CN114063307A - 一种飞秒庞加莱球矢量光束的偏振态调控系统 - Google Patents

一种飞秒庞加莱球矢量光束的偏振态调控系统 Download PDF

Info

Publication number
CN114063307A
CN114063307A CN202111026754.0A CN202111026754A CN114063307A CN 114063307 A CN114063307 A CN 114063307A CN 202111026754 A CN202111026754 A CN 202111026754A CN 114063307 A CN114063307 A CN 114063307A
Authority
CN
China
Prior art keywords
polarization
laser beam
femtosecond laser
light intensity
femtosecond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111026754.0A
Other languages
English (en)
Inventor
展浩
周张钰
闵长俊
张聿全
袁小聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202111026754.0A priority Critical patent/CN114063307A/zh
Publication of CN114063307A publication Critical patent/CN114063307A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种飞秒庞加莱球矢量光束的偏振态调控系统,包括:激发光源单元、脉冲分束单元、水平方向偏振以及光强大小调控单元、垂直方向偏振以及光强大小调控单元、正交偏振合束单元和液晶q波片;将飞秒激光束进行分束,一路进入水平方向偏振以及光强大小调控单元,产生水平方向光强大小可调节的线偏振的飞秒激光束;另一路进入竖直方向偏振以及光强大小调控单元,产生竖直方向光强大小可调节的线偏振的飞秒激光束;通过正交偏振合束单元调制为两束正交偏振的飞秒激光束后;再通过液晶q波片生成庞加莱矢量光束。本发明只需调节水平和垂直偏振脉冲间的时间延迟及水平和垂直方向偏振光光强大小就能完成庞加莱球上任意偏振态的调控。

Description

一种飞秒庞加莱球矢量光束的偏振态调控系统
技术领域
本发明涉及光束调控技术领域,尤其涉及一种飞秒庞加莱球矢量光束的 偏振态调控系统。
背景技术
自上世纪六十年代激光器产生以来,激光脉冲宽度和能量一直在不断的 发展和刷新数据,飞秒激光技术正在不断发展成熟,这使得激光直接应用于 物理、化学、生物等领域的基础研究以及工业应用日益成熟。飞秒激光的应 用主要是超短时空分辨率,超宽光谱带宽,超高峰值功率。其中一个重要应 用领域是激光超精细加工。科学研究所知,激光作用到固体材料表面,其电 子-声子耦合响应时间为皮秒量级,因此对于大于或接近这个时间长度的脉冲 激光,材料加工将受到热传导的影响,这将使得加工区域的材料的物理与化学性质因为热效应而发生变化并明显降低材料加工质量。而飞秒激光持续时 间小于电子-声子耦合时间,即激光作用材料过程早于热扩散出现时间,这明 显地抑制了热效应,从而可以对各种材料包括金属、半导体及透明电介质等 材料达到“冷加工”效果。另外,由于飞秒激光与物质相互作用的多光子吸 收过程,可以使加工精度小于激光聚焦尺寸,达到突破衍射极限加工效果。 我们相信,随着飞秒激光技术的日渐成熟,以及对飞秒激光相关理论研究的 逐步深入,飞秒激光必将更加广泛和深入的应用到人类社会的各个领域。
光波存在两个重要的调控参量:振幅和相位,除此之外,偏振也是光的一 个重要性质。偏振是光作为电磁波除了光强、位相、光谱等特性之外的一种 基本属性,表征了光波振动的矢量性。为了更好的描述光的偏振态,在1892 年Poincare提出了用庞加莱球来描述所有可能的偏振态的几何描述方法,庞 加莱球的笛卡尔坐标是三个Stokes参量,在庞加莱球的表面上映射了用琼斯 矢量表示的所有偏振态,将这种物理概念和几何图形相互连接,极大的简化 了很多复杂的偏振态问题,成为了研究矢量光束的偏振问题的主要方法。尽管庞加莱球法非常巧妙,但是直到2011年以前,庞加莱球上表示的偏振态仅 限于Maxwell矢量波方程的最简单和最基本的同质平面波解。在2011年 GiovanniMilione提出了高阶庞加莱球的概念,在高阶庞加莱球上面可以表 示非均匀的偏振态,比如激光腔谐振器。还有一种叫做矢量涡旋光,也成为 螺旋偏振光,其偏振态也可以用高阶庞加莱球表示。高阶庞加莱球的提出, 极大的拓展了传统平面波的偏振特性。线偏振光、圆偏振光和椭圆偏振光这 种偏振在空间均匀分布的光束是过去传统研究的热点,偏振态在空间呈非均 匀分布的矢量光束因为其特殊的性质和潜在的应用价值无论是在理论上还是 在实际应用中都引起了科技工作者极大的研究兴趣。随着近年来对矢量光束 研究的不断深入,光的这种矢量偏振性质以及矢量偏振光场与物质的相互作 用已经成为光学检测和计量、显示技术、数据存储、光通信、材料科学、天 文学、量子纠缠、光镊、显微技术、激光加工以及生物光子学等许多研究领 域的重要研究内容。
现有技术中,飞秒庞加莱矢量光束的偏振态调控系统需要大量波片进行 偏振态调控,调控步骤复杂,调控自由度低。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种飞秒庞加莱球矢 量光束的偏振态调控系统,旨在解决现有技术中飞秒庞加莱矢量光束的偏振 态调控步骤复杂、调控自由度低的问题。
本发明的技术方案如下:
本发明第一实施例提供了一种飞秒庞加莱球矢量光束的偏振态调控系统, 系统包括:
激发光源单元,用于产生飞秒激光束;
脉冲分束单元,用于将飞秒激光束进行分束,生成两路飞秒激光束,分 别记为第一路激光束和第二路激光束,第一路激光束进入水平方向偏振调控 单元,第二路激光束进入垂直方向偏振调控单元;
水平方向偏振以及光强大小调控单元,用于根据第一路激光束进行时间 延迟后,产生水平方向线偏振以及光强大小可调节的飞秒激光束,记为第一 飞秒激光束;
垂直方向偏振以及光强大小调控单元,用于根据第二路激光束产生竖直 方向线偏振以及光强大小可调节的飞秒激光束,记为第二飞秒激光束;
正交偏振合束单元,用于将第一飞秒激光束和第二飞秒激光束的偏振态 调制为两束正交偏振的飞秒激光束,并且将两正交偏振的飞秒激光束进行合 束;
液晶q波片,用于根据两束正交偏振的飞秒激光束的合束激光束,生成 庞加莱球矢量光束。
进一步地,所述水平方向偏振以及光强大小调控单元包括:
光学延迟单元,用于将第一路激光束进行时间延迟;
第一偏振调控单元,用于将第一激光束进行线性偏振调控,产生水平方 向线偏振的第一飞秒激光束。
进一步地,所述光学延迟单元包括:
第一光束反射单元,用于对第一路激光束进行反射;
移动平台,用于对反射后的第一路激光束的光程进行调节,生成与第二 路激光束具有时间延迟的第一激光束。
进一步地,所述第一偏振调控单元包括:
第一水平方向线偏器,用于将第一激光束进行水平方向线性偏振调控;
第一半波片,用于旋转线偏振光进入水平方向线偏器,生成水平方向线 偏振以及光强大小可调节的第一飞秒激光束。
进一步地,所述正交偏振合束单元包括:
脉冲合束单元,用于将第一飞秒激光束和第二飞秒激光束进行合束。
进一步地,所述垂直方向以及光强大小偏振调控单元包括:
第二光束反射单元,用于反射第二路激光束;
第二偏振调控子单元,用于将反射后的第二路激光束进行线性偏振以及 光强大小的调控,产生垂直方向线偏振的第二飞秒激光束。
进一步地,所述第二偏振调控子单元包括:
第二垂直方向线偏器,用于将第二激光束进行垂直方向线性偏振调控;
第二半波片,用于旋转线偏振光进入垂直方向线偏器,生成垂直方向线 偏振以及光强大小可调节的第二飞秒激光束。
进一步地,激发光源单元为飞秒激光器。
进一步地,所述第一光束反射单元包括至少一个反射镜,所述第二光束 反射单元包括至少一个反射镜。
进一步地,两束正交偏振的飞秒激光束的状态为正交线偏振。
有益效果:本发明实施例解决以往通过大量的波片来调控矢量光束的繁 杂操作,只需调节水平和垂直偏振脉冲间的时间延迟以及水平和垂直方向偏 振光光强大小就能完成庞加莱球上任意偏振态的调控。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明中飞秒庞加莱矢量光束的模型示意图;
图2为本发明一种飞秒庞加莱矢量光束的偏振态调控系统较佳实施例的 结构示意图;
图3为本发明一种飞秒庞加莱矢量光束的偏振态调控系统的具体应用较 佳实施例的两正交线偏振脉冲的空间光程差为0λ、0.125λ、0.25λ、 0.375λ、0.5λ、0.625λ、0.75λ和0.875λ及绕庞加莱球经线一周所对应 的8个结果的矢量偏振脉冲光强分布和偏振态分布;
图4为两个正交线偏振脉冲合脉冲经过q波片的偏振态为线偏振光时 (α=0),当两正交线偏振脉冲的空间光程差为0λ时Ex与Ey分量的光强比 值为1:0、1:1、1:4、1:8,得到的方位角β分别为0°、45°、60°、 80°,当两正交线偏振脉冲空间光程差为0.5λ时Ex与Ey分量的光强比值 为0:1、1:8、1:4、1:1,得到的方位角β分别为90°、110°、120°、 135°时所对应的矢量偏振脉冲为绕庞加莱球上赤道一周的8个结果。并通过 调节Ex与Ey分量的光强比和两个脉冲的空间光程差就可以产生庞加莱球上 任意一点的矢量偏振态。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进 一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
本发明所涉及的原理如下:
庞加莱球模型如图1所示:
如图1所示,沿OZ方向传播的椭圆偏振光的两个线性偏振分量为Ex和 Ey,两个线性偏振分量的相位差
Figure BDA0003243819030000061
令tanθ=E(y)/E(x),则椭圆的方位角β 满足:
Figure BDA0003243819030000062
椭圆率角α满足:
Figure BDA0003243819030000063
其中方位角2β是椭圆主轴与X轴正方向之间的夹角,它决定了椭圆在该 平面内的取向(0<β<π)。椭圆率角α定义为tanα=±b/a,其中a为椭圆 半长轴,b为椭圆半短轴,α的正负分别对应于右旋偏振和左旋偏振。
线偏振态正交的双脉冲组成的合脉冲光的琼斯矢量可表示为:
Figure BDA0003243819030000064
式中E(x),E(y)分别为:
Figure RE-GDA0003457293280000065
其中,
Figure BDA0003243819030000066
表示两脉冲由于相对延迟距离产生的相位差,t表示时间,ω表 示频率,fx,fy表示Ex,Ey的振幅。
式中fx,fy分别为:
Figure BDA0003243819030000067
其中Δt为延迟时间,τ0为脉宽。
由上述公式5得出E(x),E(y)的振幅大小随时间的变化而变化。
将公式3,公式4代入公式1得方位角β:
Figure BDA0003243819030000071
将公式3,公式4代入公式2得椭圆率角α:
Figure RE-GDA0003457293280000072
最终可得到庞加莱球上每一点的偏振态琼斯矢量为:
Figure RE-GDA0003457293280000073
对于液晶q波片的琼斯矩阵可表示为:
Figure BDA0003243819030000074
其中,
Figure BDA0003243819030000075
表示两脉冲由于相对延迟距离产生的相位差,t表示时间,
Figure BDA0003243819030000076
表 示方位角,q为半整数。
当合脉冲通过液晶q波片后,出射光的琼斯矢量为:
EVVB=Jq·Ei (公式10)
化简得:
Figure BDA0003243819030000077
基于公式3,通过控制x方向线偏振脉冲和y方向线偏振脉冲间的光程 差和光强大小的控制,对合脉冲的偏振态进行调控。基于公式11,具有一定 相对距离的正交偏振脉冲与液晶q波片作用后,可以产生任意矢量偏振的庞 加莱脉冲。
以下结合附图对本发明实施例进行介绍。
本发明实施例提供了一种飞秒矢量庞加莱矢量光束的偏振态调控系统, 请参阅图2,图2为本发明一种飞秒矢量庞加莱矢量光束的偏振态调控系统 较佳实施例的结构示意图。如图2所示,系统包括:
激发光源单元10,用于产生飞秒激光束;
脉冲分束单元20,用于将飞秒激光束进行分束,生成两路飞秒激光束, 分别记为第一路激光束和第二路激光束,第一路激光束进入水平方向偏振及 光强调控单元,第二路激光束进入垂直方向偏振及光强调控单元;
水平方向偏振及光强调控单元30,用于根据第一路激光束进行时间延迟 以及光强大小的改变后,产生光强大小可调控的水平方向线偏振的飞秒激光 束,记为第一飞秒激光束;
垂直方向偏振及光强调控单元40,用于根据第二路激光束产生垂直方向 光强大小可调控的线偏振的飞秒激光束,记为第二飞秒激光束;
正交偏振合束单元50,用于将第一飞秒激光束和第二飞秒激光束的偏振 态调制为两束正交偏振的飞秒激光束;
液晶q波片60,用于根据两束正交偏振的飞秒激光束,生成矢量庞加莱 矢量光束。
具体实施时,激发光源单元与脉冲分束单元连接,脉冲分束单元还与水 平方向偏振及光强调控单元、水平方向偏振及光强调控单元连接,水平方向 偏振及光强调控单元、水平方向偏振及光强调控单元还与正交偏振合束单元 连接,正交偏振合束单元还与液晶q波片连接,其中,激发光源单元为飞秒 激光器。进一步地,飞秒激光器为飞秒脉冲激光器,飞秒脉冲激光器出射的 为飞秒脉冲。
系统包括飞秒激光器单元、脉冲分束单元、光学延迟线、光束反射单元。 飞秒激光器单元用于产生飞秒激光器,脉冲分束单元用于将飞秒激光束分为 两束飞秒激光束,水平方向偏振及光强调控单元用于调控其中一束调控脉冲 激光的光程,即延迟时间,垂直方向偏振及光强调控单元用于调整另一束脉 冲的偏振方向,使之与另一束脉冲光束匹配。
根据两个正交偏振脉冲的相对位置以及各自光强大小的调控进行偏振调 控,与液晶q片作用产生随时间变化的矢量庞加莱矢量光束。
飞秒脉冲激光器出射的飞秒脉冲先通过分束单元,将脉冲激光束分两束, 即产生两路飞秒脉冲,其中一路飞秒脉冲经过水平方向偏振及光强调控单元, 产生水平方向线偏振的飞秒脉冲,另一路飞秒脉冲经过垂直方向偏振及光强 调控单元,产生垂直方向线偏振的飞秒脉冲。两路正交线偏振的飞秒脉冲再 通正交偏振合束单元,即产生正交偏振的脉冲对。正交偏振脉冲对通过液晶 q波片后,即可产生矢量偏振可控的矢量庞加莱脉冲。正交偏振的脉冲对的 偏振状态为正交线偏振、正交圆偏振或者正交椭圆偏振中的一种。本发明通过控制两个偏振态正交的飞秒脉冲之间的相对轴上距离及各自光强大小,调 控合脉冲的偏振态,经过与液晶q波片作用后,产生任意矢量偏振的矢量庞 加莱矢量光束。在飞秒加工、光通信、光镊操控、表面增强拉曼散射研究、 分子测试、阿秒激光等前沿领域具有重大意义。相对轴上距离:两个脉冲之 间的相对空间距离,并且两脉冲光轴必须同轴。
通过两部分偏振调制单元,产生偏振态正交的两个飞秒脉冲,通过脉冲 合束产生正交偏振脉冲对,与液晶q片进行作用后,产生矢量庞加莱脉冲, 通过调节光学延迟线,改变两个脉冲间的距离和各自光强的大小,产生偏振 可调的矢量庞加莱脉冲,通过CCD可观察其结构光场。
通过调控两个正交偏振脉冲的相对空间位置,造成两个脉冲在时域上有 重叠和不重叠部分,因此,在时域上,合成脉冲的偏振、强度信息将由两个 正交偏振脉冲的偏振和强度共同决定,且合成脉冲的偏振和强度是时变的。 两个脉冲相对空间位置造成两个脉冲具有一定的相位差,此相位差又决定了 合成脉冲的时间平均偏振态和强度信息。
在一些其他的实施例中,用同样的方法与金属表面作用,在不同的时间 延迟下诱导出不同的微纳米结构。
在一些另外的实施例中,用同样的方法与超表面作用,产生随时间变化 的结构光场。
在一个实施例中,水平方向偏振调控单元30包括:
光学延迟单元,用于将第一路激光束进行时间延迟,生成第一激光束;
第一偏振调控单元33,用于将第一激光束进行线性偏振调控,产生水平 方向线偏振的第一飞秒激光束。
具体实施时,光学延迟单元对第一路激光束进行时间延迟,生成第一激 光束。相对轴上距离:两个脉冲之间的相对空间距离,并且两脉冲光轴必须 同轴。第一偏振调控单元将第一激光束进行线性偏振调控,产生水平方向线 偏振的第一飞秒激光束。
其中,光学延迟单元包括:
第一光束反射单元31,用于对第一路激光束进行反射;
移动平台32,用于对反射后的第一路激光束的光程进行调节,生成与第 二路激光束具有时间延迟的第一激光束。
具体实施时,光学延迟单元包括移动平台和第一光束反射单元,光学延 迟单元还内置有控件软件,通过控件软件控制移动平台移动。第一光束反射 单元由至少一个反射镜组成。移动平台分别与第一光束反射单元和第一偏振 调控单元连接。
利用本发明,只要通过调节光学延迟单元,改变两个脉冲的相对位置, 调节半波片与检偏器之间的夹角来改变两束脉冲的光强大小,就能调控任意 矢量涡旋脉冲的偏振态分布。此发明可以解决以往通过大量的波片来调控矢 量庞加莱矢量光束的繁杂操作,只需调节光学延迟线和半波片与检偏器之间 的夹角就能完成偏振态的调控。
在一个实施例中,第一偏振调控单元33包括:
第一线偏器331,用于将第一激光束进行线性偏振调控;
第一半波片332,用于将线性偏振调控后的第一激光束进行旋转,生成 水平方向线偏振的第一飞秒激光束。
具体实施时,将第一激光束输入第一线偏器进行线性偏振调控,用于将 线性偏振调控后的第一激光束输入第一半波片进行旋转,生成水平方向线偏 振的第一飞秒激光束。
在一个实施例中,正交偏振合束单元50包括:
脉冲合束单元51,用于将第一飞秒激光束和第二飞秒激光束进行合束。
具体实施时,脉冲合束单元将两束正交线偏振光束进行合束,形成正交 线偏振脉冲对。
在一个实施例中,垂直方向偏振调控单元40包括:
第二光束反射单元41,用于反射第二路激光束;
第二偏振调控子单元42,用于将反射后的第二路激光束进行线性偏振调 控,产生垂直方向线偏振的第二飞秒激光束。
具体实施时,第二光束反射单元由至少一个反射镜组成。第二光束反射 单元用于增加光程。第二偏振调控子单元可对增加光程后的第二路激光束进 行线性偏振调控,产生垂直方向线偏振的第二飞秒激光束。
在一个实施例中,第二偏振调控子单元42包括:
第二线偏器421,用于将第二激光束进行线性偏振调控;
第二半波片422,用于将线性偏振调控后的第二激光束进行旋转,生成 垂直方向线偏振的第二飞秒激光束。
具体实施时,第二线偏器分别与第二光束单元和第二半波片连接,第二 线偏器将第二激光束进行线性偏振调控;将线性偏振调控后的第二激光束输 入第二半波片进行旋转,生成垂直方向线偏振的第二飞秒激光束。
进一步地,图3是两正交线偏振脉冲相对距离分别为0λ、0.125λ、 0.25λ、0.375λ、0.5λ、0.625λ、0.75λ和0.875λ,相距一个波长范围 内时,所对应的矢量偏振脉冲光强分布和偏振态分布,以及通过线偏检偏后 得到的光强分布。图4为两个正交线偏振脉冲合脉冲经过q波片的偏振态为 线偏振光时(α=0),当两正交线偏振脉冲的空间光程差为0λ时Ex与Ey分 量的光强比值为1:0、1:1、1:4、1:8,得到的方位角β分别为0°、 45°、60°、80°,当两正交线偏振脉冲空间光程差为0.5λ时Ex与Ey分 量的光强比值为0:1、1:8、1:4、1:1,得到的方位角β分别为90°、 110°、120°、135°时所对应的矢量偏振脉冲为绕庞加莱球上赤道一周的8个结果。并通过调节Ex与Ey分量的光强比,两个脉冲的空间光程差就可以 产生庞加莱球上任意一点的矢量偏振态。
可以明显的看出,两个入射脉冲间不同的相对距离下以及其各自光强大 小的差异,其合脉冲经过q波片后的光强分布和偏振分布都不同。
已经在本文中在本说明书和附图中描述的内容包括能够说明本方案的示 例。当然,不能够出于描述本公开的各种特征的目的来描述元件和/或方法的 每个可以想象的组合,但是可以认识到,所公开的特征的许多另外的组合和 置换是可能的。因此,显而易见的是,在不脱离本公开的范围或精神的情况 下能够对本公开做出各种修改。此外,或在替代方案中,本公开的其他实施 例从对本说明书和附图的考虑以及如本文中所呈现的本公开的实践中可能是 显而易见的。意图是,本说明书和附图中所提出的示例在所有方面被认为是 说明性的而非限制性的。尽管在本文中采用了特定术语,但是它们在通用和 描述性意义上被使用并且不用于限制的目的。

Claims (10)

1.一种飞秒庞加莱球矢量光束的偏振态调控系统,其特征在于,所述系统包括:
激发光源单元,用于产生飞秒激光束;
脉冲分束单元,用于将飞秒激光束进行分束,生成两路飞秒激光束,分别记为第一路激光束和第二路激光束,第一路激光束进入水平方向偏振以及光强大小调控单元,第二路激光束进入垂直方向偏振以及光强大小调控单元;
水平方向偏振以及光强大小调控单元,用于根据第一路激光束进行时间延迟以及半波片和水平方向检偏器后,产生光强大小可调节的水平方向线偏振的飞秒激光束,记为第一飞秒激光束;
垂直方向偏振以及光强大小调控单元,用于根据第二路激光束产生光强大小可调节的垂直方向线偏振的飞秒激光束,记为第二飞秒激光束;
正交偏振合束单元,用于将第一飞秒激光束和第二飞秒激光束这两束正交偏振的飞秒激光束进行合束;
液晶q波片,用于将两束正交偏振的飞秒激光束的合束激光,转化为飞秒庞加莱矢量光束。
2.根据权利要求1所述的系统,其特征在于,所述水平方向偏振以及光强大小调控单元包括:
光学延迟单元,用于将第一路激光束进行时间延迟;
第一偏振调控单元,用于将第一激光束进行线性偏振以及光强大小的调控,产生水平方向线偏振的第一飞秒激光束。
3.根据权利要求2所述的系统,其特征在于,所述光学延迟单元包括:
第一光束反射单元,用于对第一路激光束进行反射;
移动平台,用于对反射后的第一路激光束的光程进行调节,生成与第二路激光束具有时间延迟的第一激光束。
4.根据权利要求3所述的系统,其特征在于,所述第一偏振调控单元包括:
第一水平方向线偏器,用于将第一激光束进行水平方向线性偏振调控;
第一半波片,用于旋转线偏振光进入水平方向线偏器,生成水平方向线偏振以及光强大小可调节的第一飞秒激光束。
5.根据权利要求1所述的系统,其特征在于,所述正交偏振合束单元包括:
脉冲合束单元,用于将第一飞秒激光束和第二飞秒激光束进行合束。
6.根据权利要求1所述的系统,其特征在于,所述垂直方向偏振以及光强大小调控单元包括:
第二光束反射单元,用于反射第二路激光束;
第二偏振调控子单元,用于将反射后的第二路激光束进行线性偏振以及光强大小的调控,产生垂直方向线偏振的第二飞秒激光束。
7.根据权利要求6所述的系统,其特征在于,所述第二偏振调控子单元包括:
第二垂直方向线偏器,用于将第二激光束进行垂直方向线性偏振调控;
第二半波片,用于旋转线偏振光进入垂直方向线偏器,生成垂直方向线偏振以及光强大小可调节的第二飞秒激光束。
8.根据权利要求1-7任一项所述的系统,其特征在于,所述激发光源单元为飞秒激光器。
9.根据权利要求1-7任一项所述的系统,其特征在于,所述第一光束反射单元包括至少一个反射镜,所述第二光束反射单元包括至少一个反射镜。
10.根据权利要求5所述的系统,其特征在于,所述两束正交偏振的飞秒激光束的状态为正交线偏振。
CN202111026754.0A 2021-09-02 2021-09-02 一种飞秒庞加莱球矢量光束的偏振态调控系统 Pending CN114063307A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111026754.0A CN114063307A (zh) 2021-09-02 2021-09-02 一种飞秒庞加莱球矢量光束的偏振态调控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111026754.0A CN114063307A (zh) 2021-09-02 2021-09-02 一种飞秒庞加莱球矢量光束的偏振态调控系统

Publications (1)

Publication Number Publication Date
CN114063307A true CN114063307A (zh) 2022-02-18

Family

ID=80233604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111026754.0A Pending CN114063307A (zh) 2021-09-02 2021-09-02 一种飞秒庞加莱球矢量光束的偏振态调控系统

Country Status (1)

Country Link
CN (1) CN114063307A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148601A (zh) * 2023-10-27 2023-12-01 清华大学 生成不同方位角的线偏振光的装置及激光加工方法
CN117253644A (zh) * 2023-11-20 2023-12-19 之江实验室 用于研究光诱导耦合相互作用的双光束真空光镊系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148601A (zh) * 2023-10-27 2023-12-01 清华大学 生成不同方位角的线偏振光的装置及激光加工方法
CN117148601B (zh) * 2023-10-27 2024-01-02 清华大学 生成不同方位角的线偏振光的装置及激光加工方法
CN117253644A (zh) * 2023-11-20 2023-12-19 之江实验室 用于研究光诱导耦合相互作用的双光束真空光镊系统
CN117253644B (zh) * 2023-11-20 2024-02-20 之江实验室 用于研究光诱导耦合相互作用的双光束真空光镊系统

Similar Documents

Publication Publication Date Title
Dong et al. Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam
Colas et al. Polarization shaping of Poincaré beams by polariton oscillations
CN114063307A (zh) 一种飞秒庞加莱球矢量光束的偏振态调控系统
CN109283673B (zh) 一种实现光学焦场自旋方向三维可控的装置和方法
CN112711130B (zh) 基于电光调制技术的相位调制荧光差分显微成像方法和装置
Vicario et al. Narrow-band and tunable intense terahertz pulses for mode-selective coherent phonon excitation
Cai et al. Partially coherent vector beams: from theory to experiment
Zhou et al. Fractional Fourier transform of Lorentz-Gauss vortex beams
Bongiovanni et al. Free-space realization of tunable pin-like optical vortex beams
CN113534475B (zh) 产生贝塞尔时空波包及贝塞尔时空涡旋波包的方法
Chen et al. Plasma-based terahertz wave photonics in gas and liquid phases
Li et al. Wavefront-controllable all-silicon terahertz meta-polarizer
Zhu et al. Flexible rotation of transverse optical field for 2D self-accelerating beams with a designated trajectory
CN216670418U (zh) 一种飞秒庞加莱球矢量光束的偏振态调控系统
Mou et al. Generation of terahertz vector beam bearing tailored topological charge
Fan et al. Simultaneous and independent control of phase and polarization in terahertz band for functional integration of multiple devices
KR100906460B1 (ko) 펄스에너지 조절이 가능한 다중 펄스 광학장치
Zhou Far Field Structural Properties of a Gaussian Vortex Beam.
Hu et al. The tight focusing properties of spatial hybrid polarization vector beam
CN211528873U (zh) 一种共线圆偏振长波双色场产生太赫兹波的装置
Gao et al. Sidelobe suppression for coherent beam combining with laser beams placed along a Fermat spiral
Jana et al. Flying doughnut terahertz pulses generated from semiconductor currents
CN111641097B (zh) 基于铌酸锂晶体的波导型电光调制太赫兹波发生器
CN110673352A (zh) 用于超分辨率成像的太赫兹结构光调制装置
Li Advanced laser beam shaping using spatial light modulators for material surface processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination