将结合实施例进行进一步的说明。
参见图1至图3,本发明提供了一种用于液体烟油加热雾化的氮化铝加热基片,所述用于液体烟油加热雾化的氮化铝加热基片通过以下方法制造:
制备第一生基片10:请参见图2,采用机械冲孔或激光切割加工,在氮化铝生瓷片上加工第一正极通孔11、第一负极通孔12,以制得中间基片,并对中间基片的第一正极通孔11和第一负极通孔12用第一钨浆料13填充,以制得第一生基片10;
制备第二生基片20:请参见图3,另取一片制作好的中间基片并采用丝网印刷的方式将第三钨浆料24按设计图要求印刷在该中间生基片上,以形成包含加热电路的第二生基片20,该中间生基片上的第一正极通孔11、第一负极通孔12分别作为第二生基片20的第二正极通孔21、第二负极通孔22,第二生基片20的第二正极通孔21、第二负极通孔22均采用第二钨浆料23填充,所述加热电路的正极、负极分别与第二生基片20上的第二正极通孔21、第二负通孔内的第二钨浆料23连通;
叠片:请参见图1,将第一生基片10与第二生基片20在一定压力下叠片,以形成单片结构,其中,第二生基片20印刷有加热电路的侧面为结合面,第一生基片10的第一正极通孔11与第二生基片20的第二正极通孔21对准,第一生基片10的第一负极通孔12与第二生基片20的第二负极通孔22对准,第一生基片10的第一负极通孔12内的第一钨浆料13与第二生基片20的第二负极通孔22内第二钨浆料23连通,第一生基片10的第一正极通孔11内的第一钨浆料13与第二生基片20的第二正极通孔21内第二钨浆料23连通;
共烧:将上述单片结构在氮气气氛下排胶,然后高温共烧,得到氮化铝加热基片;
后处理:将单片结构两侧第一正极通孔11、第一负极通孔12的第一钨浆料13外表面和第二正极通孔21、第二负极通孔22的第二钨浆料23外表面先镀一层镍,再在镍镀层的外表面再镀一层金,然后采用激光切割成规则的氮化铝加热基片。
钨容易氧化,因此需要镀一层金属,而钨的表面难以镀金,需要现在钨的表面先镀一层镍,镍也容易氧化,但镍的表面可以镀金,镀金层可以抵抗氧化。
上述叠片步骤中,第一生基片10、第二生基片20的数量可以根据氮化铝加热基片厚度需要适当调整,例如从上而下依次为两层第一生基片10、两层第二生基片20、再两层第一生基片10;其中两层第二生基片20背对设置。
本发明氮化铝加热基片具有导热快的特点,该氮化铝生瓷片不含有害物质,减少了对人体的伤害;通过高温共烧的制作工艺把加热线路埋进到基片内部,故机械强度高,与加热丝相比,加热基片为面发热,发热更均匀,且采用高温共烧制备的氮化铝加热片加热效率高,并具备干烧自清洁的特点,故不需要清理,寿命更长。
进一步,在步骤“制备第一生基片”和“制备第二生基片”中用到的所述氮化铝生瓷片通过以下方法制造:
1)装入研磨球:在纳米砂磨机中装入干净的氧化铝研磨球,研磨球与氮化铝粉的质量比5:1;
纳米砂磨机能够完全打开粉体团聚,研磨粒度更细,使烧结助剂的分散更均匀,有利于高温共烧陶瓷的烧结。
2)配置浆料:按质量比分别称取氮化铝粉、溶剂、分散剂、烧结助剂、防沉剂,先将防沉剂加入到溶剂中,在高速分散机中以1500rpm/min搅拌0.5-1小时,使防沉剂均匀分散到溶剂中,再将含防沉剂的溶剂、氮化铝粉、分散剂、烧结助剂一同加入到纳米砂磨机中,混合均匀并形成浆料,准备一次研磨;
3)一次研磨:开启纳米砂磨机,进行研磨,研磨过程中测试浆料粒度,当D50范围在0.5-1.5um时,停机;
4)配置流延浆料:一次研磨结束后,按质量比称取粘结剂、增塑剂,加入到一次研磨后的浆料中,混合均匀形成流延浆料;
5)二次研磨:流延浆料在纳米砂磨机中继续研磨,研磨2小时后停机,使流延浆料混合更加均匀;
6)真空脱泡:将二次研磨后的流延浆料转移至真空搅拌脱泡机中进行真空脱泡,真空脱泡时间0.5-1小时,粘度达到3000-6000Pa·S时停止脱泡,以抽除流延浆料中的气体,实现无气泡效果;
7)流延成型:将真空脱泡后的流延浆料转移至流延机进行流延操作,根据高温共烧陶瓷用生瓷片的使用的要求,可将流延出的生瓷带厚度控制在0.05-1mm范围内;
由于无水乙醇的挥发速率较快,流延过程中容易开裂,因此要将流延机每一段的进风关闭,减少无水乙醇的挥发,流延速度0.2-0.5m/min;,制得的生瓷带可将厚度控制在0.05-1mm范围内,满足不同微波器件、大功率微波管、大电流电力电子器件的不同厚度需要。
8)裁切:将流延成型的生瓷带裁切为所需尺寸的生瓷片。
