CN108803064A - 太赫兹涡旋光束产生装置及方法 - Google Patents

太赫兹涡旋光束产生装置及方法 Download PDF

Info

Publication number
CN108803064A
CN108803064A CN201810825103.XA CN201810825103A CN108803064A CN 108803064 A CN108803064 A CN 108803064A CN 201810825103 A CN201810825103 A CN 201810825103A CN 108803064 A CN108803064 A CN 108803064A
Authority
CN
China
Prior art keywords
vortex
beams
unit
terahertz
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810825103.XA
Other languages
English (en)
Other versions
CN108803064B (zh
Inventor
徐世祥
林庆钢
郑水钦
蔡懿
曾选科
陈振宽
上官煌城
查郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201810825103.XA priority Critical patent/CN108803064B/zh
Publication of CN108803064A publication Critical patent/CN108803064A/zh
Application granted granted Critical
Publication of CN108803064B publication Critical patent/CN108803064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了太赫兹涡旋光束产生装置及方法,应用于光学技术领域,该装置包括:脉冲展宽单元、涡旋光束产生单元、偏振延时单元以及太赫兹光束产生单元。脉冲展宽单元,设置在涡旋光束产生单元的前端,用于将来自光源的超短脉冲展宽为啁啾脉冲。涡旋光束产生单元,还设置在偏振延时单元的前端,用于将接收的啁啾脉冲调整为两束涡旋线偏振光束,两束涡旋线偏振光束的偏振方向正交。偏振延迟单元,还设置在太赫兹光束产生单元的前端,用于令接收的两束涡旋线偏振光束产生相对时间延迟。太赫兹光束产生单元,用于根据接收的产生相对时间延迟的两束涡旋线偏振光束产生太赫兹涡旋光束。本发明公开的装置可降低太赫兹涡旋光束的产生难度和成本。

Description

太赫兹涡旋光束产生装置及方法
技术领域
本发明涉及光学技术领域,尤其涉及一种太赫兹涡旋光束产生装置及方法。
背景技术
随着科学技术的高速发展,太赫兹波作为一种频率范围位于0.1-10THz(单位:太赫兹),且具有安全性、高穿透性以及频带范围大等优点的电磁波,被广泛的应用在医学成像、安全检查及光学通信等领域。然而,太赫兹波衍射效应较为严重,因此利用太赫兹波成像的对比度较低。
目前,因此通常使太赫兹波具有涡旋相位,以提高成像的对比度。太赫兹涡旋光束的产生装置主要利用太赫兹波段的涡旋相位、叉型光栅、零度涡旋半波片等调整器件直接对太赫兹波进行调制,使其变为太赫兹光束。然而,上述所说的调整器件需要对太赫兹波有较小的吸收,因此对调整器件的材料有较高的要求,进而提高了太赫兹涡旋光束的产生难度和成本。
发明内容
本发明的主要目的在于提供一种太赫兹涡旋光束产生装置及方法,可降低太赫兹涡旋光束的产生难度和成本。
本发明实施例第一方面提供了一种太赫兹涡旋光束产生装置,所述太赫兹涡旋光束产生装置包括:脉冲展宽单元、涡旋光束产生单元、偏振延时单元以及太赫兹光束产生单元;所述脉冲展宽单元,设置在所述涡旋光束产生单元的前端,用于将来自光源的超短脉冲展宽为啁啾脉冲,并透射给所述涡旋光束产生单元;所述涡旋光束产生单元,还设置在所述偏振延时单元的前端,用于将接收的所述啁啾脉冲调整为两束涡旋线偏振光束,并透射给所述偏振延时单元,两束所述涡旋线偏振光束的偏振方向正交;所述偏振延迟单元,还设置在所述太赫兹光束产生单元的前端,用于令接收的两束所述涡旋线偏振光束产生相对时间延迟,并透射给所述太赫兹光束产生单元;所述太赫兹光束产生单元,用于根据接收的所述产生相对时间延迟的两束涡旋线偏振光束产生太赫兹涡旋光束。
本发明实施例第二方面提供了一种太赫兹涡旋光束产生方法,所述方法包括:控制脉冲展宽单元将来自光源的超短脉冲展宽为啁啾脉冲,并透射给涡旋光束产生单元;控制所述涡旋光束产生单元将接收的所述啁啾脉冲调整为两束涡旋线偏振光束,并透射给所述偏振延时单元,两束所述涡旋线偏振光束的偏振方向正交;控制偏振延迟单元令接收的两束所述涡旋线偏振光束产生相对时间延迟,并透射给所述太赫兹光束产生单元;控制太赫兹光束产生单元根据接收的所述产生相对时间延迟的两束涡旋线偏振光束产生太赫兹涡旋光束。
从上述实施例可知,通过利用啁啾脉冲调整得到涡旋线偏振光束,因此存在相对时间延迟的涡旋线偏振光束为不同频率的两束涡旋线偏振光束,随后通过太赫兹光束产生单元根据光学差频效应产生太赫兹涡旋光束,而不是直接对太赫兹波进行调制来得到太赫兹涡旋光束,因此降低了对于涡旋光调制器件的要求,进而降低了太赫兹涡旋光束的产生难度和成本。
附图说明
图1是本发明提供的第一实施例中的太赫兹涡旋光束产生装置的结构示意图;
图2是本发明提供的第二实施例中的太赫兹涡旋光束产生装置的结构示意图;
图3是本发明提供的第二实施例中的太赫兹涡旋光束产生装置的连接示意图;
图4是本发明提供的第三实施例中的太赫兹涡旋光束产生方法的实现流程示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,图1是本发明提供的第一实施例中的太赫兹涡旋光束产生装置的结构示意图。如图1所示,太赫兹涡旋光束产生装置100包括:脉冲展宽单元101、涡旋光束产生单元102、偏振延时单元103以及太赫兹光束产生单元104。
脉冲展宽单元101,设置在涡旋光束产生单元102的前端,用于将来自光源200的超短脉冲展宽为啁啾脉冲,并透射给涡旋光束产生单元102。涡旋光束产生单元102,还设置在偏振延时单元103的前端,用于将接收的啁啾脉冲调整为两束涡旋线偏振光束,并透射给偏振延时单元103,两束涡旋线偏振光束的偏振方向正交。偏振延时单元103,还设置在太赫兹光束产生单元104的前端,用于令接收的两束涡旋线偏振光束产生相对时间延迟,并透射给太赫兹光束产生单元104。太赫兹光束产生单元104,用于根据接收的产生相对时间延迟的两束涡旋线偏振光束产生太赫兹涡旋光束。
具体的,超短脉冲指延续时间在飞秒数量级或更短的光脉冲。光源200透射的超短脉冲通过脉冲展宽单元101展宽为啁啾脉冲,啁啾脉冲是指瞬时频率随时间而变化的光脉冲。脉冲展宽单元101透射的啁啾脉冲通过涡旋光束产生单元102调整为两束涡旋偏振光束。由于啁啾脉冲的瞬时频率随时间而变化,因此通过偏振延时单元103令两束涡旋线偏振光束产生相对时间延迟,从而获得两束频率不同的涡旋线偏振光束。最后通过太赫兹产生单元基于光学差频效应,根据两束不同频率的涡旋线偏振光束产生太赫兹涡旋光束。
在本发明实施例中,通过利用啁啾脉冲调整得到涡旋线偏振光束,因此存在相对时间延迟的涡旋线偏振光束为不同频率的两束涡旋线偏振光束,随后通过太赫兹光束产生单元根据光学差频效应产生太赫兹涡旋光束,而不是直接对太赫兹波进行调制来得到太赫兹涡旋光束,因此降低了对于涡旋光调制器件的要求,进而降低了太赫兹涡旋光束的产生难度和成本。
参见图2和图3,图2是本发明提供的第二实施例中的太赫兹涡旋光束产生装置的结构示意图,图3是本发明提供的第二实施例中的太赫兹涡旋光束产生装置的连接示意图。如图2和图3所示,与图1所示的太赫兹涡旋光束产生装置不同的是,于本发明实施例中:
进一步地,涡旋光束产生单元102包括:偏振器1021、零级涡旋半波片1022和四分之一波片1023。脉冲展宽单元101设置在偏振器1021的前端,零级涡旋半波片1022设置在偏振器1021的后端。
偏振器1021,用于将接收的啁啾脉冲调整为线偏振啁啾脉冲,并透射给零级涡旋半波片1022。其中,线偏振啁啾光束的偏振方向可为水平偏振。
零级涡旋半波片1022,还设置在四分之一波片1023的前端,用于将接收的线偏振啁啾脉冲调整为两束涡旋圆偏振光束,并透射给四分之一波片1023,两束涡旋圆偏振光束的传播方向一致、拓扑荷值大小相同,拓扑荷值的符号相反。其中,零级涡旋半波片1022是一种光轴角向分布的半波片。两束涡旋圆偏振光束的偏振方向不同,一束为左旋偏振,另一束为右旋偏振。
四分之一波片1023,还设置在偏振延时单元103的前端,四分之一波片1023的快轴与水平方向呈45度或-45度,用于将接收的两束涡旋圆偏振光束调整为两束涡旋线偏振光束,并透射给偏振延时单元103,两束涡旋线偏振光束的偏振方向正交。其中,四分之一波片1023中传播速度快的光矢量方向为快轴,快轴的方向与水平方向呈45度或-45度,与最后得到的太赫兹涡旋光束的拓扑荷的正负号相关。
进一步地,太赫兹光束产生单元104包括聚焦单元1041和太赫兹产生晶体1042。偏振延时单元103设置在聚焦单元1041的前端,太赫兹产生晶体1042设置在聚焦单元1041的后端。
聚焦单元1041,用于将产生相对时间延迟的两束涡旋线偏振光束聚焦到太赫兹产生晶体1042中。
太赫兹产生晶体1042,用于受激产生太赫兹涡旋光束。其中,太赫兹产生晶体1042是指在外电场作用下产生太赫兹光束的晶体。
具体的,太赫兹产生晶体1042用于实现共线光学差频效应,以使产生相对时间延迟的两束涡旋线偏振光束根据光学差频效应产生太赫兹涡旋光束,由于光学差频效应满足轨道角动量守恒定律,因此太赫兹涡旋光束的拓扑荷值为两束不同频率的涡旋线偏振光束的拓扑荷值之差。
进一步地,太赫兹产生晶体1042为闪锌矿晶体,则,
聚焦单元1041,还用于将产生相对时间延迟的两束涡旋线偏振光束聚焦到闪锌矿晶体的110晶面中。晶面是指在晶体学中通过晶体中原子中心的平面。
进一步地,偏振延时单元103包括两块楔片,该楔片的材料为双折射晶体。两块楔片的光轴方向相互垂直,楔角相等。两块楔片之间的距离可变,通过调节两块楔片之间的距离,从而控制两束涡旋线偏振光束之间的时间延时量,进而控制两束涡旋线偏振光束之间的频率差。
进一步地,脉冲展宽单元101为脉冲展宽器,聚焦单元1041为聚焦透镜或聚焦反透镜。可选的,脉宽展宽器为光栅对,将来自光源200的超短脉冲展宽为线性啁啾脉冲。
可选的,光源200可为钛宝石激光器,从而透射的光源200为波长为800nm(单位:纳米)的钛宝石飞秒激光,则与之相应的,脉冲展宽单元101可为钛宝石激光器自带的压缩器。
可选的,太赫兹涡旋光束产生装置还包括检测单元,与太赫兹光束产生单元104相连,该检测单元利用动态相减技术直接探测太赫兹涡旋光束不同时刻的空间电场分布。或者,通过结合二维电动平移台和锁相放大器,逐点扫描太赫兹涡旋光束不同空间位置的时域波形,从而间接构成整个空间电场分布。
在本发明实施例中,首先,通过利用啁啾脉冲调整得到涡旋线偏振光束,因此存在相对时间延迟的涡旋线偏振光束为不同频率的两束涡旋线偏振光束,随后通过太赫兹光束产生单元根据光学差频效应产生太赫兹涡旋光束,而不是直接对太赫兹波进行调制来得到太赫兹涡旋光束,因此降低了对于涡旋光调制器件的要求,进而降低了太赫兹涡旋光束的产生难度和成本。另外,由于两束不同频率的涡旋光束由同一件器件产生,并且传播方向一致以及拓扑荷值大小相同,因此产生的太赫兹涡旋光束更为稳定。最后,由于两束不同频率的涡旋光束的光斑空间分布匹配程度高,因此可提高产生效率。
参见图4,图4是本发明提供的第三实施例中的太赫兹涡旋光束产生方法的实现流程示意图。如图4所示,所述方法包括:
301、控制脉冲展宽单元将来自光源的超短脉冲展宽为啁啾脉冲,并透射给偏振器。
302、控制该偏振器将接收的该啁啾脉冲调整为线偏振啁啾脉冲,并透射给该零级涡旋半波片。
303、控制该零级涡旋半波片将接收的该线偏振啁啾脉冲调整为两束涡旋圆偏振光束,并透射给该四分之一波片。
具体的,该涡旋光束产生单元包括:偏振器、零级涡旋半波片和四分之一波片,两束涡旋圆偏振光束的传播方向一致、拓扑荷值大小相同,拓扑荷值的符号相反。
304、控制该四分之一波片将接收的两束该涡旋圆偏振光束调整为两束涡旋线偏振光束,并透射给该偏振延时单元。
具体的,两束该涡旋线偏振光束的偏振方向正交。
305、控制偏振延迟单元将接收的两束该涡旋线偏振光束产生相对时间延迟,并透射给该聚焦单元。
306、控制该聚焦单元将该产生相对时间延迟的两束涡旋线偏振光束聚焦到太赫兹产生晶体。
307、控制该太赫兹产生晶体受激产生太赫兹涡旋光束。
具体的,该太赫兹光束产生单元包括聚焦单元和太赫兹产生晶体。
本实施例未尽之细节,请参阅前述图1至图3所示实施例的描述,此处不再赘述。
在本发明实施例中,首先,通过利用啁啾脉冲调整得到涡旋线偏振光束,因此存在相对时间延迟的涡旋线偏振光束为两束涡旋线偏振啁啾脉冲,随后通过太赫兹光束产生单元根据光学差频效应产生太赫兹涡旋光束,而不是直接对太赫兹波进行调制来得到太赫兹涡旋光束,因此降低了对于涡旋光调制器件的要求,进而降低了太赫兹涡旋光束的产生难度和成本。另外,由于两束不同频率的涡旋光束由同一件器件产生,并且传播方向一致以及拓扑荷值大小相同,因此产生的太赫兹涡旋光束更为稳定。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上为本发明所提供的一种太赫兹涡旋光束产生装置及方法的描述,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (9)

1.一种太赫兹涡旋光束产生装置,其特征在于,所述太赫兹涡旋光束产生装置包括:脉冲展宽单元、涡旋光束产生单元、偏振延时单元以及太赫兹光束产生单元;
所述脉冲展宽单元,设置在所述涡旋光束产生单元的前端,用于将来自光源的超短脉冲展宽为啁啾脉冲,并透射给所述涡旋光束产生单元;
所述涡旋光束产生单元,还设置在所述偏振延时单元的前端,用于将接收的所述啁啾脉冲调整为两束涡旋线偏振光束,并透射给所述偏振延时单元,两束所述涡旋线偏振光束的偏振方向正交;
所述偏振延迟单元,还设置在所述太赫兹光束产生单元的前端,用于令接收的两束所述涡旋线偏振光束产生相对时间延迟,并透射给所述太赫兹光束产生单元;
所述太赫兹光束产生单元,用于根据接收的所述产生相对时间延迟的两束涡旋线偏振光束产生太赫兹涡旋光束。
2.如权利要求1所述的太赫兹涡旋光束产生装置,其特征在于,所述涡旋光束产生单元包括:偏振器、零级涡旋半波片和四分之一波片;
所述脉冲展宽单元设置在所述偏振器的前端,所述零级涡旋半波片设置在所述偏振器的后端;
所述偏振器,用于将接收的所述啁啾脉冲调整为线偏振啁啾脉冲,并透射给所述零级涡旋半波片;
所述零级涡旋半波片,还设置在所述四分之一波片的前端,用于将接收的所述线偏振啁啾脉冲调整为两束涡旋圆偏振光束,并透射给所述四分之一波片,两束所述涡旋圆偏振光束的传播方向一致、拓扑荷值大小相同,拓扑荷值的符号相反;
所述四分之一波片,还设置在所述偏振延时单元的前端,所述四分之一波片的快轴与水平方向呈45度或-45度,用于将接收的两束所述涡旋圆偏振光束调整为两束涡旋线偏振光束,并透射给所述偏振延时单元,两束所述涡旋线偏振光束的偏振方向正交。
3.如权利要求1所述的太赫兹涡旋光束产生单元,其特征在于,所述太赫兹光束产生单元包括聚焦单元和太赫兹产生晶体;
所述偏振延时单元设置在所述聚焦单元的前端,所述太赫兹产生晶体设置在所述聚焦单元的后端;
所述聚焦单元,用于将所述产生相对时间延迟的两束涡旋线偏振光束聚焦到所述太赫兹产生晶体;
所述太赫兹产生晶体,用于受激产生太赫兹涡旋光束。
4.如权利要求3所述的太赫兹光束产生装置,其特征在于,所述太赫兹产生晶体为闪锌矿晶体,则,
所述聚焦单元,还用于将所述产生相对时间延迟的两束涡旋线偏振光束聚焦到闪锌矿晶体的110晶面中。
5.如权利要求1所述的太赫兹涡旋光束产生装置,其特征在于,所述偏振延时单元包括两块楔片,所述楔片的材料为双折射晶体;
两块所述楔片的光轴方向相互垂直,楔角相等。
6.如权利要求3所述的太赫兹涡旋光束产生装置,其特征在于,所述脉冲展宽单元为脉冲展宽器,所述聚焦单元为聚焦透镜或聚焦反射镜。
7.一种太赫兹涡旋光束产生方法,其特征在于,所述方法包括:
控制脉冲展宽单元将来自光源的超短脉冲展宽为啁啾脉冲,并透射给涡旋光束产生单元;
控制所述涡旋光束产生单元将接收的所述啁啾脉冲调整为两束涡旋线偏振光束,并透射给所述偏振延时单元,两束所述涡旋线偏振光束的偏振方向正交;
控制偏振延迟单元令接收的两束所述涡旋线偏振光束产生相对时间延迟,并透射给所述太赫兹光束产生单元;
控制太赫兹光束产生单元根据接收的所述产生相对时间延迟的两束涡旋线偏振光束产生太赫兹涡旋光束。
8.如权利要求7所述的太赫兹涡旋光束产生方法,其特征在于,所述涡旋光束产生单元包括:偏振器、零级涡旋半波片和四分之一波片,则所述控制涡旋光束产生单元将接收的所述啁啾脉冲调整为两束涡旋线偏振光束,并透射给所述偏振延时单元,两束所述涡旋线偏振光束的偏振方向正交包括:
控制所述偏振器将接收的所述啁啾脉冲调整为线偏振啁啾脉冲,并透射给所述零级涡旋半波片;
控制所述零级涡旋半波片将接收的所述线偏振啁啾脉冲调整为两束涡旋圆偏振光束,并透射给所述四分之一波片,两束所述涡旋圆偏振光束的传播方向一致、拓扑荷值大小相同,拓扑荷值的符号相反;
控制所述四分之一波片将接收的两束所述涡旋圆偏振光束调整为两束涡旋线偏振光束,并透射给所述偏振延时单元,两束所述涡旋线偏振光束的偏振方向正交;
控制脉冲展宽单元将来自光源的超短脉冲展宽为啁啾脉冲,并透射给涡旋光束产生单元包括:
控制脉冲展宽单元将来自光源的超短脉冲展宽为啁啾脉冲,并透射给所述偏振器。
9.如权利要求8所述的太赫兹涡旋光束产生方法,其特征在于,所述太赫兹光束产生单元包括聚焦单元和太赫兹产生晶体,则所述控制偏振延迟单元令接收的两束所述涡旋线偏振光束产生相对时间延迟,并透射给所述太赫兹光束产生单元包括:
控制偏振延迟单元将接收的两束所述涡旋线偏振光束产生相对时间延迟,并透射给所述聚焦单元;
所述控制太赫兹光束产生单元根据接收的所述产生相对时间延迟的两束涡旋线偏振光束产生太赫兹涡旋光束包括:
控制所述聚焦单元将所述产生相对时间延迟的两束涡旋线偏振光束聚焦到所述太赫兹产生晶体;
控制所述太赫兹产生晶体受激产生太赫兹涡旋光束。
CN201810825103.XA 2018-07-25 2018-07-25 太赫兹涡旋光束产生装置及方法 Active CN108803064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810825103.XA CN108803064B (zh) 2018-07-25 2018-07-25 太赫兹涡旋光束产生装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810825103.XA CN108803064B (zh) 2018-07-25 2018-07-25 太赫兹涡旋光束产生装置及方法

Publications (2)

Publication Number Publication Date
CN108803064A true CN108803064A (zh) 2018-11-13
CN108803064B CN108803064B (zh) 2023-07-28

Family

ID=64078208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810825103.XA Active CN108803064B (zh) 2018-07-25 2018-07-25 太赫兹涡旋光束产生装置及方法

Country Status (1)

Country Link
CN (1) CN108803064B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501817A (zh) * 2019-09-05 2019-11-26 上海理工大学 产生时空涡旋光场的方法及时空涡旋光场的检测方法
CN110515216A (zh) * 2019-07-19 2019-11-29 四川大学 一种光强和偏振快速旋转的光场调控方法
CN110673350A (zh) * 2019-09-03 2020-01-10 深圳大学 一种产生椭圆形径向偏振光束的涡旋半波片及系统
CN111679456A (zh) * 2020-07-08 2020-09-18 南开大学 一种相位可控的超薄亚太赫兹涡旋矢量光束生成器的设计方法
WO2021174476A1 (zh) * 2020-03-05 2021-09-10 深圳大学 聚焦涡旋光发生器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080004364A (ko) * 2006-07-04 2008-01-09 학교법인 포항공과대학교 조셉슨 볼텍스 운동을 이용한 테라헤르즈 전자기파 발진 및검출 소자
US20090040602A1 (en) * 2005-04-01 2009-02-12 University Of Rochester Polarization Converter, Optical system, Method and Applications
JP2010117397A (ja) * 2008-11-11 2010-05-27 Aisin Seiki Co Ltd テラヘルツ波発生装置及びテラヘルツ波発生方法
CN101750751A (zh) * 2010-01-22 2010-06-23 中国计量学院 太赫兹波偏振分束器
JP2015163912A (ja) * 2014-02-28 2015-09-10 国立大学法人 千葉大学 光渦発生装置及びこれに用いられる連続螺旋型位相板並びに光渦発生方法
CN107462546A (zh) * 2017-07-25 2017-12-12 天津大学 基于飞秒激光的多功能太赫兹时域光谱成像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040602A1 (en) * 2005-04-01 2009-02-12 University Of Rochester Polarization Converter, Optical system, Method and Applications
KR20080004364A (ko) * 2006-07-04 2008-01-09 학교법인 포항공과대학교 조셉슨 볼텍스 운동을 이용한 테라헤르즈 전자기파 발진 및검출 소자
JP2010117397A (ja) * 2008-11-11 2010-05-27 Aisin Seiki Co Ltd テラヘルツ波発生装置及びテラヘルツ波発生方法
CN101750751A (zh) * 2010-01-22 2010-06-23 中国计量学院 太赫兹波偏振分束器
JP2015163912A (ja) * 2014-02-28 2015-09-10 国立大学法人 千葉大学 光渦発生装置及びこれに用いられる連続螺旋型位相板並びに光渦発生方法
CN107462546A (zh) * 2017-07-25 2017-12-12 天津大学 基于飞秒激光的多功能太赫兹时域光谱成像装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110515216A (zh) * 2019-07-19 2019-11-29 四川大学 一种光强和偏振快速旋转的光场调控方法
CN110515216B (zh) * 2019-07-19 2021-03-26 四川大学 一种光强和偏振快速旋转的光场调控方法
CN110673350A (zh) * 2019-09-03 2020-01-10 深圳大学 一种产生椭圆形径向偏振光束的涡旋半波片及系统
CN110673350B (zh) * 2019-09-03 2021-10-19 深圳大学 一种产生椭圆形径向偏振光束的涡旋半波片及系统
CN110501817A (zh) * 2019-09-05 2019-11-26 上海理工大学 产生时空涡旋光场的方法及时空涡旋光场的检测方法
CN110501817B (zh) * 2019-09-05 2021-07-13 上海理工大学 产生时空涡旋光场的方法及时空涡旋光场的检测方法
WO2021174476A1 (zh) * 2020-03-05 2021-09-10 深圳大学 聚焦涡旋光发生器及其制备方法
CN111679456A (zh) * 2020-07-08 2020-09-18 南开大学 一种相位可控的超薄亚太赫兹涡旋矢量光束生成器的设计方法
CN111679456B (zh) * 2020-07-08 2023-04-18 南开大学 一种相位可控的超薄亚太赫兹涡旋矢量光束生成器的设计方法

Also Published As

Publication number Publication date
CN108803064B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
CN108803064A (zh) 太赫兹涡旋光束产生装置及方法
Chen et al. Generation and propagation of a partially coherent vector beam with special correlation functions
TWI729098B (zh) 脈衝光之波形計測方法及波形計測裝置
CN105790044B (zh) 基于脉冲偏振整形的双色场光丝诱导太赫兹场增强系统
CN110376135A (zh) 一种太赫兹超分辨显微成像系统
WO2017181310A1 (zh) 基于空心金属波导光纤增强太赫兹波信号的装置及方法
CN105988261B (zh) 一种涡旋光场产生装置
CN103840366A (zh) 通过脉冲激光展宽实现太赫兹波中心频率连续可调的方法
JP2010060751A (ja) テラヘルツ波の発生装置及び発生方法
US8373924B2 (en) Frequency-tripled fiber MOPA
Sharma et al. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses
Szatmári et al. Improvement of the temporal and spatial contrast of high-brightness laser beams
Wang et al. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser
Antonov Acousto-optic deflector: A new method to increase the efficiency and bandwidth
Antonov Acousto-optic deflector with a high diffraction efficiency and wide angular scanning range
CN114063307A (zh) 一种飞秒庞加莱球矢量光束的偏振态调控系统
Serkez et al. Method for polarization shaping at free-electron lasers
Villeneuve et al. Using frequency-domain manipulation of stretched femtosecond laser pulses to create fast rise and fall times on picosecond pulses
Hattori et al. Phase-sensitive high-speed THz imaging
CN107611755B (zh) 间距可调的双等离子体产生高强度太赫兹波的系统和方法
CN208818951U (zh) 太赫兹涡旋光束产生装置
WO2018178064A1 (en) Method and device for obtaining a phase shifted shearogram for shearography
US5136599A (en) Apparatus and method for increasing the bandwidth of a laser beam
Kobayashi et al. Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond region using a fast electrooptic deflector
CN105790045B (zh) 大能量周期量级超高信噪比飞秒种子脉冲产生装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant