CN108793196A - 银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用 - Google Patents

银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN108793196A
CN108793196A CN201810170285.1A CN201810170285A CN108793196A CN 108793196 A CN108793196 A CN 108793196A CN 201810170285 A CN201810170285 A CN 201810170285A CN 108793196 A CN108793196 A CN 108793196A
Authority
CN
China
Prior art keywords
salt
cuprous
codope
laminated film
silver salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810170285.1A
Other languages
English (en)
Other versions
CN108793196B (zh
Inventor
徐伟
甘营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201810170285.1A priority Critical patent/CN108793196B/zh
Publication of CN108793196A publication Critical patent/CN108793196A/zh
Application granted granted Critical
Publication of CN108793196B publication Critical patent/CN108793196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/20Thiocyanic acid; Salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于纳米结构功能薄膜技术领域,具体为银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用。本发明提出银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的制备方法,以硫氰酸亚铜薄膜为前体,依次用硝酸银水溶液和三氯化铈水溶液浸泡处理获得。这种掺杂薄膜有多种用途,其中一个应用是作为表面增强拉曼谱的基底,能检测极微量有机分子,检测极限浓度达到10‑10摩尔/升。

Description

银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和 应用
技术领域
本发明属于纳米功能薄膜技术领域,具体涉及银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用。
背景技术
硫氰酸亚铜(CuSCN)是一种重要的络合物半导体。发明人前期曾发现氰酸亚铜(CuSCN)薄膜可用做电存储薄膜,还可以与氢氧化钠溶液反应形成氧化亚铜纳米线薄膜。硫氰酸亚铜能够转化成氧化亚铜这一事例表明,硫氰酸亚铜还有更广阔的空间来实现多种类型的功能化改造。[(1) Y-W. Dong, X. Ji, W. Xu, J-Q. Tang, P. Guo. ResistiveSwitching and Memory Effect Based on CuSCN Complex Layer Created ThroughInterface Reactions. Electrochem. Solid-State Lett. 2009, 12(3): H54;(2)X.Ji, Y-W. Dong, Z-Q. Huo, and W. Xu, Resistive Switching Memory Based on CuSCNFilms Fabricated by Solution-Dipping Method. Electrochem. Solid-State Lett.2009, 12(9): H344;(3)X.X Xiao, P. Xia, X. Ji, W. Xu. In situ synthesis andcharacterization of Cu2O nanowire networks from CuSCN films. Materials Letters2014, 128: 271-274]。
掺杂是材料改性的一种有效的手段,作为一种络合物半导体,化学掺杂比较简单,成本低,也更容易打开一个新的空间。基于这样一种简单的考虑,我们最近尝试用硝酸银溶液来处理硫氰酸亚铜薄膜,并成功实现银掺杂。
本发明提出用多种化合物来共掺杂络合物薄膜,并证明有极优异的效果和性能,这种策略能够为功能材料的修饰和改性开辟一个新的方向。
发明内容
本发明的目的在于提出一种银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用。
本发明提出的这种银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜,通过简单的化学掺杂来实现。
本发明提出的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的制备方法,以硫氰酸亚铜薄膜为前体,通过与银盐水溶液和铈盐水溶液反应,制备银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜;具体流程为,将沉积在固态基底上的硫氰酸亚铜薄膜浸入银盐水溶液中,反应一段时间,再浸入铈盐水溶液中,继续反应一段时间,从而形成银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜。
本发明中,所述硫氰酸亚铜薄膜由铜膜和可溶性硫氰酸盐(比如:硫氰酸钠或者硫氰酸铵)水溶液反应制备获得。
本发明中,所述银盐水溶液的浓度为0.001~0.05摩尔/升。硫氰酸亚铜薄膜与银盐水溶液的反应时间为5~30分钟。
本发明中,所述铈盐水溶液的浓度为0.001~0.02摩尔/升。硫氰酸亚铜薄膜与铈盐水溶液的反应时间为1~10分钟。
本发明中,所述银盐可采用硝酸银,硝酸银水溶液的浓度为0.001~0.05摩尔/升;硫氰酸亚铜薄膜与硝酸银水溶液的反应时间为5~30分钟。
本发明中,所述铈盐可采用三氯化铈,三氯化铈水溶液的浓度为0.001~0.02摩尔/升;硫氰酸亚铜薄膜与三氯化铈水溶液的反应时间为1~10分钟。
本发明还提出具体的制备步骤,如下:
将硫氰酸亚铜薄膜浸入硝酸银水溶液中,反应一段时间,再浸入铈盐水溶液中继续反应一段时间,自然晾干,即得银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜。
扫描电子显微镜(SEM)分析显示这种复合薄膜的主要形貌特征为纳米结构。
本发明提出的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的应用,即用做表面增强拉曼谱(SERS)的检测基底,能够用于检测极微量的有机分子,有极高的灵敏度,例如对于罗丹明6G分子(R6G)极限检测浓度能达到1×10-10摩尔/升。可用于分子科学研究、污染物检测、食品中微量物质检测以及生物医药和环境卫生等领域。
本发明提出的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜,由于存在多组元的相互作用,在某些功能方面会进一步相互加强,在光电功能材料和吸附材料领域还有广泛的应用价值。
附图说明
图1银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的SEM图像。
图2银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的高分辨SEM图像。
图3 银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜用做SERS基底。罗丹明6G水溶液的浓度为10-9 摩尔/升。图中,上面一条拉曼曲线采用银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜基底;下面一条曲线采用的基底只用银盐掺杂。说明银盐和铈盐共掺杂的增强效果要明显优于银盐单独掺杂的效果。
图4银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜用做SERS基底。罗丹明6G水溶液的浓度为10-10 摩尔/升。
具体实施方式
下面通过实施例进一步描述本发明提出的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用。
实施例1(薄膜制备)
将硫氰酸亚铜薄膜浸入浓度为0.025摩尔/升的硝酸银水溶液中,浸泡15分钟后,取出,再浸入浓度为0.01摩尔/升的三氯化铈水溶液中,浸泡5分钟,然后取出晾干或者热风吹干。即得银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜。
图1和图2是硫氰酸亚铜复合薄膜的SEM图像。
实施例2
配制浓度为10-9摩尔/升的罗丹明6G水溶液,将银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜浸入其中,浸泡2小时,取出晾干。然后用于表面增强拉曼检测。
图3显示银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜具有极高的拉曼增强效果。作为对比,银盐单独掺杂的硫氰酸亚铜复合薄膜基底的增强效果相对较弱。
实施例3
配制浓度为10-10摩尔/升的罗丹明6G水溶液,将银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜浸入其中,浸泡24小时,取出晾干。然后用于表面增强拉曼检测。
图4显示银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜基底仍然能检测出罗丹明6G的特征峰。作为对比,银盐单独掺杂的硫氰酸亚铜复合薄膜基底检测不出罗丹明6G。
结论:
银盐单独掺杂的硫氰酸亚铜复合薄膜基底的最低检测极限浓度为10-9摩尔/升;
银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜基底的最低检测极限浓度为10-10摩尔/升。
本发明证明,银盐和铈盐共掺杂可提高一个数量级的灵敏度。

Claims (5)

1.一种银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的制备方法,其特征在于,以硫氰酸亚铜薄膜为前体,通过与硝酸银水溶液和铈盐水溶液反应,制备银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜;具体流程为:将沉积在固态基底上的硫氰酸亚铜薄膜浸入硝酸银水溶液中,反应一段时间,再浸入铈盐水溶液中,继续反应一段时间,从而形成银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜;其中:
所述银盐水溶液的浓度为0.001~0.05摩尔/升;硫氰酸亚铜薄膜与银盐水溶液的反应时间为5~30分钟;
所述铈盐水溶液的浓度为0.001~0.02摩尔/升;硫氰酸亚铜薄膜与铈盐水溶液的反应时间为1~10分钟。
2.根据权利要求1所述的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的制备方法,其特征在于,所述银盐采用硝酸银。
3.根据权利要求1所述的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜的制备方法,其特征在于,所述铈盐采用三氯化铈。
4.由权利要求1-3之一所述的制备方法得到的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜。
5.一种权利要求4所述的银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜作为表面增强拉曼谱的检测基底的应用,用于检测极微量的有机分子。
CN201810170285.1A 2018-03-01 2018-03-01 银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用 Active CN108793196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810170285.1A CN108793196B (zh) 2018-03-01 2018-03-01 银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810170285.1A CN108793196B (zh) 2018-03-01 2018-03-01 银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108793196A true CN108793196A (zh) 2018-11-13
CN108793196B CN108793196B (zh) 2021-08-20

Family

ID=64095112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810170285.1A Active CN108793196B (zh) 2018-03-01 2018-03-01 银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108793196B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302383A (zh) * 2020-02-08 2020-06-19 复旦大学 掺杂型氧化亚铜纳米材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208220A (ja) * 1996-02-02 1997-08-12 Sumikin Chem Co Ltd チオシアン酸アンモニウム貯蔵中の固結防止方法
CN101109101A (zh) * 2007-07-27 2008-01-23 中国科学院上海硅酸盐研究所 一种液相条件下制备硫氰酸亚铜薄膜的方法
CN103157807A (zh) * 2011-12-19 2013-06-19 财团法人工业技术研究院 纳米银线之制备方法
CN103754925A (zh) * 2014-01-13 2014-04-30 复旦大学 一种氧化亚铜纳米线多孔薄膜及其制备方法和应用
CN103785421A (zh) * 2014-02-19 2014-05-14 东华大学 一种光催化剂硫氰酸银及其制备方法
WO2016049430A1 (en) * 2014-09-26 2016-03-31 The Regents Of The University Of California Methods to produce ultra-thin metal nanowires for transparent conductors
WO2017006839A1 (ja) * 2015-07-03 2017-01-12 国立大学法人京都大学 ペロブスカイト型太陽電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208220A (ja) * 1996-02-02 1997-08-12 Sumikin Chem Co Ltd チオシアン酸アンモニウム貯蔵中の固結防止方法
CN101109101A (zh) * 2007-07-27 2008-01-23 中国科学院上海硅酸盐研究所 一种液相条件下制备硫氰酸亚铜薄膜的方法
CN103157807A (zh) * 2011-12-19 2013-06-19 财团法人工业技术研究院 纳米银线之制备方法
CN103754925A (zh) * 2014-01-13 2014-04-30 复旦大学 一种氧化亚铜纳米线多孔薄膜及其制备方法和应用
CN103785421A (zh) * 2014-02-19 2014-05-14 东华大学 一种光催化剂硫氰酸银及其制备方法
WO2016049430A1 (en) * 2014-09-26 2016-03-31 The Regents Of The University Of California Methods to produce ultra-thin metal nanowires for transparent conductors
WO2017006839A1 (ja) * 2015-07-03 2017-01-12 国立大学法人京都大学 ペロブスカイト型太陽電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302383A (zh) * 2020-02-08 2020-06-19 复旦大学 掺杂型氧化亚铜纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108793196B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
Zhao et al. High‐performance flexible sensing devices based on polyaniline/MXene nanocomposites
Lian et al. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode
Perumal et al. ‘Spotted nanoflowers’: Gold-seeded zinc oxide nanohybrid for selective bio-capture
Chougule et al. Polypyrrole thin film: room temperature ammonia gas sensor
Hou et al. (110)‐Oriented ZIF‐8 Thin Films on ITO with Controllable Thickness
CN106442464B (zh) 一种硅片/还原石墨烯/金纳米复合材料的制备方法
CN102701188A (zh) 一种溶液制备石墨烯三维多孔材料的方法
Zhang et al. A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm
CN109444230B (zh) 一种Au/CeO2/g-C3N4复合材料、电化学传感器及其制备方法、用途
Rahman et al. A gold electrode modified with silver oxide nanoparticle decorated carbon nanotubes for electrochemical sensing of dissolved ammonia
Bigiani et al. Tailoring vapor-phase fabrication of Mn3O4 nanosystems: from synthesis to gas-sensing applications
Marinho et al. Graphite‐composite electrodes bulk‐modified with (BiO) 2CO3 and Bi2O3 plates‐like nanostructures for trace metal determination by anodic stripping voltammetry
Shan et al. Polycrystalline bismuth oxide films for development of amperometric biosensor for phenolic compounds
Zhang et al. TiO 2–graphene hybrid nanostructures by atomic layer deposition with enhanced electrochemical performance for Pb (ii) and Cd (ii) detection
Wang et al. Metal oxide-assisted PEDOT nanostructures via hydrolysis-assisted vapor-phase polymerization for energy storage
Dumitru et al. Synthesis, characterization of nanosized CoAl 2 O 4 and its electrocatalytic activity for enhanced sensing application
Innocenti et al. Electrochemical layer by layer growth and characterization of copper sulfur thin films on Ag (1 1 1)
CN108793196A (zh) 银盐和铈盐共掺杂的硫氰酸亚铜复合薄膜及其制备方法和应用
Sam et al. Peptide immobilisation on porous silicon surface for metal ions detection
Zhong et al. Synergistic effect of photoelectrochemical aptasensor based on staggered gap ZnO/BiFeO3 heterojunction coupled with cDNA-CdS sensitizer enabling ultrasensitive assay of kanamycin
Burris et al. Tunable enhancement of a graphene/polyaniline/poly (ethylene oxide) composite electrospun nanofiber gas sensor
Shen et al. Ultrafine copper decorated polypyrrole nanotube electrode for nitrite detection
Selvam et al. Embellishing 2-D MoS2 nanosheets on lotus thread devices for enhanced hydrophobicity and antimicrobial activity
Su et al. Fabrication, characterization and sensing properties of Cu (II) ion imprinted sol–gel thin film on QCM
CN114280110B (zh) 一种mof-聚苯乙烯微球复合材料及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant