CN108840611B - 一种镁水泥用耐水涂料及其制备方法 - Google Patents

一种镁水泥用耐水涂料及其制备方法 Download PDF

Info

Publication number
CN108840611B
CN108840611B CN201810811471.9A CN201810811471A CN108840611B CN 108840611 B CN108840611 B CN 108840611B CN 201810811471 A CN201810811471 A CN 201810811471A CN 108840611 B CN108840611 B CN 108840611B
Authority
CN
China
Prior art keywords
magnesium cement
water
alkyl chain
layered double
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810811471.9A
Other languages
English (en)
Other versions
CN108840611A (zh
Inventor
庞秀江
李少香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Furi Xuanwei New Material Technology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201810811471.9A priority Critical patent/CN108840611B/zh
Publication of CN108840611A publication Critical patent/CN108840611A/zh
Application granted granted Critical
Publication of CN108840611B publication Critical patent/CN108840611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/001Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing unburned clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/68Silicic acid; Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种镁水泥耐水涂料,其由经过长烷基链阴离子表面活性剂修饰的层状双金属氢氧化物和经过长烷基链阳离子表面活性剂表面修饰的凹凸棒土混合制备而成,所述修饰后的层状双金属氢氧化物和凹凸棒土均带正电荷。该无机水性涂料,通过在水溶液中制备掺杂有颗粒状产物的非纯相LDH,控制片状及棒状物质表面具有疏水性,所得浆料的固含量,从而保证了浆料能够与镁水泥界面紧密结合且具有高疏水性能,镁水泥中氯离子迁移到表面也能够被LDH捕捉,涂层仍然能够紧密附着在镁水泥表面上。

Description

一种镁水泥用耐水涂料及其制备方法
技术领域:
本发明属于无机非金属材料制备技术领域,涉及一种镁水泥用耐水涂料及其制备方法,特别是一种具有颗粒-片-棒状复合表面结构的水性无机涂料及其制备方法。
背景技术:
氯氧镁水泥是一种特殊品种的水泥,其水化机理、物理力学性能与普通的硅酸盐水泥有很大差别。镁水泥是气硬性胶凝材料,硬化速率快;具有高强度,以轻烧镁粉为胶结剂的镁水泥,其抗压强度可达140MPa左右;镁水泥对玻璃纤维和植物纤维的腐蚀性很小,将玻璃纤维和植物纤维掺加到镁水泥中制成了保温墙板和无机玻璃钢;镁水泥同时具备耐高温、耐低温的特性,这一特性使保温砂浆在施工和应用中更具优势;由于氯化镁可以作为抗冻剂,镁水泥以氯化镁为调和剂,所以其本身就具有优异的耐低温特性,在低温下也能照常生产;轻烧粉的主要成分MgO可耐火2800℃,镁水泥建材制品已被广泛用于生产防火板。镁水泥主要有氯氧镁水泥、硫氧镁水泥、磷氧镁水泥。其中氯氧镁水泥(MOC)是目前应用最广的一种,其主要原料是活性氧化镁和氯化镁,水化产物主要为5Mg(OH)2·MgCl2·8H2O(5·1·8相或5相)和3Mg(OH)2·MgCl2·8H2O(3·1·8相或3相)的胶体微粒。但由于5·1·8相和3·1·8相的不稳定性,硬化后的镁水泥浸水后5·1·8相和3·1·8相会发生水解,随浸水时间延长不断转变成Mg(OH)2相,使原本堆积紧密的结构逐渐转变为松散层状晶体结构,从而失去其强度。
目前使镁水泥有效耐水的方法主要有:(1)合理的原料配比、成型和养护。采用活性中等的MgO原料,MgO含量大于60%;采用较高的MgO/MgCl2和较低的H2O/MgCl2摩尔比,其中MgO/MgCl2>6,一般在9左右,建议H2O/MgCl2在14-19(对应的MgCl2质量分数为:21.7%-27.4%)之间。这是目前国内外企业界普遍认可并应用的配料原则,保证了产品质量的稳定。合适养护温度为18-25℃、相对湿度为60%-70%。(2)提高耐水性。耐水性的提高可通过两方面来实现,一是添加外加剂。研究发现,掺入有机改性剂、无机改性剂和矿物改性剂及有机-无机-矿物组成的复合外加剂,可从不同角度提高镁水泥的耐水强度。提高耐水性的另一方法是对水泥制件进行后处理。比较有效的制件后处理方法主要有浸渍和表面涂覆。浸渍液浸入MOC材料的毛细孔中,固化后堵塞材料内部孔隙,同时改善表面性质。表面涂覆在脱模后的MOC表面涂刷一层防水物质,目前主要是在MOC表面涂覆MOC表面专用胶、聚酯树脂层、硬脂酸盐溶液和改性石蜡溶液等。其主要原理是利用有机物的疏水界面使水泥与水隔绝,但镁水泥是一种无机物,并且其制品表面并非洁净,在涂覆有机涂料时很难将其与水泥表面紧密结合;另外,镁水泥在制备过程中由于存在游离的氯离子,其容易迁移的界面上与阳离子结合形成晶体,从而破坏涂覆的有机膜。发明人前期采用表面活性剂对微通道反应器制备的双金属氢氧化物进行表面修饰,得到一种水性涂料(专利号CN2012105566079)。其虽然具有疏水性能,但该水性涂料直接涂覆在MOC水泥墙表面,接触角在80-90°,疏水性能还有待提高,此外,采用微通道反应器制备增加企业生产成本,产品难以推广。因此,寻求设计一种与水泥界面紧密结合、能够捕捉从水泥内部迁移出的氯离子的无机耐水涂料很有应用前景,此方法在现有文献中尚未见报道。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计具有颗粒-纳米片-棒状复合表面结构且疏水性能高的无机水性涂料,解决了现有技术中含有层状双金属氢氧化物的水性涂料成本高,用于MOC水泥墙表面的疏水性能有待提高的问题。
为了实现上述目的,本发明涉及的镁水泥耐水涂料,由经过长烷基链阴离子表面活性剂修饰的层状双金属氢氧化物和经过长烷基链阳离子表面活性剂表面修饰的凹凸棒土混合制备而成,所述修饰后的层状双金属氢氧化物和凹凸棒土均带正电荷。
本发明涉及的镁水泥耐水涂料的制备方法,具体包括以下步骤:
(1)、制备层状双金属氢氧化物沉淀物;
(2)、将20g层状双金属氢氧化物沉淀物用去离子水充分洗涤,然后分散于20ml,0.005-0.1mol/l的长烷基链阴离子表面活性剂溶液中,得到均一分散液;
(3)、将1-2g凹凸棒土超声分散于5ml,10-20mmol长烷基链阳离子表面活性剂溶液中,超声分散均匀;
(4)、将步骤(2)和(3)中得到的产物混合搅拌均匀,所得浆料即为无机镁水泥耐水涂料。
进一步地,步骤(1)中层状双金属氢氧化物采用传统共沉淀法制备或者微通道反应器制备,优选传统共沉淀法。
进一步地,步骤(2)的反应时间为30-50℃,反应时间为0.5-2小时,步骤(3)超声分散时间为5-15min,温度为25-35℃。
进一步地,所述层状双金属氢氧化物沉淀物的通式为[M2+ 1-x M3+ x(OH)2]x+(An-)x/n·yH2O,其中M2+为二价金属离子Mg2+、Ca2+、Zn2+中的任何一种或两种;M3+为Al3+或Fe3 +;An-为NO3 -、CO3 2-或Cl-中的任何一种;0.17≤x≤0.35;0≤y≤2。
进一步地,所述长烷基链阴离子表面活性剂为Cn-1H2n-1XOO-M+,n=11-22,X代表化学元素C、S、P,M+代表一价金属离子K+、Na+,具体为:月桂酸钠(钾)、硬脂酸钠(钾)、软脂酸钠(钾)。
进一步地,所述长烷基链阳离子表面活性剂为十二烷基三甲基溴化铵或十六烷基三甲基溴化铵。
本发明制备的无机水性涂料,通过在水溶液中制备掺杂有颗粒状产物的非纯相LDH,控制片状及棒状物质表面具有疏水性,所得浆料的固含量,从而保证了浆料能够与镁水泥界面紧密结合且具有高疏水性能,镁水泥中氯离子迁移到表面也能够被LDH捕捉,涂层仍然能够紧密附着在镁水泥表面上。
与现有技术相比,本发明具有以下优点:水性涂料由颗粒、纳米片和微米棒状物质构成,纳米片由具有片状结构的层状双金属氢氧化物(LDHs)提供,颗粒是通过控制LDH的制备条件,使产物中掺杂颗粒状物质,棒状则由凹凸棒土提供,且涂覆在镁水泥上干燥后,纳米片与棒站立在水泥表面上,构成一种微-纳结构,形成粗糙的表面,又由于纳米片与微米棒表面均用表面活性剂修饰,所以此方法制备的涂料具有高疏水性能;(2)分别采用表面活性剂修饰凹凸棒土和双金属氢氧化物,不但提高了凹凸棒土和双金属氢氧化物的疏水性,同时通过调整各组分的含量,避免凹凸棒土和双金属氢氧化物混合过程中发生团聚;(3)制备过程中所用的唯一溶剂为水,环境友好。
附图说明:
图1为本发明实施例1涉及的LDH的TEM照片。
图2为本发明实施例2涉及的LDH的TEM照片。
图3为本发明实施例3涉及的LDH的TEM照片。
图4为本发明实施例4涉及的LDH的SEM照片。
图5为本发明实施例5涉及的LDH的SEM照片。
具体实施方式:
下面通过实施例并结合附图对本发明作进一步描述。
实施例1:
本实施例的具体工艺步骤为:
(1)、将Zn(NO3)2和Al(NO3)3溶解于50ml去离子水中配制成金属离子总浓度为0.2mol/l的混合盐溶液;Zn与Al的物质的量之比为2:1;配制50ml质量浓度为7%的氨水溶液;
(2)、利用传统共沉淀方法将氨水溶液滴入混合盐溶液中,充分搅拌30min;反应温度为25℃;
(3)、将制备好的沉淀物用去离子水充分洗涤,取20g离心后的产物分散在20ml浓度为20mmol/l的月桂酸钾溶液中;在30℃下反应2小时;
(4)、取1.0g凹凸棒土超声分散在5ml浓度为10mmol的十二烷基三甲基溴化铵溶液中,超声分散时间为10min,温度为30℃;
(5)、将步骤(3)和(4)中得到的产物混合搅拌2h,所得浆料即为无机镁水泥耐水涂料;
(6)、将其涂覆与镁水泥制件表面,室温自然干燥一天,测其水接触角。
图1是实施例1所得LDH的TEM图,由图可见,产物中除了150-200nm的纳米片,还有大量只有几个纳米的微小颗粒。采用JC2000CD接触角测定仪对所得疏水LDHs表面涂层与水的接触角进行测量,同一样品表面测量五次后取平均值后作为最后的接触角的测量值;利用实施例1所制备水性镁水泥涂料得到的涂层所测水接触角为126°±3°。
实施例2:
本实施例的具体工艺步骤为:
(1)、将Zn(NO3)2和Al(NO3)3溶解于50ml去离子水中配制成金属离子总浓度为0.5mol/l的混合盐溶液;Zn与Al的物质的量之比为2:1;配制50ml质量浓度为7%的氨水溶液;
(2)、利用传统共沉淀方法将氨水溶液滴入混合盐溶液中,充分搅拌30min;反应温度为25℃;
(3)、将制备好的沉淀物用去离子水充分洗涤,取20g离心后的产物分散在20ml浓度为0.1mol/l的月桂酸钾溶液中;在30℃下反应2小时;
(4)、取1.5g凹凸棒土超声分散在5ml浓度为15mmol的十二烷基三甲基溴化铵溶液中,超声分散时间为10min,温度为30℃;
(5)、将步骤(3)和(4)中得到的产物混合搅拌2h,所得浆料即为无机镁水泥耐水涂料;
(6)、将其涂覆与镁水泥制件表面,室温自然干燥一天,测其水接触角。
图2是实施例2所得LDH的TEM图,由图可见,产物中除了150-300nm的纳米片,还有部分只有几个纳米的微小颗粒。采用JC2000CD接触角测定仪对所得疏水LDHs表面涂层与水的接触角进行测量,同一样品表面测量五次后取平均值后作为最后的接触角的测量值;利用实施例2所制备水性镁水泥涂料得到的涂层所测水接触角为102°±2°。
实施例3:
本实施例的具体工艺步骤为:
(1)、将Zn(NO3)2和Al(NO3)3溶解于50ml去离子水中配制成金属离子总浓度为1.0mol/l的混合盐溶液;Zn与Al的物质的量之比为2:1;配制50ml质量浓度为7%的氨水溶液;
(2)、利用传统共沉淀方法将氨水溶液滴入混合盐溶液中,充分搅拌30min;反应温度为25℃;
(3)、将制备好的沉淀物用去离子水充分洗涤,取20g离心后的产物分散在20ml浓度为10mmol/l的月桂酸钾溶液中;在30℃下反应2小时;
(4)、取1.2g凹凸棒土超声分散在5ml浓度为5mmol的十六烷基三甲基溴化铵溶液中,超声分散时间为10min,温度为30℃;
(5)、将步骤(3)和(4)中得到的产物混合搅拌2h,所得浆料即为无机镁水泥耐水涂料;
(6)、将其涂覆与镁水泥制件表面,室温自然干燥一天,测其水接触角。
图3是实施例3所得LDH的TEM图,由图可见,产物中除了100-400nm的纳米片,还有少量只有几个纳米的微小颗粒。采用JC2000CD接触角测定仪对所得疏水LDHs表面涂层与水的接触角进行测量,同一样品表面测量五次后取平均值后作为最后的接触角的测量值;利用实施例3所制备水性镁水泥涂料得到的涂层所测水接触角为97°±2°。
实施例4:
本实施例的具体工艺步骤为:
(1)、将Ca(NO3)2和Al(NO3)3溶解于50ml去离子水中配制成金属离子总浓度为1mol/l的混合盐溶液;Ca与Al的物质的量之比为2:1;配制50ml浓度为0.1mol/l的氢氧化钠溶液;
(2)、利用传统共沉淀方法将氢氧化钠水溶液滴入混合盐溶液中,充分搅拌30min;反应温度为40℃;
(3)、将制备好的沉淀物用去离子水充分洗涤,取20g离心后的产物分散在20ml浓度为5mmol/l的硬脂酸钠(C18H35COONa)溶液中;在30℃下反应2小时;
(4)、取2g凹凸棒土超声分散在5ml浓度为20mmol的十二烷基三甲基溴化铵溶液中,超声分散时间为10min,温度为30℃;
(5)、将步骤(3)和(4)中得到的产物混合搅拌2h,所得浆料即为无机镁水泥耐水涂料;
(6)、将其涂覆与镁水泥制件表面,室温自然干燥一天,测其水接触角。
图3是实施例4所得LDH的TEM图,由图可见,产物中除了800-900nm的片,片上还附着少量颗粒。采用JC2000CD接触角测定仪对所得疏水LDHs表面涂层与水的接触角进行测量,同一样品表面测量五次后取平均值后作为最后的接触角的测量值;利用实施例3所制备水性镁水泥涂料得到的涂层所测水接触角为96°±2°。
实施例5:
本实施例的具体工艺步骤为:
(1)、将Ca(NO3)2和Al(NO3)3溶解于50ml去离子水中配制成金属离子总浓度为1mol/l的混合盐溶液;Ca与Al的物质的量之比为2:1;配制50ml浓度为0.05mol/l的氢氧化钠溶液;
(2)、采用微反应器将混合盐溶液和氢氧化钠水溶液混合,反应器为T型,反应物溶液流速为20ml/min,充分搅拌30min;反应温度为30℃;
(3)、将制备好的沉淀物用去离子水充分洗涤,取20g离心后的产物分散在20ml浓度为10mmol/l的软脂酸钠(C16H31COOK)溶液中;在30℃下反应2小时;
(4)、取1.5g凹凸棒土超声分散在5ml浓度为10mmol的十六烷基三甲基溴化铵溶液中,超声分散时间为10min,温度为30℃;
(5)、将步骤(3)和(4)中得到的产物混合搅拌2h,所得浆料即为无机镁水泥耐水涂料;
(6)、将其涂覆与镁水泥制件表面,室温自然干燥一天,测其水接触角。
图5是实施例5所得LDH的SEM图,由图可见,产物为蜂窝状,由尺寸为500nm左右的片组成。采用JC2000CD接触角测定仪对所得疏水LDHs表面涂层与水的接触角进行测量,同一样品表面测量五次后取平均值后作为最后的接触角的测量值;利用实施例5所制备水性镁水泥涂料得到的涂层所测水接触角为139°±2°。
实施例6:
本实施例的具体工艺步骤为:
(1)、将Zn(NO3)2和Al(NO3)3溶解于50ml去离子水中配制成金属离子总浓度为0.2mol/l的混合盐溶液;Zn与Al的物质的量之比为2:1;配制50ml质量浓度为7%的氨水溶液;
(2)、利用传统共沉淀方法将氨水溶液滴入混合盐溶液中,充分搅拌30min;反应温度为25℃;
(3)、将制备好的沉淀物用去离子水充分洗涤,取20g离心后的产物分散在20ml浓度为20mmol/l的月桂酸钾溶液中;在50℃下反应0.5小时;
(4)、取1.0g凹凸棒土超声分散在5ml浓度为10mmol的十二烷基三甲基溴化铵溶液中,超声分散时间为5min,温度为35℃;
(5)、将步骤(3)和(4)中得到的产物混合搅拌2h,所得浆料即为无机镁水泥耐水涂料
对比例1:
本对比例的具体工艺步骤为:
(1)、将Zn(NO3)2和Al(NO3)3溶解于50ml去离子水中配制成金属离子总浓度为0.5mol/l的混合盐溶液;Zn与Al的物质的量之比为2:1;配制50ml质量浓度为7%的氨水溶液;
(2)、利用传统共沉淀方法将氨水溶液滴入混合盐溶液中,充分搅拌30min;反应温度为25℃;
(3)、将制备好的沉淀物用去离子水充分洗涤,取20g离心后的产物分散在20ml浓度为0.1mol/l的月桂酸钾溶液中;在30℃下反应2小时;
(4)、将所得浆料涂覆与镁水泥制件表面,室温自然干燥一天,测其水接触角。
采用JC2000CD接触角测定仪对所得疏水LDHs表面涂层与水的接触角进行测量,同一样品表面测量五次后取平均值后作为最后的接触角的测量值;利用对比所制备水性镁水泥涂料得到的涂层所测水接触角为81°±2°。

Claims (4)

1.一种镁水泥耐水涂料,其特征在于,由经过长烷基链阴离子表面活性剂修饰的层状双金属氢氧化物和经过长烷基链阳离子表面活性剂表面修饰的凹凸棒土混合制备而成,所述修饰后的层状双金属氢氧化物和凹凸棒土均带正电荷,所述长烷基链阴离子表面活性剂为Cn-1H2n-1XOO-M+,n=11-22,X代表化学元素C,M+代表一价金属离子K+、Na+,所述长烷基链阳离子表面活性剂为十二烷基三甲基溴化铵或十六烷基三甲基溴化铵;
所述的镁水泥耐水涂料的制备方法,其特征在于,具体包括以下步骤:
(1)、制备层状双金属氢氧化物沉淀物;
(2)、将20g层状双金属氢氧化物沉淀物用去离子水充分洗涤,然后分散于20ml,0.005-0.1mol/l的长烷基链阴离子表面活性剂溶液中,得到均一分散液;
(3)、将1-2g凹凸棒土超声分散于5ml,10-20mmol长烷基链阳离子表面活性剂溶液中,超声分散均匀;
(4)、将步骤(2)和(3)中得到的产物混合搅拌均匀,所得浆料即为无机镁水泥耐水涂料。
2.根据权利要求1所述的镁水泥耐水涂料,其特征在于,步骤(1)中层状双金属氢氧化物采用传统共沉淀法制备或者微通道反应器制备。
3. 根据权利要求2所述的镁水泥耐水涂料,其特征在于,步骤(2)的反应温度为30-50℃,反应时间为0.5-2小时,步骤(3)超声分散时间为5-15 min,温度为25-35oC。
4.根据权利要求3所述的镁水泥耐水涂料,其特征在于,所述层状双金属氢氧化物沉淀物的通式为[M2+ 1-x M3+ x(OH)2]x+(An-)x/n·yH2O,其中M2+为二价金属离子Mg2+、Ca2+、Zn2+中的任何一种或两种;M3+为Al3+或Fe3+;An-为NO3 -、CO3 2- 或Cl-中的任何一种;0.17≤x≤0.35;0≤y≤2。
CN201810811471.9A 2018-07-23 2018-07-23 一种镁水泥用耐水涂料及其制备方法 Active CN108840611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810811471.9A CN108840611B (zh) 2018-07-23 2018-07-23 一种镁水泥用耐水涂料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810811471.9A CN108840611B (zh) 2018-07-23 2018-07-23 一种镁水泥用耐水涂料及其制备方法

Publications (2)

Publication Number Publication Date
CN108840611A CN108840611A (zh) 2018-11-20
CN108840611B true CN108840611B (zh) 2020-12-15

Family

ID=64196795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810811471.9A Active CN108840611B (zh) 2018-07-23 2018-07-23 一种镁水泥用耐水涂料及其制备方法

Country Status (1)

Country Link
CN (1) CN108840611B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195717A (zh) * 2007-12-28 2008-06-11 江苏南大紫金科技集团有限公司 凹凸棒土有机表面改性方法
CN102976278A (zh) * 2012-12-19 2013-03-20 青岛科技大学 一种层状双金属氢氧化物及其制备方法
CN103301804A (zh) * 2013-07-08 2013-09-18 兰州理工大学 类水滑石/凹凸棒复合材料的制备方法
WO2017116312A1 (en) * 2015-12-28 2017-07-06 Scg Cement Co., Ltd. Cement composition with layered double hydroxide
CN108298845A (zh) * 2018-01-31 2018-07-20 青岛科技大学 一种抗返卤氯氧镁水泥及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195717A (zh) * 2007-12-28 2008-06-11 江苏南大紫金科技集团有限公司 凹凸棒土有机表面改性方法
CN102976278A (zh) * 2012-12-19 2013-03-20 青岛科技大学 一种层状双金属氢氧化物及其制备方法
CN103301804A (zh) * 2013-07-08 2013-09-18 兰州理工大学 类水滑石/凹凸棒复合材料的制备方法
WO2017116312A1 (en) * 2015-12-28 2017-07-06 Scg Cement Co., Ltd. Cement composition with layered double hydroxide
CN108298845A (zh) * 2018-01-31 2018-07-20 青岛科技大学 一种抗返卤氯氧镁水泥及其制备方法

Also Published As

Publication number Publication date
CN108840611A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN103833285B (zh) 高强度光催化水泥基复合浆料及其产品的制备方法
CN103553495B (zh) 一种速凝型饰面石材早强胶粘剂
CN103553380B (zh) 一种大掺量粉煤灰水泥及其制备方法
CN108129051A (zh) 一种长期高效固化氯离子的混凝土外加剂及应用
Khater Physicomechanical properties of nano-silica effect on geopolymer composites
CN102731041A (zh) 玻化微珠保温骨料表面改性剂及改性玻化微珠保温骨料
CN111039643A (zh) 以复合水气硬凝胶结构无机成膜的墙面涂覆组合物
CN106747081B (zh) 水泥基渗透结晶型防水材料
Halder et al. Cenosphere-based PCM microcapsules with bio-inspired coating for thermal energy storage in cementitious materials
CN109437753B (zh) 一种无机石及其生产工艺
EP2958875A1 (de) Poröse massen oder formkörper aus anorganischen polymeren und deren herstellung
CN103626510B (zh) 原位生长制备硼酸镁晶须多孔陶瓷的方法
CN108298845B (zh) 一种抗返卤氯氧镁水泥及其制备方法
CN106190003B (zh) 一种勾缝剂
CN109053224A (zh) 一种石墨烯纳米结晶硅防水剂及其制备方法
CN108558344B (zh) 一种硅气凝胶防火、防水、环保保温膏的制备方法
CN102531476B (zh) 无碱型水泥基渗透结晶防水材料
CN102757246A (zh) 采用水溶性氯化钙为添加剂的铝酸钙水泥结合刚玉质浇注料及其方法
Al-Fakih et al. Effects of zeolitic imidazolate framework-8 nanoparticles on physicomechanical properties and microstructure of limestone calcined clay cement mortar
CN113292312B (zh) 一种防水防潮瓷砖及其制备方法
CN114685077B (zh) 一种缓释型促凝复合材料及其制备方法和其在水泥基材料中的应用
CN108840611B (zh) 一种镁水泥用耐水涂料及其制备方法
Jahangir et al. Effect of nano-alumina (N-Al) and nanosilica (NS) as admixtures on concrete behavior
CN112299750A (zh) 一种水性渗透结晶型防水剂
CN107245164A (zh) 一种三维凹凸棒石‑云母基导电复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231007

Address after: No. 1597, Ze'an Avenue, Jiangzhuang Town, Gaomi City, Weifang City, Shandong Province 261500

Patentee after: Shandong Furi Xuanwei New Material Technology Co.,Ltd.

Address before: 266061 Qingdao University of Science & Technology, 99 Songling Road, Laoshan District, Qingdao, Shandong

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY