CN108796571A - 一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法 - Google Patents

一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法 Download PDF

Info

Publication number
CN108796571A
CN108796571A CN201810638069.5A CN201810638069A CN108796571A CN 108796571 A CN108796571 A CN 108796571A CN 201810638069 A CN201810638069 A CN 201810638069A CN 108796571 A CN108796571 A CN 108796571A
Authority
CN
China
Prior art keywords
quantum dot
nitrogen
graphene quantum
doped graphene
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810638069.5A
Other languages
English (en)
Other versions
CN108796571B (zh
Inventor
陈爱英
蒋宝坤
王现英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weng Senqi
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810638069.5A priority Critical patent/CN108796571B/zh
Publication of CN108796571A publication Critical patent/CN108796571A/zh
Application granted granted Critical
Publication of CN108796571B publication Critical patent/CN108796571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,先以石墨烯量子溶液为电解质溶液,采用三电极系统,以镁合金为工作电极,饱和氯化钾/甘汞电极为参比电极,铂电极为辅助电极,在镁合金表面电化学沉积氮掺杂石墨烯量子点,然后将沉积的氮掺杂石墨烯量子点涂层放置在硅烷化溶液中,硅烷化处理的温度为40~55℃,硅烷化静置时间为1~2h,将经过硅烷化处理的镁合金干燥,即在镁合金的表面设置氮掺杂石墨烯量子点涂层。本发明通过在镁合金表面均匀电沉积氮掺杂石墨烯量子点,随后采用硅烷化处理提高镁合金和氮掺杂石墨烯量子点的结合力,在镁合金表面获得致密度高、结合紧密的氮掺杂石墨烯量子点涂层。

Description

一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法
技术领域
本发明属于化工领域,涉及一种金属表面处理技术,具体来说是一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法。
背景技术
镁具有密度低(其密度为1.74g/cm3,仅为铝的2/3和铁的1/4)的特点,并且镁合金比强度比刚度高,具有优良的电磁屏蔽性能和导热导电性能,被称为21世纪的绿色工程材料,在通讯电子汽车制造武器装备和航空航天等领域具有广阔应用前景。但是由于镁合金腐蚀性能差的特点,使得现在对镁合金表面防腐的研究体现的尤为重要。一般镁合金表面耐腐蚀涂层,会有磷酸盐涂层、微弧氧化涂层、超疏水涂层、石墨烯涂层等。在CorrosionScience期刊2016年一篇文献Composite magnesium phosphate coatings for improvedcorrosion resistance of magnesium AZ31alloy,通过化学沉积的方法,在镁合金表面形成磷酸盐涂层,很好的提高了镁合金的耐腐蚀性能。中国科学院长春应用化学研究所在2016年申请的一个专利:镁合金表面功能化石墨烯涂层及其制备方法(CN201610675476.4),这篇专利就是通过镁合金表面功能化石墨烯涂层,很好地提高镁合金的耐腐蚀性能。
石墨烯量子点作为一种新型的零维石墨烯基材料,其尺寸在100纳米以下,由于其独特的物理化学性质,包括大表面积、低细胞毒性、优良的生物相容性、强量子限制和边缘效应,目前受到越来越多的关注。石墨烯量子点拥有一个石墨烯结构,这使得它们具有石墨烯的一些不寻常的性质。由于存在羟基、环氧和羰基,石墨烯量子点表现出与氧化石墨烯类似的性质;在这方面,石墨烯量子点是亲水的,有很强的溶解倾向,而p-p共轭键的存在为石墨烯量子点提供了粘结能力。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,所述的这种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法要解决现有技术中的镁合金表面的防腐蚀效果不佳的技术问题。
本发明提供了一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,先以石墨烯量子溶液为电解质溶液,采用三电极系统,以镁合金为工作电极,饱和氯化钾/甘汞电极为参比电极,铂电极为辅助电极,在镁合金表面电化学沉积氮掺杂石墨烯量子点,然后将沉积的氮掺杂石墨烯量子点涂层放置在硅烷化溶液中,硅烷化处理的温度为40~55℃,硅烷化静置时间为1~2h,将经过硅烷化处理的镁合金干燥,即在镁合金的表面设置氮掺杂石墨烯量子点涂层。
进一步的,所述电化学沉积电流为0.20~0.26A,电化学沉积时间为480~600s。
进一步的,所述硅烷化处理的溶液为甲基三甲氧基硅烷、无水乙醇与稀释剂,所述的甲基三甲氧基硅烷、无水乙醇与稀释剂的摩尔比为1:3:5至1:3:6。
进一步的,所述的稀释剂为水。
进一步的,所述的石墨烯量子溶液的浓度为8~15mg/mL。
本发明通过在镁合金表面均匀电沉积氮掺杂石墨烯量子点,随后采用硅烷化处理提高镁合金和氮掺杂石墨烯量子点的结合力,在镁合金表面获得致密度高、结合紧密的氮掺杂石墨烯量子点涂层。
本发明和已有技术相比,其技术进步是显著的。本发明把石墨烯量子点成功应用到耐腐蚀涂层当中,并很好地提高了耐腐蚀性能。本发明的操作步骤及设备要求简单,易于实现,具有氮掺杂石墨烯量子点涂层的自腐蚀电位比无涂层的镁合金的自腐蚀电位更高、自腐蚀电流更小,提高了镁合金的耐蚀性。
附图说明
图1为实施例1中氮掺杂石墨烯量子点涂层断口处扫描电子显微镜图。
图2为实施例1中氮掺杂石墨烯量子点涂层的极化曲线图。
图3位实施例2中氮掺杂石墨烯量子点涂层断口处扫描电子显微镜图。
图4为实施例2中氮掺杂石墨烯量子点涂层的极化曲线图。
具体实施方式
本发明所述的氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法不只局限于该具体实例,所有试验用AZ31镁合金试样。
实施例1
1)预处理,步骤如下:
将AZ31镁合金用砂纸进行打磨,抛光,超声清洗,随后用蒸馏水冲洗,无水乙醇超声清洗10min。
2)电沉积氮掺杂石墨烯量子点涂层:
利用CHI860D型电化学工作站,组装三电极体系,经步骤1)预处理后的AZ31镁合金为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极。取10mg/mL的氮掺杂石墨烯量子点溶液100ml,进行超声分散30分钟后作为电解质溶液。选择恒电流法,电流为0.26A,电沉积时间为10分钟。经电化学沉积后取出AZ31镁合金放置空间中干燥10分钟,得到AZ31镁合金表面氮掺杂石墨烯量子点涂层。
3)硅烷化处理:硅烷化处理的溶液为甲基三甲氧基硅烷、无水乙醇与稀释剂的摩尔比为1:3:5,将步骤2)得到的氮掺杂石墨烯量子点涂层的AZ31镁合金放置在硅烷化溶液中,硅烷化处理的温度为55℃,硅烷化静置时间为2h,将硅烷化处理的AZ31镁合金放置在60℃下干燥5h,即获得氮掺杂石墨烯量子点涂层。
与现有技术相比,本发明提供的一种氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,解决了氮掺杂石墨烯量子点均匀电沉积在镁合金表面,并且通过硅烷化处理,提高氮掺杂石墨烯量子点涂层与镁合金的结合力。
对本实施例制得的氮掺杂石墨烯量子点涂层进行电化学耐蚀性能测试,采用三电极体系,具体氮掺杂石墨烯量子点涂层的AZ31镁合金为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,腐蚀介质为浓度为0.1mol/L氯化钠溶液。图1给出了氮掺杂石墨烯量子点截面扫描电子显微镜图,可以看出,涂层厚度约为23.90μm。图2给出了没有涂层的AZ31镁合金和表面具有氮掺杂石墨烯量子点涂层的AZ31镁合金的极化曲线。可以看出本实施例所获得的氮掺杂石墨烯量子点涂层的自腐蚀电位提高约0.1V,腐蚀电流密度下降了约2个数量级。
实施例2
1)预处理,步骤如下:
本实施例2所采用的试样材料为AZ31镁合金用2000#砂纸进行打磨,抛光,超声清洗,随后用蒸馏水冲洗,无水乙醇超声清洗15min。
2)电沉积氮掺杂石墨烯量子点涂层:
利用CHI860D型电化学工作站,组装三电极体系,经步骤1)预处理后的AZ31镁合金为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,取10mg/mL的氮掺杂石墨烯量子点溶液100ml,进行超声分散30分钟后作为电解质溶液。选择恒电流法,电流为0.20A,电沉积时间为8分钟。经电化学沉积后取出AZ31镁合金放置空间中干燥15分钟,得到AZ31镁合金表面氮掺杂石墨烯量子点涂层。
3)硅烷化处理:硅烷化处理的溶液为甲基三甲氧基硅烷、无水乙醇与稀释剂的摩尔比为1:3:6,将步骤2)得到的氮掺杂石墨烯量子点涂层的AZ31镁合金放置在硅烷化溶液中,硅烷化处理的温度为40℃,硅烷化静置时间为1h,将硅烷化处理的AZ31镁合金放置在80℃下干燥8h,即获得氮掺杂石墨烯量子点涂层。
与现有技术相比,本发明提供的一种氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,解决了氮掺杂石墨烯量子点均匀电沉积在镁合金表面,并且通过硅烷化处理,提高氮掺杂石墨烯量子点涂层与镁合金的结合力。
对本实施例制得的氮掺杂石墨烯量子点涂层进行电化学耐蚀性能测试,采用三电极体系,带有涂层的AZ31镁合金为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,腐蚀介质为浓度为0.1mol/L氯化钠溶液。图3给出了氮掺杂石墨烯量子点涂层截面扫描电子显微镜图,涂层厚度约为9.5μm。图4给出了没有涂层的AZ31镁合金和表面具有氮掺杂石墨烯量子点涂层的AZ31镁合金的极化曲线。可以看出本实施例所获得的氮掺杂石墨烯量子点涂层的自腐蚀电位提高约0.1V,腐蚀电流密度下降了约5个数量级,明显的提高了镁合金的耐蚀性能。
实施例结果表明,氮掺杂石墨烯量子点在耐蚀涂层方面具有很好的应用前景。

Claims (5)

1.一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,其特征在于:先以石墨烯量子溶液为电解质溶液,采用三电极系统,以镁合金为工作电极,饱和氯化钾/甘汞电极为参比电极,铂电极为辅助电极,在镁合金表面电化学沉积氮掺杂石墨烯量子点,然后将沉积的氮掺杂石墨烯量子点涂层放置在硅烷化溶液中,硅烷化处理的温度为40~55℃,硅烷化静置时间为1~2h,将经过硅烷化处理的镁合金干燥,即在镁合金的表面设置氮掺杂石墨烯量子点涂层。
2.据权利要求1所述的一种氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,其特征在于:所述电化学沉积电流为0.20~0.26 A,电化学沉积时间为480~600s。
3.根据权利要求1所述的一种氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,其特征在于:所述硅烷化处理的溶液为甲基三甲氧基硅烷、无水乙醇与稀释剂,所述的甲基三甲氧基硅烷、无水乙醇与稀释剂的摩尔比为1:3:5至1:3:6。
4.根据权利要求3所述的一种氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,其特征在于:所述的稀释剂为水。
5.根据权利要求1所述的一种氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法,其特征在于:所述的石墨烯量子溶液的浓度为8~15mg/mL。
CN201810638069.5A 2018-06-20 2018-06-20 一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法 Active CN108796571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810638069.5A CN108796571B (zh) 2018-06-20 2018-06-20 一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810638069.5A CN108796571B (zh) 2018-06-20 2018-06-20 一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法

Publications (2)

Publication Number Publication Date
CN108796571A true CN108796571A (zh) 2018-11-13
CN108796571B CN108796571B (zh) 2019-08-30

Family

ID=64083882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810638069.5A Active CN108796571B (zh) 2018-06-20 2018-06-20 一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法

Country Status (1)

Country Link
CN (1) CN108796571B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294865A (zh) * 2019-04-16 2019-10-01 山西大医院(山西医学科学院) 一种具有疏水性的生物医用抗菌剂
CN113818015A (zh) * 2021-09-22 2021-12-21 浙江大学 安全环保硅烷处理液及其应用
CN114134552A (zh) * 2021-12-07 2022-03-04 徐州工程学院 一种在镁合金表面构筑荧光梯度涂层的方法
CN115401963A (zh) * 2022-08-23 2022-11-29 江苏理工学院 一种非金属量子点增强镁锂合金基复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966646A (zh) * 2014-04-16 2014-08-06 湖北大学 一种还原氧化石墨烯/硅烷复合膜的电沉积制备方法及其用途
CN104231703A (zh) * 2014-08-06 2014-12-24 中国海洋大学 一种石墨烯复合防腐涂层的制备方法
CN105350049A (zh) * 2015-11-23 2016-02-24 桂林理工大学 一种镁合金表面氧化石墨烯复合涂层的制备方法
CN106048593A (zh) * 2016-08-16 2016-10-26 中国科学院长春应用化学研究所 镁合金表面功能化石墨烯涂层及其制备方法
CN106883646A (zh) * 2017-03-12 2017-06-23 中国科学院福建物质结构研究所 石墨烯基涂层和其应用
CN107217249A (zh) * 2017-05-27 2017-09-29 湖南金裕环保科技有限公司 石墨烯硅烷覆膜剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966646A (zh) * 2014-04-16 2014-08-06 湖北大学 一种还原氧化石墨烯/硅烷复合膜的电沉积制备方法及其用途
CN104231703A (zh) * 2014-08-06 2014-12-24 中国海洋大学 一种石墨烯复合防腐涂层的制备方法
CN105350049A (zh) * 2015-11-23 2016-02-24 桂林理工大学 一种镁合金表面氧化石墨烯复合涂层的制备方法
CN106048593A (zh) * 2016-08-16 2016-10-26 中国科学院长春应用化学研究所 镁合金表面功能化石墨烯涂层及其制备方法
CN106883646A (zh) * 2017-03-12 2017-06-23 中国科学院福建物质结构研究所 石墨烯基涂层和其应用
CN107217249A (zh) * 2017-05-27 2017-09-29 湖南金裕环保科技有限公司 石墨烯硅烷覆膜剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JITHU JAYARAJ 等: ""Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy"", 《CORROSION SCIENCE》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294865A (zh) * 2019-04-16 2019-10-01 山西大医院(山西医学科学院) 一种具有疏水性的生物医用抗菌剂
CN113818015A (zh) * 2021-09-22 2021-12-21 浙江大学 安全环保硅烷处理液及其应用
CN114134552A (zh) * 2021-12-07 2022-03-04 徐州工程学院 一种在镁合金表面构筑荧光梯度涂层的方法
CN114134552B (zh) * 2021-12-07 2023-06-13 徐州工程学院 一种在镁合金表面构筑荧光梯度涂层的方法
CN115401963A (zh) * 2022-08-23 2022-11-29 江苏理工学院 一种非金属量子点增强镁锂合金基复合材料的制备方法
CN115401963B (zh) * 2022-08-23 2023-07-07 江苏理工学院 一种非金属量子点增强镁锂合金基复合材料的制备方法

Also Published As

Publication number Publication date
CN108796571B (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN108796571B (zh) 一种采用氮掺杂石墨烯量子点涂层提高镁合金耐蚀性的方法
Zhu et al. Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings
Arjmand et al. Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes
Li et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film
Diao et al. Chemically assembled single‐wall carbon nanotubes and their electrochemistry
Lv et al. Graphene-DNA hybrids: self-assembly and electrochemical detection performance
Wei et al. Biomimetic graphene–FePt nanohybrids with high solubility, ferromagnetism, fluorescence, and enhanced electrocatalytic activity
Chang et al. The effect of varying carboxylic-group content in reduced graphene oxides on the anticorrosive properties of PMMA/reduced graphene oxide composites.
Mohammadi et al. Al2O3/Si3N4 nanocomposite coating on aluminum alloy by the anodizing route: Fabrication, characterization, mechanical properties and electrochemical behavior
Xiao et al. Ultrasonic-electrodeposition of gold–platinum alloy nanoparticles on multi-walled carbon nanotubes–ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite
CN105177679B (zh) 一种在碳钢基体上电泳沉积石墨烯涂层的方法
Brandao et al. Characterization and electrochemical studies of MWCNTs decorated with Ag nanoparticles through pulse reversed current electrodeposition using a deep eutectic solvent for energy storage applications
Li et al. Pulse electrodeposition and corrosion behavior of Ni–W/MWCNT nanocomposite coatings
CN107354497B (zh) 一种石墨烯表面处理提高铜镁合金耐蚀性的方法
Yang et al. Tuning the oxygen reduction reaction activity of graphene through fluorination modification to inhibit its corrosion-promotion activity
Alderete et al. Near Superhydrophobic Carbon Nanotube Coatings Obtained via Electrophoretic Deposition on Low‐Alloy Steels
Mohammadpour et al. The effect of graphene oxide nanosheets (GONSs) and graphene oxide quantum dots (GOQDs) on corrosion resistance enhancement of Ni–Fe nanocomposite coatings
Sun et al. Construction of superhydrophobic GO/Ca coating on AZ31 magnesium alloy for enhanced anti-corrosion performance
Mohammadpour et al. Structural effect of different carbon nanomaterials on the corrosion protection of Ni–W alloy coatings in saline media
Han et al. Highly dispersed polyaniline/graphene oxide composites for corrosion protection of polyvinyl chloride/epoxy powder coatings on steel
Li et al. Preparation of the multi-walled carbon nanotubes/nickel composite coating with superior wear and corrosion resistance
Gidikova et al. Composite coatings of chromium and nanodiamond particles on steel
Hamdy A clean low cost anti-corrosion molybdate based nano-particles coating for aluminum alloys
Wang et al. An electrochemical sensor based on reduced graphene oxide and copper sulfide hollow nanospheres
Xie et al. Preparation of Ni–Co alloy electrodes by pulsed electrodeposition and its application in detection of oxytetracycline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240117

Address after: No. 143 Houtou, Xiban Village, Guanxun Town, Zhangpu County, Zhangzhou City, Fujian Province, 363200

Patentee after: Weng Senqi

Address before: 200093 No. 516, military road, Shanghai, Yangpu District

Patentee before: University of Shanghai for Science and Technology