在实际工业生产中,制得的氮化铝生瓷片在进行高温共烧陶瓷制作时,常常出现氮化铝生瓷片偏软、加工困难、变形量大等问题,生产成本居高不下,严重制约了氮化铝陶瓷材料的发展。
如中国专利CN105481368A公开了一种针对陶瓷流延浆料、陶瓷基板及其制备方法和应用,该流延浆料包括混合溶剂、分散剂、氮化铝陶瓷粉末、烧结助剂、增塑剂和粘结剂其中,所述混合溶剂选自无水乙醇、乙酸乙酯和乙酸丙酯的两种以上,所述混合溶剂的加入量为氮化铝陶瓷粉末质量的30%-50%,所述烧结助剂选自氧化钇、氧化钙、氟化钇、氧化锂、碳酸钙或碳酸锂的一种或两种以上,所述增塑剂选自环氧油酸丁酯、环氧硬脂酸辛酯、环氧化甘油三酸酯、甘油三醋酸酯、偏苯三酸三辛酯、偏苯三酸三己酯或均苯四酸四酯的一种或两种以上,所述粘结剂选自羧甲基纤维素钠、聚乙烯醇或聚丙烯醇的一种或两种以上,所述粘结剂的质量占氮化铝陶瓷粉末的2-5%,优选为3-5%。
如上专利中,存在如下缺陷:采用羧甲基纤维素钠、聚乙烯醇或聚丙烯醇中的一种或几种作为生产氮化铝生瓷片的粘结剂,但由于羧甲基纤维素钠是一种盐,不溶于有机溶剂,不适合于用在高温共烧陶瓷上,同时羧甲基纤维素钠、聚乙烯醇和聚丙烯醇都具有有较强的吸水性,对于制备极易水解氮化铝十分不利,产物不稳定,容易分解,制备的生瓷片加工性能不佳。
如中国专利CN104193340A公开了一种流延成型法制备用于多层布线基板的生瓷片的方法,包括多层用生瓷片、浆料制作方法和流延工艺,是将粉体、烧结助剂、分散剂、粘结剂、增塑剂和溶剂搅拌混合均匀,形成浆料,再通过流延的方法制得生瓷片,生瓷片厚度控制在0.3mm以下,所制作的生瓷片能满足多层布线基板制作,所述的烧结助剂为稀土金属氧化物、碱土金属氧化物中的一种或两种,所述分散剂为油酸、三油酸甘油酯、鱼油、丙烯酸树脂中的一种或两种,所述粘结剂为聚碳酸亚丙脂树脂,所述增塑剂为邻苯二甲酸二甲酯和邻苯二甲酸二丁酯中一种或两种,所述溶剂为异丙醇、丙酮、丁酮、乙醇中的多元混合体系。
如中国专利CN103121238A 公开了一种流延成型制备氮化铝生胚的方法,包括以下步骤:(1)配制有机胶:将粘结剂、增塑剂和有机溶剂按比例加入到容器内搅拌均匀;(2)配制流延浆料:将氮化铝粉体烧结助剂按比例依次加入到球磨罐中,再依次加入有机溶剂和分散剂,进行球磨,加入步骤(1)中配制的有机胶,再进行球磨;(3)脱泡陈腐:将步骤(2)中处理好的流延浆料进行真空脱泡并进行陈腐处理,控制粘度在8000-13000cps;(4)流延成型:用流延机对步骤(3)中处理好的流延浆料进行流延成型,控制刮刀高度为2.4-2.8mm,流延带速为0.1-0.3m/分,流延机的干燥温度一区为70-90℃,二区温度为120-150℃,使用上述方法可直接制备出厚度达1.3-1.6mm的氮化铝生胚。CN103121238A所述粘结剂是聚丙烯酸甲酯和聚乙烯醇缩丁醛中的一种或两种,所述Ι类增塑剂为邻苯二甲酸二丁酯或邻苯二甲酸丁苄酯或邻苯二甲酸二辛酯中的一种或两种,所述有机溶剂是甲苯、二甲苯或无水乙醇,所述烧结助剂是氧化铒、氧化镝或氧化钇中的一种或两种。
上述三件专利中,在采用流延法生产氮化铝生瓷片时,生产原料还都用到苯、酮、醛等毒性较大的有机原料,生产过程中产生的有机废液将会对环境造成较大危害及污染,且有机原料中的有毒有害成分在生产过程中易残留在氮化铝生瓷片中,对生产者、使用者的身体健康具有一定的危害性。
本实施例中制成的生瓷片,具有强度高、导热性好、温度性好的优点,在高温共烧陶瓷的制作过程中不易变形、打孔印刷精度高、平整度好、与金属化浆料的收缩匹配性好,制作过程不需要覆膜操作,解决了氮化铝生瓷片偏软、加工困难、易出现填孔印刷偏移、叠片错位等难题,提高了生产效率,降低了生产成本。
本实施例中制成的生瓷片,在制作成高温共烧陶瓷器件后,烧结后收缩率小、平整度好,加工性能良好,不含有机类有毒有害成分。
本实施例中采用聚丙烯酸树脂来代替“自羧甲基纤维素钠、聚乙烯醇或聚丙烯醇的一种或两种以上”组成的粘结剂,解决了其产物生瓷片不稳定、易水解的问题,制得的生瓷片稳定性良好、加工性能良好。
本实施例中通过采用不含苯、酮、醛等有毒有害成分的有机原料,使用流延法生产出性能良好的生瓷片,解决了现有技术采用含苯、酮、醛等有毒有害成分的有机原料生产生瓷片的难题,保障生产过程不产生有机类有毒有害物质及有机废液,使生瓷片的生产绿色环保,大幅减少生产过程对环境及接触人员的危害。
进一步,所述配置浆料步骤中,所述溶剂为无水乙醇,所述分散剂为含颜料亲和基团的高分子量嵌段共聚物溶液DISPERBYK190,所述烧结助剂为纳米氧化镧、氧化钇混合分散液,所述防沉剂为聚烯烃蜡、聚乙烯蜡中的一种或两种物质的混合物,所述氮化铝粉粒径为0.5-1.5um,形貌为类球形。
溶剂为无水乙醇,常用有机溶剂,无毒无害。
分散剂为含颜料亲和基团的高分子量嵌段共聚物溶液DISPERBYK190,为有机溶液,不含有害成分。
烧结助剂为纳米氧化镧、氧化钇混合分散液,在配置的浆料及流延浆料中分布均匀,制成的生瓷片经烧结后品相良好,解决了目前生瓷片经烧结后易出现平整度差、有白点等问题。
防沉剂为聚烯烃蜡、聚乙烯蜡中的一种或两种物质的混合物,保证了流延浆料的均匀一致性,在流延过程中起到防止沉降的作用,使整个流延过程浆料粘度始终均匀一致,保证了生瓷片密度的均匀性,同时由于防沉剂的加入,使配方中的烧结助剂前后分布均匀,使产品的抗折强度更均匀、更大,制备的生瓷片不会偏软,更易于加工,打孔精度高,无偏移。
溶剂、分散剂、防沉剂均为环保型有机化学品,不含苯、酮、醛等有毒有害成分,保障生产过程不产生有机类有毒有害物质及有机废液,减少环境污染。
进一步,所述防沉剂还能够用聚酰胺蜡、改性氢化蓖麻油中的一种或两种物质的混合物代替。
进一步,所述氮化铝粉占流延浆料的质量比为50-60%,所述溶剂占流延浆料的质量比为32-42.8%,所述分散剂占流延浆料的质量比为1-2%,所述烧结助剂占流延浆料的质量比为0.2-5%,所述防沉剂占流延浆料的质量比为1-2%。
进一步,所述氮化铝粉占流延浆料的质量比为50%,所述溶剂占流延浆料的质量比为41.7%,所述分散剂占流延浆料的质量比为1%,所述烧结助剂占流延浆料的质量比为0.3%,所述防沉剂占流延浆料的质量比为1%。
进一步,所述一次研磨步骤中,所述浆料粒度D50不大于1um时,停机。
进一步,所述流延浆料步骤中,所述粘结剂为聚丙烯酸树脂,所述增塑剂为环己烷-1,2-二羧酸异辛酯。
粘结剂为聚丙烯酸树脂,在氮气气氛下分解温度为300℃,空气气氛下分解温度在230℃,具有分解温度低,残碳少的特点,容易排胶,满足高温共烧陶瓷共烧条件,并且聚丙烯酸树脂可溶于醇类溶剂,可采用无水乙醇作为溶剂,减少了环境污染。
增塑剂为环己烷-1,2-二羧酸异辛酯,为环保型增塑剂,减少人体伤害,减少环境污染。
粘结剂、增塑剂为环保型有机化学品,不含苯、酮、醛等有毒有害成分,保障生产过程不产生有机类有毒有害物质及有机废液,减少环境污染。
进一步,所述粘结剂占流延浆料的质量比为5-8%,所述增塑剂占流延浆料的质量比为1-2%。
进一步,所述粘结剂占流延浆料的质量比为5%,所述增塑剂占流延浆料的质量比为1%。
进一步,所述流延成型步骤中,流延速度为0.2-0.5m/min。
如上所述,所述流延浆料的原料配比为:
原料配比1:氮化铝粉占流延浆料的质量比为50-60%,溶剂占流延浆料的质量比为32-42.8%,分散剂占流延浆料的质量比为1-2%,烧结助剂占流延浆料的质量比为0.2-5%,防沉剂占流延浆料的质量比为1-2%,粘结剂占流延浆料的质量比为5-8%,增塑剂占流延浆料的质量比为1-2%。
例如,所述流延浆料的原料配比可以如下:
原料配比2:氮化铝粉质量比为50%,溶剂质量比为41.7%,分散剂质量比为1%,烧结助剂质量比为0.3%,防沉剂质量比为1%,粘结剂质量比为5%,增塑剂质量比为1%。
原料配比3:氮化铝粉质量比为55%,溶剂质量比为32.8%,分散剂质量比为2%,烧结助剂质量比为0.5%,防沉剂质量比为1.2%,粘结剂质量比为7%,增塑剂质量比为1.5%。
原料配比4:氮化铝粉质量比为57%,溶剂质量比为33.5%,分散剂质量比为2%,烧结助剂质量比为0.5%,防沉剂质量比为1%,粘结剂质量比为5%,增塑剂质量比为1%。
原料配比5:氮化铝粉质量比为50%,溶剂质量比为42.8%,分散剂质量比为1%,烧结助剂质量比为0.2%,防沉剂质量比为1%,粘结剂质量比为4%,增塑剂质量比为1%。
原料配比6:氮化铝粉质量比为50%,溶剂质量比为33%,分散剂质量比为2%,烧结助剂质量比为5%,防沉剂质量比为2%,粘结剂质量比为7%,增塑剂质量比为1%。
原料配比7:氮化铝粉质量比为51%,溶剂质量比为38%,分散剂质量比为1.5%,烧结助剂质量比为2.5%,防沉剂质量比为2%,粘结剂质量比为6%,增塑剂质量比为1%。
上述原料配比中的氮化铝粉、溶剂、分散剂、烧结助剂、防沉剂、粘结剂、增塑剂的质量比可以为整数,也可以带有小数,具体原料配比可以按实际需要进行调整。
以下结合具体实施方式对本发明进行详细阐述,以使本领域技术人员可以更好的理解本发明的优点。
实施例1,为一个具体的氮化铝加热基片制备实施例。
制备第一生基片10:采用机械冲孔或激光切割加工,在氮化铝生瓷片上加工第一正极通孔11、第一负极通孔12,第一正极通孔11、第一负极通孔12的孔径 大小为孔径大小为015-0.30mm,以制得中间基片,并对中间基片的第一正极通孔11和第一负极通孔12用第一钨浆料13填充,以制得第一生基片10;
制备第二生基片20:另取一片制作好的中间基片,并采用丝网印刷的方式将第三钨浆料24按设计图要求印刷在该中间生基片上,以形成包含加热电路的第二生基片20,该中间生基片上的第一正极通孔11、第一负极通孔12分别作为第二生基片20的第二正极通孔21、第二负极通孔22,第二生基片20的第二正极通孔21、第二负极通孔22均采用第二钨浆料23填充,所述加热电路的正极、负极分别与第二生基片20上的第二正极通孔21、第二负通孔内的第二钨浆料23连通;
叠片:将第一生基片10与第二生基片20在一定压力下叠片,等静压压力为10-30Mpa,温度30-50℃,时间8-20min,以形成单片结构,其中,第二生基片20印刷有加热电路的侧面为结合面,第一生基片10的第一正极通孔11与第二生基片20的第二正极通孔21对准,第一生基片10的第一负极通孔12与第二生基片20的第二负极通孔22对准,第一生基片10的第一负极通孔12内的第一钨浆料13与第二生基片20的第二负极通孔22内第二钨浆料23连通,第一生基片10的第一正极通孔11内的第一钨浆料13与第二生基片20的第二正极通孔21内第二钨浆料23连通;
共烧:将上述单片结构在氮气气氛下排胶,然后在1800℃高温共烧,得到氮化铝加热基片;
后处理:将单片结构两侧第一正极通孔11、第一负极通孔12的第一钨浆料13外表面和第二正极通孔21、第二负极通孔22的第二钨浆料23外表面先镀一层镍,再在镍镀层的外表面再镀一层金,镀镍层厚度大于3μm,镀金层厚度大于0.2μm,然后采用激光切割成规则的氮化铝加热基片,加热基片尺寸为12.2±1×8.8±1mm,厚度范围可在0.7mm至0.9mm之间。
实施例2,为一个具体的氮化铝生瓷片制备实施例。
1)装入研磨球:在纳米砂磨机中装入干净的氧化铝研磨球,研磨球与氮化铝粉的质量比5:1;
2)配置浆料:按原料配比2称取氮化铝粉50%、溶剂41.7%、分散剂1%、烧结助剂0.3%、防沉剂1%加入到纳米砂磨机中,混合均匀形成浆料,准备一次研磨;
3)一次研磨:开启纳米砂磨机,进行研磨,研磨过程中测试浆料粒度,当D50范围不大于1um时,停机;
4)配置流延浆料:一次研磨结束后,按原料配比2称取粘结剂5%、增塑剂1%,加入到一次研磨后的浆料中,混合均匀形成流延浆料;
5)二次研磨:流延浆料在纳米砂磨机中继续研磨,研磨2小时后停机;
6)真空脱泡:将二次研磨后的流延浆料转移至真空搅拌脱泡机中进行真空脱泡,真空脱泡时间0.5-1小时,粘度达到3000-6000Pa·S时停止脱泡;
7)流延成型:将真空脱泡后的流延浆料转移至流延机进行流延操作,流延速度为0.2-0.5m/min,使流延出的生瓷带厚度控制在0.05-1mm范围内;
8)裁切:将流延成型的生瓷带裁切为所需尺寸的生瓷片。
实施例3,为一个具体的氮化铝生瓷片制备实施例。
1)装入研磨球:在纳米砂磨机中装入干净的氧化铝研磨球,研磨球与氮化铝粉的质量比5:1;
2)配置浆料:按原料配比3称取氮化铝粉55%、溶剂32.8%、分散剂2%、烧结助剂0.5%、防沉剂1.2%加入到纳米砂磨机中,混合均匀形成浆料,准备一次研磨;
3)一次研磨:开启纳米砂磨机,进行研磨,研磨过程中测试浆料粒度,当D50范围不大于1um时,停机;
4)配置流延浆料:一次研磨结束后,按原料配比3称取粘结剂7%、增塑剂1.5%,加入到一次研磨后的浆料中,混合均匀形成流延浆料;
5)二次研磨:流延浆料在纳米砂磨机中继续研磨,研磨2小时后停机;
6)真空脱泡:将二次研磨后的流延浆料转移至真空搅拌脱泡机中进行真空脱泡,真空脱泡时间0.5-1小时,粘度达到3000-6000Pa·S时停止脱泡;
7)流延成型:将真空脱泡后的流延浆料转移至流延机进行流延操作,流延速度为0.2-0.5m/min,使流延出的生瓷带厚度控制在0.05-1mm范围内;
8)裁切:将流延成型的生瓷带裁切为所需尺寸的生瓷片。
实施例4,为一个具体的氮化铝生瓷片制备实施例。
1)装入研磨球:在纳米砂磨机中装入干净的氧化铝研磨球,研磨球与氮化铝粉的质量比5:1;
2)配置浆料:按原料配比4称取氮化铝粉57%、溶剂33.5%、分散剂2%、烧结助剂0.5%、防沉剂1%加入到纳米砂磨机中,混合均匀形成浆料,准备一次研磨;
3)一次研磨:开启纳米砂磨机,进行研磨,研磨过程中测试浆料粒度,当D50范围不大于1um时,停机;
4)配置流延浆料:一次研磨结束后,按原料配比4称取粘结剂5%、增塑剂1%,加入到一次研磨后的浆料中,混合均匀形成流延浆料;
5)二次研磨:流延浆料在纳米砂磨机中继续研磨,研磨2小时后停机;
6)真空脱泡:将二次研磨后的流延浆料转移至真空搅拌脱泡机中进行真空脱泡,真空脱泡时间0.5-1小时,粘度达到3000-6000Pa·S时停止脱泡;
7)流延成型:将真空脱泡后的流延浆料转移至流延机进行流延操作,流延速度为0.2-0.5m/min,使流延出的生瓷带厚度控制在0.05-1mm范围内;
8)裁切:将流延成型的生瓷带裁切为所需尺寸的生瓷片。
将实施例2-4所制得的生瓷片进行检测,并与现有技术制得的生瓷片进行对比,数据如下:
实施例2 实施例3 实施例4 现有技术方案
打孔精度 无偏移 无偏移 无偏移 5-9%偏移
抗弯强度MPa 402/387/392 419/409/422 413/407/420 342/309/378
热导率 180.2 179.5 180.4 174.5
密度 2.22/2.23/2.18 2.25/2.23/2.19 2.17/2.22/2.19 2.02/2.37/1.98
密度极差 0.05 0.06 0.05 0.39
从表中数据可以看出,上述实施例制得的生瓷片打孔精度高,无偏移,抗弯强度大,密度均匀且其极差远小于现有技术方案的密度,解决了目前生瓷片偏软、加工困难、变形量大等难题。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

1.一种用于液体烟油加热雾化的氮化铝加热基片,其特征在于:所述用于液体烟油加热雾化的氮化铝加热基片通过以下方法制造:
制备第一生基片:采用机械冲孔或激光切割加工,在氮化铝生瓷片上加工第一正极通孔、第一负极通孔,以制得中间基片,并对中间基片的第一正极通孔和第一负极通孔用第一钨浆料填充,以制得第一生基片;
制备第二生基片:另取一片制作好的中间基片,并采用丝网印刷的方式将第三钨浆料按设计图要求印刷在该中间生基片上,以形成包含加热电路的第二生基片,该中间生基片上的第一正极通孔、第一负极通孔分别作为第二生基片的第二正极通孔、第二负极通孔,第二生基片的第二正极通孔、第二负极通孔均采用第二钨浆料填充,所述加热电路的正极、负极分别与第二生基片上的第二正极通孔、第二负通孔内的第二钨浆料连通;
叠片:将第一生基片与第二生基片在一定压力下叠片,以形成单片结构,其中,第二生基片印刷有加热电路的侧面为结合面,第一生基片的第一正极通孔与第二生基片的第二正极通孔对准,第一生基片的第一负极通孔与第二生基片的第二负极通孔对准,第一生基片的第一负极通孔内的第一钨浆料与第二生基片的第二负极通孔内第二钨浆料连通,第一生基片的第一正极通孔内的第一钨浆料与第二生基片的第二正极通孔内第二钨浆料连通;
共烧:将上述单片结构在氮气气氛下排胶,然后高温共烧,得到氮化铝加热基片;
后处理:将单片结构两侧第一正极通孔、第一负极通孔的第一钨浆料外表面和第二正极通孔、第二负极通孔的第二钨浆料外表面先镀一层镍,再在镍镀层的外表面再镀一层金,然后采用激光切割成规则的氮化铝加热基片。
2.如权利要求1所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于:在步骤“制备第一生基片”和“制备第二生基片”中用到的所述氮化铝生瓷片通过以下方法制造:
装入研磨球:在纳米砂磨机中装入干净的氧化铝研磨球,研磨球与氮化铝粉的质量比为5:1;
配置浆料:按质量比分别称取氮化铝粉、溶剂、分散剂、烧结助剂、防沉剂,先将防沉剂加入到溶剂中,在高速分散机中以1500rpm/min搅拌0.5-1小时,使防沉剂均匀分散到溶剂中,再将含防沉剂的溶剂、氮化铝粉、分散剂、烧结助剂一同加入到纳米砂磨机中,混合均匀并形成浆料,准备一次研磨;
一次研磨:开启纳米砂磨机,进行研磨,研磨过程中测试浆料粒度,当D50范围在0.5-1.5um时,停机;
配置流延浆料:一次研磨结束后,按质量比称取粘结剂、增塑剂,加入到一次研磨后的浆料中,混合均匀形成流延浆料;
二次研磨:流延浆料在纳米砂磨机中继续研磨,研磨2-4小时后停机;
真空脱泡:将二次研磨后的流延浆料转移至真空搅拌脱泡机中进行真空脱泡,真空脱泡时间为0.5-1小时,粘度达到3000-6000Pa·S时停止脱泡;
流延成型:将真空脱泡后的流延浆料转移至流延机进行流延操作,使流延出的生瓷带厚度控制在0.05-1mm范围内;
裁切:将流延成型的生瓷带裁切为所需尺寸的生瓷片。
3.如权利要求2所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述配置浆料步骤中,所述溶剂为无水乙醇,所述分散剂为含颜料亲和基团的高分子量嵌段共聚物溶液DISPERBYK190,所述烧结助剂为纳米氧化镧、氧化钇混合分散液,所述防沉剂为聚烯烃蜡、聚乙烯蜡中的一种或两种物质的混合物,所述氮化铝粉粒径为0.5-1.5um。
4.如权利要求3所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述防沉剂还能够用聚酰胺蜡、改性氢化蓖麻油中的一种或两种物质的混合物代替。
5.如权利要求2-4之一所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述氮化铝粉占流延浆料的质量比为50-60%,所述溶剂占流延浆料的质量比为32-42.8%,所述分散剂占流延浆料的质量比为1-2%,所述烧结助剂占流延浆料的质量比为0.2-5%,所述防沉剂占流延浆料的质量比为1-2%。
6.如权利要求2-4之一所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述氮化铝粉占流延浆料的质量比为50%,所述溶剂占流延浆料的质量比为41.7%,所述分散剂占流延浆料的质量比为1%,所述烧结助剂占流延浆料的质量比为0.3%,所述防沉剂占流延浆料的质量比为1%。
7.如权利要求2所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述一次研磨步骤中,所述浆料粒度D50不大于1um时,停机。
8.如权利要求2所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述流延浆料步骤中,所述粘结剂为聚丙烯酸树脂,所述增塑剂为环己烷-1,2-二羧酸异辛酯。
9.如权利要求8所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述粘结剂占流延浆料的质量比为5-8%,所述增塑剂占流延浆料的质量比为1-2%。
10.如权利要求9所述的用于液体烟油加热雾化的氮化铝加热基片,其特征在于,所述粘结剂占流延浆料的质量比为5%,所述增塑剂占流延浆料的质量比为1%。
CN201810510581.1A 2018-05-24 2018-05-24 用于液体烟油加热雾化的氮化铝加热基片 Active CN108851235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810510581.1A CN108851235B (zh) 2018-05-24 2018-05-24 用于液体烟油加热雾化的氮化铝加热基片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810510581.1A CN108851235B (zh) 2018-05-24 2018-05-24 用于液体烟油加热雾化的氮化铝加热基片

Publications (2)

Publication Number Publication Date
CN108851235A true CN108851235A (zh) 2018-11-23
CN108851235B CN108851235B (zh) 2021-02-05

Family

ID=64334101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810510581.1A Active CN108851235B (zh) 2018-05-24 2018-05-24 用于液体烟油加热雾化的氮化铝加热基片

Country Status (1)

Country Link
CN (1) CN108851235B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110074461A (zh) * 2019-04-30 2019-08-02 深圳陶陶科技有限公司 管式加热器及其制备方法和应用
CN112006333A (zh) * 2019-05-29 2020-12-01 常州市派腾电子技术服务有限公司 一种发热件及电子烟,以及发热件的加工方法
WO2022110539A1 (zh) * 2020-11-24 2022-06-02 凡品思(深圳)科技有限公司 一种发热装置、雾化装置及电子烟
CN114710847A (zh) * 2022-04-09 2022-07-05 莱鼎电子材料科技有限公司 半导体芯片封测用电子陶瓷加热器及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424727A (zh) * 2002-12-30 2003-06-18 中国人民解放军国防科学技术大学 基于不锈钢基板的大功率厚膜电路用电阻浆料及其制备工艺
CN1962736A (zh) * 2006-11-16 2007-05-16 南亚塑胶工业股份有限公司 一种含环己烷多羧酸酯化物的可塑剂及其制造方法
CN101772224A (zh) * 2009-12-31 2010-07-07 钟秉霖 一种陶瓷氮化铝发热片及发热装置
CN102432346A (zh) * 2011-10-09 2012-05-02 南京汉德森科技股份有限公司 一种用于大功率led封装的陶瓷基板的制备方法
CN102595943A (zh) * 2009-10-29 2012-07-18 菲利普莫里斯生产公司 具有改进的加热器的电加热的发烟系统
CN102695689A (zh) * 2009-12-24 2012-09-26 法商圣高拜欧洲实验及研究中心 含陶瓷料粒的粉末
CN103653263A (zh) * 2013-12-31 2014-03-26 广东中烟工业有限责任公司 一种烟料加热装置的加热机构
CN104072158A (zh) * 2014-06-12 2014-10-01 浙江长兴电子厂有限公司 氮化铝烧结助剂和制备方法及氮化铝陶瓷基片的制备方法
CN105188427A (zh) * 2013-03-22 2015-12-23 英美烟草(投资)有限公司 加热可抽吸材料
CN107324812A (zh) * 2017-07-14 2017-11-07 上海大学 氮化铝陶瓷浆料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424727A (zh) * 2002-12-30 2003-06-18 中国人民解放军国防科学技术大学 基于不锈钢基板的大功率厚膜电路用电阻浆料及其制备工艺
CN1962736A (zh) * 2006-11-16 2007-05-16 南亚塑胶工业股份有限公司 一种含环己烷多羧酸酯化物的可塑剂及其制造方法
CN102595943A (zh) * 2009-10-29 2012-07-18 菲利普莫里斯生产公司 具有改进的加热器的电加热的发烟系统
CN102695689A (zh) * 2009-12-24 2012-09-26 法商圣高拜欧洲实验及研究中心 含陶瓷料粒的粉末
CN101772224A (zh) * 2009-12-31 2010-07-07 钟秉霖 一种陶瓷氮化铝发热片及发热装置
CN102432346A (zh) * 2011-10-09 2012-05-02 南京汉德森科技股份有限公司 一种用于大功率led封装的陶瓷基板的制备方法
CN105188427A (zh) * 2013-03-22 2015-12-23 英美烟草(投资)有限公司 加热可抽吸材料
CN103653263A (zh) * 2013-12-31 2014-03-26 广东中烟工业有限责任公司 一种烟料加热装置的加热机构
CN104072158A (zh) * 2014-06-12 2014-10-01 浙江长兴电子厂有限公司 氮化铝烧结助剂和制备方法及氮化铝陶瓷基片的制备方法
CN107324812A (zh) * 2017-07-14 2017-11-07 上海大学 氮化铝陶瓷浆料及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110074461A (zh) * 2019-04-30 2019-08-02 深圳陶陶科技有限公司 管式加热器及其制备方法和应用
CN110074461B (zh) * 2019-04-30 2022-06-17 深圳陶陶科技有限公司 管式加热器及其制备方法和应用
CN112006333A (zh) * 2019-05-29 2020-12-01 常州市派腾电子技术服务有限公司 一种发热件及电子烟,以及发热件的加工方法
CN112006333B (zh) * 2019-05-29 2023-09-08 常州市派腾电子技术服务有限公司 一种发热件及电子烟,以及发热件的加工方法
WO2022110539A1 (zh) * 2020-11-24 2022-06-02 凡品思(深圳)科技有限公司 一种发热装置、雾化装置及电子烟
CN114710847A (zh) * 2022-04-09 2022-07-05 莱鼎电子材料科技有限公司 半导体芯片封测用电子陶瓷加热器及其制备方法

Also Published As

Publication number Publication date
CN108851235B (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
CN108851235A (zh) 用于液体烟油加热雾化的氮化铝加热基片
CN108484176A (zh) 一种高温共烧陶瓷用氮化铝生瓷片的制备方法
CN101321415B (zh) 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
DE4234349C2 (de) Verbundstoffe auf Glasbasis und Glaskeramikbasis und Verfahren zu ihrer Herstellung
TWI336480B (en) Conductive paste for multilayer electronic components and multilayer electronic component using same
CN101483417B (zh) 一种多层布线用黑色氧化铝基片的制备方法
CN104193340B (zh) 流延成型法制备用于多层布线基板的AlN生瓷片的方法及制得的AlN生瓷片
CN113045305B (zh) Ltcc生料带材料、基板及制备方法
JP4932035B2 (ja) 低温焼成セラミック回路基板
CN110922213A (zh) 陶瓷基体的表面修饰层及其制备方法、陶瓷发热体及电子雾化装置
JP2008227204A (ja) ビア充填用導電性ペースト
CN209643853U (zh) 一种液体高导通多孔加热组件及电子烟
CN104319043B (zh) 一种负温度系数热敏电阻芯片电极的制造方法
JP4772071B2 (ja) グリーンシート用セラミック粉末及び低温焼成多層セラミック基板
JP2008227364A (ja) 内部電極形成ペースト、積層型セラミック型電子部品、およびその製造方法
CN114230360A (zh) 一种水溶性陶瓷金属化用amb法银铜浆料及其制备方法
CN108530039A (zh) 一种负载纳米氧化铜的平板陶瓷膜的配方及其制备方法
CN105448383A (zh) 氧化铝绝缘浆料、其制备方法及氧化铝绝缘层的制备方法
TW593194B (en) High K glass and tape composition for use at high frequency
US5637261A (en) Aluminum nitride-compatible thick-film binder glass and thick-film paste composition
CN101604636A (zh) 多层陶瓷基板的制造方法以及使用了它的电子机器
CN114783652B (zh) 一种与微波介质陶瓷低温共烧的金导体布线浆料及其制备方法
DE112017001274T5 (de) Verbindungssubstrat
JP2004355862A (ja) 導体用ペースト、セラミック配線基板及びその製造方法
CN107903668A (zh) 一种燃料电池电解质浸涂浆料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant