CN108807627A - 一种大功率垂直结构led外延结构及其制备方法 - Google Patents

一种大功率垂直结构led外延结构及其制备方法 Download PDF

Info

Publication number
CN108807627A
CN108807627A CN201810373984.6A CN201810373984A CN108807627A CN 108807627 A CN108807627 A CN 108807627A CN 201810373984 A CN201810373984 A CN 201810373984A CN 108807627 A CN108807627 A CN 108807627A
Authority
CN
China
Prior art keywords
layer
flow
thickness
buffer layers
led epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810373984.6A
Other languages
English (en)
Other versions
CN108807627B (zh
Inventor
李国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heyuan Zhongtuo Photoelectric Technology Co Ltd
Original Assignee
Heyuan Zhongtuo Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heyuan Zhongtuo Photoelectric Technology Co Ltd filed Critical Heyuan Zhongtuo Photoelectric Technology Co Ltd
Priority to CN201810373984.6A priority Critical patent/CN108807627B/zh
Publication of CN108807627A publication Critical patent/CN108807627A/zh
Application granted granted Critical
Publication of CN108807627B publication Critical patent/CN108807627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了大功率垂直结构LED外延结构,包括生长在Si衬底上的预铺Al层、AlN缓冲层、AlGaN缓冲层、u型GaN层、第一石墨烯层、n型GaN层、多量子阱、p型GaN层、第二石墨烯层,所述第一石墨烯层和第二石墨烯层采用气相沉积而成。该LED外延结构具有较佳的光电性能,应用广泛。

Description

一种大功率垂直结构LED外延结构及其制备方法
技术领域
本发明涉及低维石墨烯增强导电性能的光电器件外延薄膜领域,尤其涉及一种大功率垂直结构LED外延结构及其制备方法。
背景技术
发光二极管(LED)是一种基于P-N结电致发光原理制成的半导体发光器件,具有电光转换效率高、节能、环保、寿命长、体积小等优点,被誉为二十一世纪的绿色光源。LED的应用领域非常广泛,已经被用作信号指示灯、汽车大灯、LCD背光、道路照明、室内照明、商业照明、体育场馆照明、医疗照明和生物照明。如果LED能够大规模的应用于传统照明领域将得到十分显著的节能效果,这在全球能源日趋紧张的当今意义重大。
目前商业化LED芯片多采用将蓝宝石衬底上GaN基薄膜蒸镀金属电极制备而成的水平结构LED芯片。对于水平结构LED芯片,由于电流横向流动,在芯片的台阶附近会产生电流聚集效应;其次,正面出光的GaN基LED芯片的很大一部分光被LED上方的P型欧姆接触电极、N型欧姆接触电极以及电极焊盘所吸收,从而限制了LED芯片注入电流的进一步提高与其在大功率照明领域的发展应用。而垂直电极结构的GaN基LED芯片,由于垂直电导有利于载流子的注入,从而提高载流子的复合效率。并且通过n面出光,有效的解决了散热和档光的问题,进一步打开了大功率LED芯片的市场。但垂直结构LED芯片的光学及电学性能仍然被金属电极与GaN材料的较高欧姆接触电阻所限制,特别是p-GaN的欧姆接触电极对LED的性能有很大的影响。一方面是由于p-GaN中掺杂的Mg受主元素的离化能高达170meV,导致Mg的离化率低,从而引起载流子的浓度低,p-GaN的高掺杂一直无法得到有效的突破;另一方面是由于在自然界中找不到一种功函数大于p-Ga N(功函数大约为6.12eV)的金属,导致制作低阻p-GaN的欧姆接触电极比较困难。因此,急需寻找一种可实现良好电流拓展性能的大功率垂直LED芯片的外延结构及其制备方法。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种大功率垂直结构LED外延结构。该结构能有效提高LED的光电性能。
本发明的目的之二在于提供上述垂直结构LED外延结构的制备方法。
本发明的目的采用如下技术方案实现:
一种大功率垂直结构LED外延结构,包括生长在Si衬底上的预铺Al层、AlN缓冲层、AlGaN缓冲层、u型GaN层、第一石墨烯层、n型GaN层、多量子阱、p型GaN层、第二石墨烯层,所述第一石墨烯层和第二石墨烯层采用气相沉积而成。
进一步地,所述预铺Al层生长于所述Si衬底上的(111)晶面上。
进一步地,所述AlGaN缓冲层中,Al组分为的摩尔比例为0.1-0.9。
进一步地,所述多量子阱为周期重复结构,每一周期由垒层和阱层组成;垒层的材料为GaN、InGaN、AlGaN或AlInGaN中的一种或两种以上,阱层的材料为InGaN或AlGaN;多量子阱的周期数为1-20。
进一步地,所述预铺Al层的厚度为1-5nm、所述AlN缓冲层的厚度为100-300nm、所述AlGaN缓冲层的厚度为300-600nm、所述u型GaN层的厚度为500-1500nm,所述第一石墨烯层和第二石墨烯层的厚度为1-10nm。
进一步地,所述n型GaN层掺杂有1.0×1018-2.0×1019cm-3的Si;所述p型GaN层掺杂有5.0×1017-2.5×1019cm-3的Mg。
本发明的目的之二采用如下技术方案实现:
一种制备上述的大功率垂直结构LED外延结构的方法,包括以下步骤:
1)采用MOCVD法,依次在Si衬底上沉积1-5nm的预铺Al层、100-300nm厚的AlN缓冲层、300-600nm厚的AlGaN缓冲层、500-1500nm厚的u型GaN层;
2)将步骤1)得到的薄膜结构转移至CVD设备中,沉积1-10nm的石墨烯形成第一石墨烯层;
3)将步骤2)得到的薄膜结构转移至MOCVD设备中,沉积2000-4000nm厚的、Si掺杂浓度为1.0×1018-2.0×1019cm-3的n型GaN层、1-20个周期的多量子阱、200-400nm的Mg掺杂浓度为5.0×1017-2.5×1019cm-3的P型GaN层;多量子阱中,每一周期由1-8nm的InGaN或AlGaN阱层和5-20nm的GaN、InGaN、AlGaN或AlInGaN垒层组成;
4)将步骤3)得到的薄膜结构转移至CVD设备中,沉积1-10nm的石墨烯层形成第二石墨烯层。
进一步地,步骤1)中,
预铺Al层的生长条件为:衬底温度为950-1000℃,反应室压力为40-100Torr,石墨盘转速为600-1200r/min,三甲基铝(TMAl)的流量为200-400sccm;
AlN缓冲层的生长条件为:衬底温度为800-1200℃,反应室压力为50-100Torr,石墨盘转速为600-1200r/min,TMAl的流量为200-400sccm,NH3的流量为5-40slm;
AlGaN缓冲层的生长条件为:衬底温度为900-1200℃,反应室压力为50-100Torr,石墨盘转速为900-1200r/min,TMAl的流量为200-400sccm,TMGa的流量为20-100sccm,NH3的流量为5-40slm。
进一步地,步骤2)和步骤4)中,工艺条件为:衬底温度为500-1500℃,通入气态碳源CH4和H2,CH4的流量为50-300sccm,H2的流量为10-100sccm。
相比现有技术,本发明的有益效果在于:
1)本发明提供的大功率垂直结构LED外延结构,通过在本征GaN层的n型GaN层之间插入石墨烯材料,同时在P型GaN层外再附一层石墨烯材料,从而具有超强的导电性,并且能够显著降p型GaN层的欧姆接触电阻,有效增强LED的电流扩展性,提升光电性能;
2)本发明提供的大功率垂直结构LED外延结构中,石墨烯层是采用非原位CVD法沉积而成,可以解决石墨烯的导电结构在MOCVD生长过程中受气流扰动而被破坏;
3)本发明提供的大功率垂直结构LED外延结构,应用广泛,不仅适用于LED领域,同样适用于激光器、光电探测器、太阳能电池、功率电子器件等领域。
附图说明
图1为实施例1的大功率垂直结构LED外延结构的层叠结构示意图;
图中,各附图标记:1、Si衬底;2、预铺Al层;3、AlN缓冲层;4、AlGaN缓冲层;5、u型GaN层;6、第一石墨烯层;7、n型GaN层;8、多量子阱;9、p型GaN层;10、第二石墨烯层。
图2为实施例1外延片的光致发光测试图谱;
图3为实施例1外延片的电致发光测试图谱。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
如图1所示,本发明提供一种大功率垂直结构LED外延结构,包括生长在Si衬底1上的预铺Al层2、AlN缓冲层3、AlGaN缓冲层4、u型GaN层5、第一石墨烯层6、n型GaN层7、多量子阱8、p型GaN层9、第二石墨烯层10,所述第一石墨烯层6和第二石墨烯层10采用气相沉积而成。
本发明中,该预铺Al层2能有效抑制界面反应;第一石墨烯层是设置于本征GaN层和n型GaN层之间、第二石墨烯层是设置于用于直接与金属电极和p型GaN层9之间,能有效降低p型GaN的欧姆接触电阻,从而提高该LED外延结构的导电性。
实施例1:
一种大功率垂直结构LED外延结构的制备方法,包括以下步骤:
1)将Si衬底1置于MOCVD设备中,选择Si衬底1的(111)晶面,依次沉积2nm的预铺Al层2、150nm厚的AlN缓冲层3、500nm厚的AlGaN缓冲层4、1000nm厚的u型GaN层5;
具体地,预铺Al层2的操作参数:衬底温度为950℃,反应室压力为40Torr,石墨盘转速为900r/min,TMAl的流量为250sccm;
沉积AlN缓冲层3的操作参数:衬底温度为1100℃,反应室压力为50Torr,石墨盘转速为1200r/min,TMAl的流量为350sccm,NH3的流量为20slm;
沉积AlGaN缓冲层4的操作参数:衬底温度为1100℃,反应室压力为50Torr,石墨盘转速为1200r/min,TMAl的流量为300sccm,TMGa的流量为100sccm,NH3的流量为10slm;
沉积u型GaN层的操作参数:衬底温度为1000℃,通入TMGa,反应室压力为200Torr,石墨盘转速为1200r/min,TMGa的流量为500sccm,NH3的流量为30slm;
2)将步骤1)得到的薄膜结构转移至CVD设备中,沉积4nm的石墨烯形成第一石墨烯层;
沉积石墨烯的工艺条件为:衬底温度为1000℃,通入气态碳源CH4和H2,CH4和H2的流量分别问为100和50sccm;
3)将步骤2)得到的薄膜结构MOCVD设备中,沉积3000nm厚的、Si掺杂浓度为1.0×1019cm-3的n型GaN层7、9个周期的多量子阱8、200nm的Mg掺杂浓度为5.0×1018cm-3的P型GaN层9;多量子阱8中,每一周期由3nm的In0.12Ga0.88N阱层和10nm的GaN垒层组成,第一层与最后一层均为垒层;
沉积n型GaN的工艺条件为:衬底温度为1100℃,反应室压力为200Torr,石墨盘转速为1200r/min,TMGa的流量为500sccm,SiH4的流量为200sccm,NH3的流量为25slm;
每一周期的工艺条件为:垒层,衬底温度为850℃,反应室压力为200Torr,石墨盘转速为800r/min,通入TMGa与氨气,TMGa的流量为400sccm,NH3的流量为40slm,厚度为10nm;阱层,衬底温度为750℃,反应室压力为200Torr,通入三乙基镓(TEGa)、三甲基铟(TMIn)与NH3,其流量分别为500sccm、400sccm、50slm,厚度为3nm,重复9次;其中第一层与最后一层均为垒层;
沉积P型GaN层9的工艺条件为:衬底温度为900℃,反应室压力为200Torr,石墨盘转速为1200r/min,通入TMGa、CP2Mg与NH3,流量分别为400sccm、500sccm和40slm;
4)将步骤3)得到的薄膜结构转移至CVD设备中,沉积4nm的石墨烯层形成第二石墨烯层10;
沉积石墨烯的工艺条件为:衬底温度为1000℃,通入CH4和H2,CH4和H2的流量分别问为100sccm和50sccm。
对实施例1得到的外延结构进行光致发光测试和电致发光测试,结果如图2和图3所示,该外延结构在454-457nm出现光致发光强度的峰值;在456-458nm出现电致发光强度的峰值。
实施例2:
一种大功率垂直结构LED外延结构的制备方法,包括以下步骤:
1)将Si衬底1置于MOCVD设备中,选择Si衬底1的(111)晶面,依次沉积2nm的预铺Al层2、150nm厚的AlN缓冲层3、500nm厚的AlGaN缓冲层4、1000nm厚的u型GaN层5;
具体地,预铺Al层2的操作参数:衬底温度为950℃,反应室压力为40Torr,石墨盘转速为900r/min,TMAl流量为250sccm;
沉积AlN缓冲层3的操作参数:衬底温度为1100℃,反应室压力为50Torr,石墨盘转速为1200r/min,TMAl的流量为350sccm,NH3的流量为20slm;
沉积AlGaN缓冲层4的操作参数:衬底温度为1100℃,反应室压力为50Torr,石墨盘转速为1200r/min,TMAl的流量为300sccm,TMGa的流量为100sccm,NH3的流量为10slm;
沉积u型GaN层的操作参数:衬底温度为1000℃,通入TMGa,反应室压力为200Torr,石墨盘转速为1200r/min,TMGa的流量为500sccm,NH3的流量为30slm;
2)将步骤1)得到的薄膜结构转移至CVD设备中,沉积8nm的石墨烯形成第一石墨烯层;
沉积石墨烯的工艺条件为:衬底温度为1000℃,通入气态碳源CH4和H2,CH4和H2的流量分别问为100和50sccm;
3)将步骤2)得到的薄膜结构MOCVD设备中,沉积3000nm厚的、Si掺杂浓度为1.0×1019cm-3的n型GaN层7、9个周期的多量子阱8、200nm的Mg掺杂浓度为5.0×1018cm-3的P型GaN层9;多量子阱8中,每一周期由3nm的In0.12Ga0.88N阱层和10nm的GaN垒层组成,第一层与最后一层均为垒层;
沉积n型GaN的工艺条件为:衬底温度为1100℃,反应室压力为200Torr,石墨盘转速为1200r/min,TMGa的流量为500sccm,SiH4的流量为200sccm,NH3的流量为25slm;
每一周期的工艺条件为:垒层,衬底温度为850℃,反应室压力为200Torr,石墨盘转速为800r/min,通入TMGa与氨气,TMGa的流量为400sccm,NH3的流量为40slm,厚度为10nm;阱层,衬底温度为750℃,反应室压力为200Torr,通入TEGa、TMIn与NH3,其流量分别为500sccm、400sccm、50slm,厚度为3nm,重复9次;其中第一层与最后一层均为垒层;
沉积P型GaN层9的工艺条件为:衬底温度为900℃,反应室压力为200Torr,石墨盘转速为1200r/min,通入TMGa、CP2Mg与NH3,流量分别为400sccm、500sccm和40slm;
4)将步骤3)得到的薄膜结构转移至CVD设备中,沉积8nm的石墨烯层形成第二石墨烯层10;
沉积石墨烯的工艺条件为:衬底温度为1000℃,通入CH4和H2,CH4和H2的流量分别问为100sccm和50sccm。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (9)

1.一种大功率垂直结构LED外延结构,其特征在于,包括生长在Si衬底上的预铺Al层、AlN缓冲层、AlGaN缓冲层、u型GaN层、第一石墨烯层、n型GaN层、多量子阱、p型GaN层、第二石墨烯层,所述第一石墨烯层和第二石墨烯层采用气相沉积而成。
2.如权利要求1所述的大功率垂直结构LED外延结构,其特征在于,所述预铺Al层生长于所述Si衬底上的(111)晶面上。
3.如权利要求1所述的大功率垂直结构LED外延结构,其特征在于,所述AlGaN缓冲层中,Al组分为的摩尔比例为0.1-0.9。
4.如权利要求1所述的大功率垂直结构LED外延结构,其特征在于,所述多量子阱为周期重复结构,每一周期由垒层和阱层组成;垒层的材料为GaN、InGaN、AlGaN或AlInGaN中的一种或两种以上,阱层的材料为InGaN或AlGaN;多量子阱的周期数为1-20。
5.如权利要求1所述的大功率垂直结构LED外延结构,其特征在于,所述预铺Al层的厚度为1-5nm、所述AlN缓冲层的厚度为100-300nm、所述AlGaN缓冲层的厚度为300-600nm、所述u型GaN层的厚度为500-1500nm,所述第一石墨烯层和第二石墨烯层的厚度为1-10nm。
6.如权利要求1所述的大功率垂直结构LED外延结构,其特征在于,所述n型GaN层掺杂有1.0×1018-2.0×1019cm-3的Si;所述p型GaN层掺杂有5.0×1017-2.5×1019cm-3的Mg。
7.一种制备如权利要求1-6任一项所述的大功率垂直结构LED外延结构的方法,其特征在于,包括以下步骤:
1)采用MOCVD法,依次在Si衬底上沉积1-5nm的预铺Al层、100-300nm厚的AlN缓冲层、300-600nm厚的AlGaN缓冲层、500-1500nm厚的u型GaN层;
2)将步骤1)得到的薄膜结构转移至CVD设备中,沉积1-10nm的石墨烯形成第一石墨烯层;
3)将步骤2)得到的薄膜结构转移至MOCVD设备中,沉积2000-4000nm厚的、Si掺杂浓度为1.0×1018-2.0×1019cm-3的n型GaN层、1-20个周期的多量子阱、200-400nm的Mg掺杂浓度为5.0×1017-2.5×1019cm-3的P型GaN层;多量子阱中,每一周期由1-8nm的InGaN或AlGaN阱层和5-20nm的GaN、InGaN、AlGaN或AlInGaN垒层组成;
4)将步骤3)得到的薄膜结构转移至CVD设备中,沉积1-10nm的石墨烯层形成第二石墨烯层。
8.如权利要求7所述的方法,其特征在于,步骤1)中,
预铺Al层的生长条件为:衬底温度为950-1000℃,反应室压力为40-100Torr,石墨盘转速为600-1200r/min,三甲基铝的流量为200-400sccm;
AlN缓冲层的生长条件为:衬底温度为800-1200℃,反应室压力为50-100Torr,石墨盘转速为600-1200r/min,TMAl的流量为200-400sccm,NH3的流量为5-40slm;
AlGaN缓冲层的生长条件为:衬底温度为900-1200℃,反应室压力为50-100Torr,石墨盘转速为900-1200r/min,TMAl的流量为200-400sccm,TMGa的流量为20-100sccm,NH3的流量为5-40slm。
9.如权利要求7所述的方法,其特征在于,步骤2)和步骤4)中,工艺条件为:衬底温度为500-1500℃,通入CH4和H2,CH4的流量为50-300sccm,H2的流量为10-100sccm。
CN201810373984.6A 2018-04-24 2018-04-24 一种大功率垂直结构led外延结构及其制备方法 Active CN108807627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810373984.6A CN108807627B (zh) 2018-04-24 2018-04-24 一种大功率垂直结构led外延结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810373984.6A CN108807627B (zh) 2018-04-24 2018-04-24 一种大功率垂直结构led外延结构及其制备方法

Publications (2)

Publication Number Publication Date
CN108807627A true CN108807627A (zh) 2018-11-13
CN108807627B CN108807627B (zh) 2021-01-22

Family

ID=64093810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810373984.6A Active CN108807627B (zh) 2018-04-24 2018-04-24 一种大功率垂直结构led外延结构及其制备方法

Country Status (1)

Country Link
CN (1) CN108807627B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129240A (zh) * 2019-12-31 2020-05-08 湘能华磊光电股份有限公司 一种提高氮化物led电流扩展能力的外延生长方法
CN111640829A (zh) * 2020-05-25 2020-09-08 安徽三安光电有限公司 一种具有复合电子阻挡层的发光二极管及其制备方法
CN115832137A (zh) * 2023-02-16 2023-03-21 江西乾照光电有限公司 一种led外延片、外延生长方法及led芯片

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294706A (ja) * 2005-04-06 2006-10-26 Hitachi Cable Ltd 半導体発光装置
CN102201503A (zh) * 2011-03-30 2011-09-28 苏州纳维科技有限公司 一种iii族氮化物衬底的生长方法、衬底以及led
CN104037287A (zh) * 2014-06-10 2014-09-10 广州市众拓光电科技有限公司 生长在Si衬底上的LED外延片及其制备方法
CN104300052A (zh) * 2014-10-11 2015-01-21 北京工业大学 一种石墨烯结构的led芯片结构及其制备方法
CN104409580A (zh) * 2014-11-12 2015-03-11 无锡格菲电子薄膜科技有限公司 一种GaN基LED外延片及其制备方法
CN104409319A (zh) * 2014-10-27 2015-03-11 苏州新纳晶光电有限公司 一种石墨烯基底上生长高质量GaN缓冲层的制备方法
CN104538519A (zh) * 2014-12-24 2015-04-22 中国科学院半导体研究所 提高Si衬底LED出光效率的外延结构及制备方法
CN105226075A (zh) * 2015-10-22 2016-01-06 江苏新广联半导体有限公司 高压发光二极管透明导电层的制造方法
CN106505135A (zh) * 2016-12-27 2017-03-15 华南理工大学 生长在玻璃衬底上的InGaN/GaN多量子阱及其制备方法
CN106711294A (zh) * 2016-11-17 2017-05-24 华灿光电(浙江)有限公司 一种发光二极管的外延片及制备方法
CN106784224A (zh) * 2016-12-27 2017-05-31 华南理工大学 生长在玻璃衬底上的led外延片及其制备方法
CN106816511A (zh) * 2017-02-15 2017-06-09 华灿光电(浙江)有限公司 一种发光二极管的芯片及其制作方法
WO2018049278A1 (en) * 2016-09-12 2018-03-15 University Of Houston System Flexible single-crystal semiconductor heterostructures and methods of making thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294706A (ja) * 2005-04-06 2006-10-26 Hitachi Cable Ltd 半導体発光装置
CN102201503A (zh) * 2011-03-30 2011-09-28 苏州纳维科技有限公司 一种iii族氮化物衬底的生长方法、衬底以及led
CN104037287A (zh) * 2014-06-10 2014-09-10 广州市众拓光电科技有限公司 生长在Si衬底上的LED外延片及其制备方法
CN104300052A (zh) * 2014-10-11 2015-01-21 北京工业大学 一种石墨烯结构的led芯片结构及其制备方法
CN104409319A (zh) * 2014-10-27 2015-03-11 苏州新纳晶光电有限公司 一种石墨烯基底上生长高质量GaN缓冲层的制备方法
CN104409580A (zh) * 2014-11-12 2015-03-11 无锡格菲电子薄膜科技有限公司 一种GaN基LED外延片及其制备方法
CN104538519A (zh) * 2014-12-24 2015-04-22 中国科学院半导体研究所 提高Si衬底LED出光效率的外延结构及制备方法
CN105226075A (zh) * 2015-10-22 2016-01-06 江苏新广联半导体有限公司 高压发光二极管透明导电层的制造方法
WO2018049278A1 (en) * 2016-09-12 2018-03-15 University Of Houston System Flexible single-crystal semiconductor heterostructures and methods of making thereof
CN106711294A (zh) * 2016-11-17 2017-05-24 华灿光电(浙江)有限公司 一种发光二极管的外延片及制备方法
CN106505135A (zh) * 2016-12-27 2017-03-15 华南理工大学 生长在玻璃衬底上的InGaN/GaN多量子阱及其制备方法
CN106784224A (zh) * 2016-12-27 2017-05-31 华南理工大学 生长在玻璃衬底上的led外延片及其制备方法
CN106816511A (zh) * 2017-02-15 2017-06-09 华灿光电(浙江)有限公司 一种发光二极管的芯片及其制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129240A (zh) * 2019-12-31 2020-05-08 湘能华磊光电股份有限公司 一种提高氮化物led电流扩展能力的外延生长方法
CN111640829A (zh) * 2020-05-25 2020-09-08 安徽三安光电有限公司 一种具有复合电子阻挡层的发光二极管及其制备方法
CN115832137A (zh) * 2023-02-16 2023-03-21 江西乾照光电有限公司 一种led外延片、外延生长方法及led芯片
CN115832137B (zh) * 2023-02-16 2023-07-25 江西乾照光电有限公司 一种led外延片、外延生长方法及led芯片

Also Published As

Publication number Publication date
CN108807627B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CN102368519B (zh) 一种提高半导体二极管多量子阱发光效率的方法
CN103531680B (zh) 一种led外延结构及其制备方法
WO2015067096A1 (zh) 氮化物发光二极管
CN108807627A (zh) 一种大功率垂直结构led外延结构及其制备方法
JPH0246779A (ja) 炭化珪素半導体を用いたpn接合型発光ダイオード
CN217641378U (zh) 一种硅基发光二极管
CN103178178A (zh) 一种提高氮化镓基发光二极管电子迁移率的结构及其生产方法
CN217239488U (zh) 一种氮化镓基发光二极管
CN105185885A (zh) Led芯片及其制备方法
CN100399590C (zh) Mocvd生长氮化物发光二极管结构外延片的方法
CN106449914B (zh) 一种GaN基发光二极管外延结构及其制备方法
CN102544276A (zh) 生长在LiGaO2衬底上的非极性GaN薄膜及其制备方法、应用
CN212323022U (zh) AlGaN基深紫外LED外延片
CN204668348U (zh) Led芯片
CN113013301B (zh) 氮化物发光二极管
CN105098008A (zh) 一种含三元超晶格的GaN基LED外延结构及其制备方法
CN213816181U (zh) 一种Si衬底的GaN薄膜
RU83655U1 (ru) Светодиодная гетероструктура с множественными ingan/gan квантовыми ямами
CN112563380A (zh) Si衬底的AlGaN基深紫外LED外延片及制备方法
CN113161451A (zh) 一种led外延结构及其生长方法
CN202454605U (zh) 生长在LiGaO2衬底上的非极性GaN薄膜
CN102255028A (zh) 透明电极发光二极管及其制备方法
CN213816182U (zh) Si衬底的AlGaN基深紫外LED外延片
CN204067411U (zh) 生长在W衬底上的GaN薄膜
CN204067412U (zh) 生长在W衬底上的AlN薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant