CN108774288A - 一种利用BminHSO4体系制备纤维素纳米晶体的方法 - Google Patents

一种利用BminHSO4体系制备纤维素纳米晶体的方法 Download PDF

Info

Publication number
CN108774288A
CN108774288A CN201810651395.XA CN201810651395A CN108774288A CN 108774288 A CN108774288 A CN 108774288A CN 201810651395 A CN201810651395 A CN 201810651395A CN 108774288 A CN108774288 A CN 108774288A
Authority
CN
China
Prior art keywords
cellulose nanocrystal
nanocrystal body
cellulose
bminhso
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810651395.XA
Other languages
English (en)
Inventor
杨桂花
刘昭祥
和铭
陈嘉川
薛玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201810651395.XA priority Critical patent/CN108774288A/zh
Publication of CN108774288A publication Critical patent/CN108774288A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose

Abstract

本发明公开了一种利用BminHSO4体系制备纤维素纳米晶体的方法,将微晶纤维素在BminHSO4离子液体中制备成纤维素纳米晶体。微晶纤维素经过BminHSO4离子液体处理后,将其反应体系加入冷去离子水淬灭反应,然后超声与离心处理,得到的纤维素纳米晶体进行冷冻干燥,最终得到纤维素纳米晶体。本发明的制备方法所用的离子液体可回收利用,相对于传统的无机酸水解法,制备体系中不存在残存的酸,避免了酸对环境的污染,且无需大量的水来进行透析,是一种绿色化学的制备方法,产品结晶度高,性能优良。

Description

一种利用BminHSO4体系制备纤维素纳米晶体的方法
技术领域
本发明涉及木质纤维素材料领域,特别涉及一种纤维素纳米晶体的制备方法。
背景技术
地球上的石油、煤炭等传统不可再生资源在日益枯竭,能源的可持续发展已经成为世界关注的重点。而纤维素是地球上最丰富的天然可再生资源之一,具有价廉、可生物降解和均质性等优势,已成为制浆造纸、纺织、高分子材料和医药等传统工业的重要原料。所以,如何高效的开发利用纤维素等可再生资源已成为当今世界可持续发展战略的重要难题。
在开发利用可再生能源纤维素方面,利用其制备的纤维素纳米晶体在聚合物基体中的纳米增强作用得到了世界的关注。纤维素纳米晶体的增强能力在于它们的高表面积和良好的机械性能。除此之外,其他性能如低密度,可生物降解性和可再生资源的可用性。人们对这些纳米纤维素材料的兴趣越来越大。
生产纤维素纳米晶体的制备方法有酸解、酶解和氧化三大类方法,其中最常用的方法是酸解,硫酸、盐酸和氢溴酸通常用于水解纤维素。限制使用纤维素纳米晶体作为纳米增强剂的主要缺点是使用有毒的浓酸,纳米颗粒与酸性溶液的分离耗时且乏味,有一定的危险性,需要耐腐蚀的反应器,且酸水解过程中产生的酸废水对环境产生污染。这些缺点成为发现生产纤维素纳米晶体的更有效技术的强大驱动力。
离子液体作为一种新型溶剂,对复杂结构的高聚物表现出很强的溶解能力,这为包含纤维素、木质纤维素等在内的生物质资源的高效降解、改性、分离和加工提供了一条新的途径。离子液体是指在30-100℃呈液态且由有机阳离子和有机或无机阴离子构成的物质,又称室温离子液体。作为熔点高于100℃的有机盐的离子液体由于其具有吸引人的性质如化学和热稳定性,不可燃性,不可估量的低蒸汽压和可设计的特性以满足特定用途,由于这些独特性能,离子液体被广泛应用于有机物的萃取与分离、有机合成及电化学等领域,被认为是代替易挥发分子溶剂的绿色溶剂,其应用研究在世界范围内受到广泛关注。所以,使用离子液体制备纤维素纳米晶体的方式为纤维素的高效开发利用提供了新的思路。但是目前公开的采用离子液体制备纤维素纳米晶体的结晶度较低,如李艳峰,采用离子液体1-烯丙基-3-甲基咪唑氯再生甘蔗渣纤维素纤维,结晶度为28.29%;专利CN 106283782 B公开用氨基酸离子液体制备纳米纤维素,其制备得到固态的纳米纤维素在85%左右。因此,亟待开发一种新的纤维素纳米晶体制备方法,使纳米纤维素产品结晶度高,性能优良。
发明内容
为了克服现有技术的缺点与不足,本发明提供了一种新的比较绿色的纤维素纳米晶体制备方法,采用BminHSO4离子液体,其中文名称为:1-丁基-3-甲基咪唑硫酸氢盐,将微晶纤维素在BminHSO4体系中处理,再通过超声与离心处理来制备纤维素纳米晶体,获得的产品结晶度高,性能优良。
本发明是通过以下技术方案实现的:
一种在BminHSO4体系中制备纤维素纳米晶体的方法,包括如下步骤:
(1)烘箱干燥:将微晶纤维素烘箱干燥;
(2)水解处理:将纯度为95%的1-丁基-3-甲基咪唑硫酸氢盐在水浴中微热处理,然后加入上述干燥后的微晶纤维素,得到混合溶液,其中微晶纤维素在混合溶液中的质量分数为10-15%;
本发明选用的BminHSO4,优选为高浓度,研究发现其纯度越高对实验影响越小,通过在水浴中加热,可以降低其粘度,有利于微晶纤维素与1-丁基-3-甲基咪唑硫酸氢盐更好的融合。微晶纤维素在混合溶液中的质量分数为10-15%时微晶纤维素的溶解效果相对较好,质量分数过大微晶纤维素会不完全溶解,过小会产生离子液体剩余,利用率低。
(3)终止反应:水解结束后在反应体系中加入冷去离子水终止反应;
此步骤的目的是通过冷的去离子水对反应体系进行淬灭反应,使处理的微晶纤维素重结晶析出。
(4)超声处理:将上述反应体系经超声波处理;
(5)离心;
(6)冷冻干燥,得到最终产品,即纤维素纳米晶体产品。
其优选的技术方案为:
优选地,步骤(1)中,微晶纤维素在50-60℃下烘箱干燥12-36h。此步骤的目的是通过蒸发出微晶纤维素中的水分,排除水分对离子液体与微晶纤维素反应体系的影响,温度过高过长会破坏微晶纤维素的结构产生破坏,温度过低过短会使水分清楚不彻底,对后续实验造成影响。
优选地,步骤(2)中,离子液体微热处理温度为80-90℃;水解温度为80-90℃;水解处理时间为1-1.5h;微晶纤维素在混合溶液中的质量分数为10%。
优选地,步骤(4)中,超声波处理功率为300-500w,超声波处理时间为15-35min。该条件下可以更好的分散离子液体与微晶纤维素反应体系中的微晶纤维素。
优选地,步骤(5)中,离心处理两次:在2000-3000rpm下离心15-20min,取上清液在7500-8000rpm下离心30-40min,保留沉淀。此步骤中,第一次离心目的是将尺寸较大的微晶纤维素沉淀下来,而与上清液中的尺寸较小的分离开来;第二次离心的目的是将尺寸较小的沉淀下来,而得到所制备的纤维素纳米晶体。
优选地,步骤(6)中,冷冻干燥温度为-50℃至-60℃,时间为12-36h。
上述制备方法得到的纤维素纳米晶体也在本发明的保护范围。
所述纤维素纳米晶体结晶度为88-90%。表面Zeta电位为-36至-38mV。
所述纤维素纳米晶体在造纸、建筑、汽车、食品、化妆品、医学、涂料以及航空等领域中的应用。
本发明的有益效果
1、提高对环境友好的一种新的比较绿色的纤维素纳米晶体制备方法,产品结晶度高,性能优良。
2、本发明采用的BminHSO4离子液体是一种绿色溶剂,不但化学稳定性好﹑能回收利用﹑无毒,还具有优良的生物溶解性﹑预处理温度低﹑高效快速的特性,因此符合绿色节能的理念。相对于传统的无机酸水解法,制备体系中不存在残存的酸,避免了酸对环境的污染,且无需大量的水来进行透析,是一种绿色化学的制备方法,产品结晶度高,性能优良。
3、本发明制备纳米纤维素的设备和操作简单,适宜于规模化的大生产。
附图说明
图1是本发明实施例3提供的纤维素纳米晶体原子力显微镜图(标尺:2μm)。
图2是本发明实施例4提供的纤维素纳米晶体原子力显微镜图(标尺:2μm)。
具体实施方式
以下通过实施例对本发明特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解:
实施例1:
纤维素纳米晶体的制备方法是通过以下步骤实现的:
(1)烘箱干燥:将微晶纤维素在50℃下烘箱干燥12h;
(2)水解处理:将纯度为95%的1-丁基-3-甲基咪唑硫酸氢盐在80℃水浴中加热,然后加入干燥后的微晶纤维素,得到混合溶液,其中微晶纤维素在混合溶液中的质量分数为10-15%,水解温度为80℃,水解时间为1h;
(3)终止反应:水解结束后在反应体系中加入冷去离子水终止反应;
(4)超声处理:将步骤(4)的反应体系经超声波处理,超声功率为300w,超声时间为15min;
(5)离心:在2000rpm下离心20min,取上清液在7500rpm下离心40min,保留沉淀;
(6)冷冻干燥:离心后的沉淀在-50℃下冷冻干燥12h,得到最终产品,即纤维素纳米晶体产品。
本实施例制备的纤维素纳米晶体(如图1),得率:38.11%,直径:35~110nm,长度:100~950nm;结晶度为88%。表面Zeta电位为-36mV。
实施例2:
纤维素纳米晶体的制备方法是通过以下步骤实现的:
(1)烘箱干燥:将微晶纤维素在60℃下烘箱干燥36h;
(2)水解处理:将纯度为95%的1-丁基-3-甲基咪唑硫酸氢盐在90℃水浴中加热,然后加入干燥后的微晶纤维素,得到混合溶液,其中微晶纤维素在混合溶液中的质量分数为10-15%,水解温度为90℃,水解时间为1.5h;
(3)终止反应:水解结束后在反应体系中加入冷去离子水终止反应;
(4)超声处理:将步骤(4)的反应体系经超声波处理,超声功率为600w,超声时间为35min;
(5)离心:在3000rpm下离心20min,取上清液在8000rpm下离心40min,保留沉淀;
(6)冷冻干燥:离心后的沉淀在-60℃下冷冻干燥36h,得到最终产品,即纤维素纳米晶体产品。
本实施例制备的纤维素纳米晶体(如图2),得率:39.56%,直径:25~70nm,长度:150~1250nm;结晶度为90%。表面Zeta电位为-38mV。
对比例1:
与实施例2不同的是,对比例1不经过步骤(4)超声处理,其余步骤相同。
本实施例制备的纤维素纳米晶体,得率:35.24%,直径:65~185nm,长度:385~2710nm;结晶度为85%。表面Zeta电位为-35.1mV。
对比例2:
与实施例2不同的是,对比例1步骤(4)超声处理时的功率为100W,其余步骤相同。
本实施例制备的纤维素纳米晶体,得率:36.85%,直径:55~155nm,长度:245~1870nm;结晶度为87.5%。表面Zeta电位为-35.5mV。
对比例3
与实施例2不同的是,将微晶纤维素换成粉碎后的50目玉米秸秆,即去掉步骤(1),步骤(2)为:将纯度为95%的1-丁基-3-甲基咪唑硫酸氢盐在水浴中90℃使其粘度降低,加入粉碎后的50目玉米秸秆,得到混合溶液,其中玉米秸秆在混合溶液中的质量分数为10-15%,水解温度为90℃,水解时间为1.5h;其余步骤相同。
本实施例制备的纤维素纳米晶体,得率:11.34%,直径:280~915nm,长度:576~3945nm;结晶度为75.6%。表面Zeta电位为-16.4mV。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种在BminHSO4体系中制备纤维素纳米晶体的方法,其特征在于:包括如下步骤:
(1)烘箱干燥:将微晶纤维素烘箱干燥;
(2)水解处理:将纯度为95%的1-丁基-3-甲基咪唑硫酸氢盐在水浴中微热处理,加入上述干燥后的微晶纤维素,得到混合溶液,其中微晶纤维素在混合溶液中的质量分数为10-15%;
(3)终止反应:水解结束后在反应体系中加入冷去离子水终止反应;
(4)超声处理:将步骤(3)的反应体系经超声波处理;
(5)离心;
(6)冷冻干燥:离心后保留沉淀进行冷冻干燥,得到最终产品,即纤维素纳米晶体产品。
2.根据权利要求1所述的在BminHSO4体系中制备纤维素纳米晶体的方法,其特征在于:在步骤(1)中,微晶纤维素在50-60℃下烘箱干燥12-36h。
3.根据权利要求1所述的在BminHSO4体系中制备纤维素纳米晶体的方法,其特征在于:在步骤(2)中,离子液体微热处理温度为80-90℃。
4.根据权利要求1所述的在BminHSO4体系中制备纤维素纳米晶体的方法,其特征在于:在步骤(2)中,水解温度为80-90℃;水解处理时间为1-1.5h。
5.根据权利要求1所述的在BminHSO4体系中制备纤维素纳米晶体的方法,其特征在于:在步骤(4)中,超声波处理功率为300-500w,超声波处理时间为15-35min。
6.根据权利要求1所述的在BminHSO4体系中制备纤维素纳米晶体的方法,其特征在于:在步骤(5)中,离心处理两次,先在2000-3000rpm下离心15-20min,取上清后在7500-8000rpm下离心30-40min,保留沉淀。
7.根据权利要求1所述的在BminHSO4体系中制备纤维素纳米晶体的方法,其特征在于:在步骤(6)中,冷冻干燥温度为-50℃至-60℃,时间为12-36h。
8.一种纤维素纳米晶体,由权利要求1~7所述的在BminHSO4体系中制备纤维素纳米晶体的方法制备得到。
9.根据权利要求8所述的纤维素纳米晶体,其特征在于,所述纤维素纳米晶体结晶度为88-90%。表面Zeta电位为-36至-38mV。
10.根据权利要求8所述纤维素纳米晶体在造纸、建筑、汽车、食品、化妆品、医学、涂料以及航空等领域中的应用。
CN201810651395.XA 2018-06-22 2018-06-22 一种利用BminHSO4体系制备纤维素纳米晶体的方法 Pending CN108774288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810651395.XA CN108774288A (zh) 2018-06-22 2018-06-22 一种利用BminHSO4体系制备纤维素纳米晶体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810651395.XA CN108774288A (zh) 2018-06-22 2018-06-22 一种利用BminHSO4体系制备纤维素纳米晶体的方法

Publications (1)

Publication Number Publication Date
CN108774288A true CN108774288A (zh) 2018-11-09

Family

ID=64025418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810651395.XA Pending CN108774288A (zh) 2018-06-22 2018-06-22 一种利用BminHSO4体系制备纤维素纳米晶体的方法

Country Status (1)

Country Link
CN (1) CN108774288A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286049A (zh) * 2020-03-02 2020-06-16 青岛科技大学 一种纤维素多孔球晶微球及其制备方法
CN113429590A (zh) * 2021-07-17 2021-09-24 西南大学 一种离子液体-硫酸体系制备纳米纤维素及其形貌调控的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360619A (zh) * 2013-06-19 2013-10-23 大连工业大学 一种调控纤维素表面晶体结晶度的方法
CN103966878A (zh) * 2014-01-02 2014-08-06 大连工业大学 离子液体制备微晶纤维素的方法
CN106084070A (zh) * 2016-06-03 2016-11-09 华南理工大学 一种高性能纳米纤维素及其绿色制备方法与应用
CN106674357A (zh) * 2016-12-21 2017-05-17 广西大学 一种在EmimOAc体系中制备纳米纤维素的方法
CN106800604A (zh) * 2016-12-21 2017-06-06 广西大学 一种在BmimCl体系中制备纳米纤维素的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360619A (zh) * 2013-06-19 2013-10-23 大连工业大学 一种调控纤维素表面晶体结晶度的方法
CN103966878A (zh) * 2014-01-02 2014-08-06 大连工业大学 离子液体制备微晶纤维素的方法
CN106084070A (zh) * 2016-06-03 2016-11-09 华南理工大学 一种高性能纳米纤维素及其绿色制备方法与应用
CN106674357A (zh) * 2016-12-21 2017-05-17 广西大学 一种在EmimOAc体系中制备纳米纤维素的方法
CN106800604A (zh) * 2016-12-21 2017-06-06 广西大学 一种在BmimCl体系中制备纳米纤维素的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIA MAO 等: "Preparation of cellulose I nanowhiskers with a mildly acidic aqueous", 《 CELLULOSE》 *
XIAOYUN TAN 等: "Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic", 《BIOMASS AND BIOENERGY》 *
汪多仁: "《绿色增塑剂》", 31 October 2011, 科学技术文献出版 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286049A (zh) * 2020-03-02 2020-06-16 青岛科技大学 一种纤维素多孔球晶微球及其制备方法
CN113429590A (zh) * 2021-07-17 2021-09-24 西南大学 一种离子液体-硫酸体系制备纳米纤维素及其形貌调控的方法

Similar Documents

Publication Publication Date Title
CN105777913B (zh) 一种高效的纤维素纳米晶制备方法
CN103866487B (zh) 一种纳米微晶纤维素/壳聚糖/聚乙烯醇复合纳米膜的制备方法
CN103061174B (zh) 一种强酸预处理辅助制备纤维素纳米纤丝的方法
CN109235102A (zh) 一种低共熔溶剂预处理制备纤维素纳米纤丝的方法
Xu et al. Preparation and characterization of spherical cellulose nanocrystals with high purity by the composite enzymolysis of pulp fibers
CN105568744B (zh) 一种玉米秆纳米纤维素晶须及其制备方法与应用
CN105566502B (zh) 耐水性可再生纳米纤维素薄膜的制备方法
CN108822315B (zh) 一种高强透明疏水性纤维素纳米膜及其制备方法
CN105754133A (zh) 一种纳米纤维素基生物气凝胶及其制备方法和应用
CN105568730A (zh) 一种可再生纳米纤维素的制备方法
Zhang et al. Preparation of nanocellulose from steam exploded poplar wood by enzymolysis assisted sonication
AU2020100319A4 (en) Method for preparing cellulose nanofibrils by deep eutectic solvent pretreatment
CN107287956B (zh) 一种酶预处理结合机械研磨制备纳米纤维素的方法
Chenampulli et al. Cellulose nano-particles from Pandanus: viscometric and crystallographic studies
CN105839440A (zh) 一种蔗渣纳米纤维素的制备方法
CN112267157A (zh) 基于反应型低共熔溶剂改性的纤维素纳米纤丝制备方法
CN108774288A (zh) 一种利用BminHSO4体系制备纤维素纳米晶体的方法
CN107447565A (zh) 一种植物纤维制备纳米纤维素的方法
CN111100212A (zh) 一种硫酸酯纳米纤维素及其制备方法
CN108221438A (zh) 一种漂白桉木浆纳米纤维素的制备方法
CN113718543A (zh) 一种有机酸水解结合纳米微射流均质一步法清洁制备纤维素纳米晶的方法及产物
Cheng et al. Comparative study on properties of nanocellulose derived from sustainable biomass resources
CN105884908B (zh) 一种羧基化纤维素纳米粒子的制备方法
Du et al. Cellulose nanocrystals prepared by persulfate one-step oxidation of bleached bagasse pulp
CN103271835A (zh) 一种丝素蛋白纳米晶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181109

RJ01 Rejection of invention patent application after publication