CN108767659A - 一种利用二维材料隔层外延生长激光器的方法 - Google Patents

一种利用二维材料隔层外延生长激光器的方法 Download PDF

Info

Publication number
CN108767659A
CN108767659A CN201810568011.8A CN201810568011A CN108767659A CN 108767659 A CN108767659 A CN 108767659A CN 201810568011 A CN201810568011 A CN 201810568011A CN 108767659 A CN108767659 A CN 108767659A
Authority
CN
China
Prior art keywords
dimensional material
layers
gan
algan
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810568011.8A
Other languages
English (en)
Inventor
汪莱
王磊
余佳东
郝智彪
罗毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201810568011.8A priority Critical patent/CN108767659A/zh
Publication of CN108767659A publication Critical patent/CN108767659A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本公开提供了一种利用二维材料隔层外延生长激光器的方法,包括:制备GaN自支撑衬底;在GaN自支撑衬底上形成二维材料层;在二维材料层上外延生长n型AlGaN光限制层;在n型AlGaN光限制层上生长n‑InGaN波导层、InGaN多量子阱或者量子点有源区、p‑AlGaN电子阻挡层、p‑InGaN波导层、p‑AlGaN光限制层和p‑GaN接触层。

Description

一种利用二维材料隔层外延生长激光器的方法
技术领域
本公开涉及半导体激光器领域,尤其涉及一种利用二维材料隔层外延生长激光器的方法。
背景技术
半导体激光器(LD)具有体积小、重量轻、价格低廉、寿命长、效率高、易于调制等优点,自从1961年发明以来,便被广泛应用于光通信、光存储、光陀螺、激光打印扫描、激光测距、激光制导、激光雷达、激光照明显示等领域。III族氮化物半导体材料由于具有宽禁带、直接带隙的特点,其在室温下的禁带宽度从AlN的6.2eV,到GaN的3.42eV,再到InN的0.7eV,其三元(AlGaN、InGaN、AlInN)和四元(InAlGaN)合金能够实现从紫外(~200nm)波段到红外(~1770nm)波段的全覆盖,并且GaN基材料还具有耐高压、耐辐射、电子迁移率高、导热性好等优势应用前景广阔,是制作紫外、可见光激光器的理想材料。
目前GaN基材料主要通过MOCVD、MBE等外延设备在蓝宝石衬底上得到,由于蓝宝石与GaN之间的晶格失配高达16%,晶格失配导致的高缺陷密度使得这种方法得到的GaN基材料无法用于制作激光器。因此通用的GaN基激光器主要基于GaN自支撑衬底外延得到,其GaN体材料位错密度可以低至106/cm2。激光器结构如图1所示。
在该结构中,InGaN多量子阱作为有源区发出可见光,InGaN(GaN)波导层折射率高,AlGaN光限制层折射率小,利用这种对光的折射率差,当光从波导层传播向限制层时,可以实现全内反射,将光场限制在有源区附近较小区域,从而为激光器提供足够增益,以实现较低阈值激射。理论上,InGaN中In的组分越高,其折射率越大,AlGaN中Al组分越高,其折射率越小。为保证光限制因子尽量高以提供足够高的增益,一方面InGaN层需要In组分足够高,同时保证合适的厚度;另一方面应该使AlGaN层的厚度和Al组分都尽量高。
但是InN和GaN之间存在较大的物理性质差异,包括晶格常数、成键能,因此生长较厚的较高组分InGaN异常困难,随厚度、组分增加,晶体材料质量会急剧恶化,常常面临表面粗糙、位错密度过高、In偏析等问题。因此一般致力于提高AlGaN限制层的Al组分和厚度。传统的激光器生长中,先在GaN自支撑衬底上生长一定厚度的GaN体材料,然后生长AlGaN光限制层。但是AlN与GaN之间仍然存在2.5%的晶格失配。在GaN上生长AlGaN时,AlGaN会受到张应力,因此生长一定组分的AlGaN超过一定厚度后,AlGaN层极易通过裂开的方式释放张应力(裂纹如图2所示),目前即使通过生长AlGaN/GaN超晶格的方式,AlGaN层的平均Al组分最多也只能到8%,且厚度很难超过1μm。
公开内容
(一)要解决的技术问题
针对上述技术问题,本公开提出了一种利用二维材料隔层外延生长激光器的方法。
(二)技术方案
本公开提供了一种利用二维材料隔层外延生长激光器的方法,包括:制备GaN自支撑衬底;在GaN自支撑衬底上形成二维材料层;在二维材料层上外延生长n型AlGaN光限制层;在n型AlGaN光限制层上生长n-InGaN波导层、InGaN多量子阱或者量子点有源区、p-AlGaN电子阻挡层、p-InGaN波导层、p-AlGaN光限制层和p-GaN接触层。
在本公开的一些实施例中,所述在GaN自支撑衬底上形成二维材料层包括:在GaN自支撑衬底上利用转印或沉积方法铺上至少一层二维材料,形成二维材料层。
在本公开的一些实施例中,所述二维材料包括:石墨烯、BN、MOS2。
在本公开的一些实施例中,所述至少一层二维材料为1-3层二维材料。
在本公开的一些实施例中,所述在二维材料层上外延生长AlGaN光限制层包括:利用MOCVD工艺在形成有二维材料层的GaN自支撑衬底上隔层外延生长AlGaN光限制层。
在本公开的一些实施例中,所述制备GaN自支撑衬底包括:采用氢化物气相外延法外延制得GaN单晶,通过衬底剥离、切割抛光制得GaN自支撑衬底。
(三)有益效果
从上述技术方案可以看出,本公开具有以下有益效果:
利用本公开方法生长的激光器,可以克服AlGaN与GaN之间的晶格失配导致的一系列问题,生长出高晶体质量的、无裂纹的、高Al组分、足够厚度的AlGaN光限制层,提高激光器光限制因子,增加激光器有源区增益,降低激射阈值。
附图说明
图1是现有的GaN基蓝绿光激光器的结构示意图。
图2显示了现有的GaN体材料上生长AlGaN一定厚度后产生裂纹。
图3是本公开实施例利用二维材料隔层外延生长激光器的方法流程图。
图4是本公开实施例高Al组分AlGaN光限制层生长步骤示意图。
具体实施方式
下面将结合实施例和实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开一实施例的利用二维材料隔层外延生长激光器的方法,可以直接生长高Al组分的AlGaN材料,且理论上生长厚度不受AlGaN与下GaN层之间的晶格失配限制,参见图3以及图4所示,该方法包括:
步骤1:制备GaN自支撑衬底。
Si、GaAs等半导体单晶一般采用直拉法、布里奇曼法等溶体生长技术制得衬底。但对于熔点极高的GaN而言,这种方法难度极大,因此本实施例采用氢化物气相外延法(HVPE)外延制得GaN单晶,通过衬底剥离、切割抛光制得GaN自支撑衬底。
步骤2:在GaN自支撑衬底上形成二维材料层。
在该步骤中,在GaN自支撑衬底上使用转印或沉积等方法铺上1-3层二维材料,形成二维材料层。二维材料包括但不限于石墨烯、BN、MOS2等。二维材料层可以有效隔绝GaN自支撑衬底与AlGaN层之间的晶格失配,从而避免使AlGaN层受到张应变。
步骤3:在二维材料层上外延生长n型AlGaN光限制层。
在该步骤中,在1000℃附近在形成有二维材料层的GaN自支撑衬底上利用MOCVD工艺在1000℃左右温度下进行隔层外延,直接生长无裂纹、高质量的合适Al组分的n型AlGaN光限制层。
步骤4:在n型AlGaN光限制层上生长n-InGaN波导层、InGaN多量子阱或者量子点有源区、p-AlGaN电子阻挡层、p-InGaN波导层、p-AlGaN光限制层和p-GaN接触层。
在生长出足够厚度后的n-AlGaN光限制层后,即可进行后续的激光器结构生长。包括在740℃左右温度下生长一定In组分的n-InGaN波导层、适合温度下的InGaN多量子阱或者量子点有源区、740℃左右温度下p-AlGaN电子阻挡层和p-InGaN波导层、900℃左右温度下的p-AlGaN光限制层和p-GaN接触层等。
利用本公开方法生长的激光器,可以克服AlGaN与GaN之间的晶格失配导致的一系列问题,生长出高晶体质量的、无裂纹的、高A1组分、足够厚度的AlGaN光限制层,提高激光器光限制因子,增加激光器有源区增益,降低激射阈值。
另外,本公开方法不仅能用于在GaN等衬底上生长高A1组分、高厚度的AlGaN,也能用于在GaN等衬底上生长高In组分、高厚度的InGaN等与衬底存在较大晶格失配的晶体材料。
至此,已经结合附图对本公开进行了详细描述。依据以上描述,本领域技术人员应当对本公开有了清楚的认识。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换,例如:
(1)实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围;
(2)上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (6)

1.一种利用二维材料隔层外延生长激光器的方法,其特征在于,包括:
制备GaN自支撑衬底;
在GaN自支撑衬底上形成二维材料层;
在二维材料层上外延生长n型AlGaN光限制层;
在n型AlGaN光限制层上生长n-InGaN波导层、InGaN多量子阱或者量子点有源区、p-AlGaN电子阻挡层、p-InGaN波导层、p-AlGaN光限制层和p-GaN接触层。
2.如权利要求1所述的方法,其特征在于,所述在GaN自支撑衬底上形成二维材料层包括:
在GaN自支撑衬底上利用转印或沉积方法铺上至少一层二维材料,形成二维材料层。
3.如权利要求2所述的方法,其特征在于,所述二维材料包括:石墨烯、BN、MOS2。
4.如权利要求2所述的方法,其特征在于,所述至少一层二维材料为1-3层二维材料。
5.如权利要求1所述的方法,其特征在于,所述在二维材料层上外延生长AlGaN光限制层包括:
利用MOCVD工艺在形成有二维材料层的GaN自支撑衬底上隔层外延生长AlGaN光限制层。
6.如权利要求1所述的方法,其特征在于,所述制备GaN自支撑衬底包括:
采用氢化物气相外延法外延制得GaN单晶,通过衬底剥离、切割抛光制得GaN自支撑衬底。
CN201810568011.8A 2018-06-04 2018-06-04 一种利用二维材料隔层外延生长激光器的方法 Pending CN108767659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810568011.8A CN108767659A (zh) 2018-06-04 2018-06-04 一种利用二维材料隔层外延生长激光器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810568011.8A CN108767659A (zh) 2018-06-04 2018-06-04 一种利用二维材料隔层外延生长激光器的方法

Publications (1)

Publication Number Publication Date
CN108767659A true CN108767659A (zh) 2018-11-06

Family

ID=63999075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810568011.8A Pending CN108767659A (zh) 2018-06-04 2018-06-04 一种利用二维材料隔层外延生长激光器的方法

Country Status (1)

Country Link
CN (1) CN108767659A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146318A (zh) * 2020-01-20 2020-05-12 江苏晶曌半导体有限公司 一种基于MoS2的薄层紫外发光二极管及其制作方法
CN112436380A (zh) * 2020-11-19 2021-03-02 清华大学 基于范德华外延的垂直腔面发射激光器及其制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332820A (zh) * 2014-11-05 2015-02-04 中国科学院半导体研究所 通讯波段GaN基量子级联高速激光器
CN105895502A (zh) * 2015-02-13 2016-08-24 台湾积体电路制造股份有限公司 包括2d材料的半导体器件及其制造方法
CN106129166A (zh) * 2016-06-28 2016-11-16 深圳大学 一种GaN‑MoS2分波段探测器及其制备方法
WO2017044577A1 (en) * 2015-09-08 2017-03-16 Massachusetts Institute Of Technology Systems and methods for graphene based layer transfer
CN106602404A (zh) * 2016-12-30 2017-04-26 中国工程物理研究院应用电子学研究所 一种半导体激光器及其制作方法
CN106684699A (zh) * 2016-12-06 2017-05-17 超晶科技(北京)有限公司 二维材料柔性衬底结构、半导体发光器件及其制作方法
CN106785919A (zh) * 2016-10-26 2017-05-31 中国科学院苏州纳米技术与纳米仿生研究所 InGaN/GaN量子阱激光器及其制作方法
CN106898948A (zh) * 2015-12-17 2017-06-27 中国科学院苏州纳米技术与纳米仿生研究所 超辐射发光二极管或激光器外延结构及其制备方法
US9871341B2 (en) * 2016-05-17 2018-01-16 International Business Machines Corporation Laser on silicon made with 2D material gain medium
CN107634089A (zh) * 2017-09-27 2018-01-26 中国科学院上海微系统与信息技术研究所 一种石墨烯‑硒化铌超导异质结器件及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332820A (zh) * 2014-11-05 2015-02-04 中国科学院半导体研究所 通讯波段GaN基量子级联高速激光器
CN105895502A (zh) * 2015-02-13 2016-08-24 台湾积体电路制造股份有限公司 包括2d材料的半导体器件及其制造方法
WO2017044577A1 (en) * 2015-09-08 2017-03-16 Massachusetts Institute Of Technology Systems and methods for graphene based layer transfer
CN106898948A (zh) * 2015-12-17 2017-06-27 中国科学院苏州纳米技术与纳米仿生研究所 超辐射发光二极管或激光器外延结构及其制备方法
US9871341B2 (en) * 2016-05-17 2018-01-16 International Business Machines Corporation Laser on silicon made with 2D material gain medium
CN106129166A (zh) * 2016-06-28 2016-11-16 深圳大学 一种GaN‑MoS2分波段探测器及其制备方法
CN106785919A (zh) * 2016-10-26 2017-05-31 中国科学院苏州纳米技术与纳米仿生研究所 InGaN/GaN量子阱激光器及其制作方法
CN106684699A (zh) * 2016-12-06 2017-05-17 超晶科技(北京)有限公司 二维材料柔性衬底结构、半导体发光器件及其制作方法
CN106602404A (zh) * 2016-12-30 2017-04-26 中国工程物理研究院应用电子学研究所 一种半导体激光器及其制作方法
CN107634089A (zh) * 2017-09-27 2018-01-26 中国科学院上海微系统与信息技术研究所 一种石墨烯‑硒化铌超导异质结器件及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146318A (zh) * 2020-01-20 2020-05-12 江苏晶曌半导体有限公司 一种基于MoS2的薄层紫外发光二极管及其制作方法
CN112436380A (zh) * 2020-11-19 2021-03-02 清华大学 基于范德华外延的垂直腔面发射激光器及其制作方法

Similar Documents

Publication Publication Date Title
US11258231B2 (en) GaN-based VCSEL chip based on porous DBR and manufacturing method of the same
KR101067823B1 (ko) 자외선 발광 디바이스 및 이를 제조하기 위한 방법
CN106684213B (zh) GaN基半导体器件及其制作方法
US20080265379A1 (en) Laser Diode Orientation on Mis-Cut Substrates
KR20070013340A (ko) 반도체 발광 소자 및 그 제조 방법, 및 반도체 장치 및 그제조 방법
JP5401145B2 (ja) Iii族窒化物積層体の製造方法
JP7302832B2 (ja) レーザーダイオード
Arakawa et al. 450 nm GaInN ridge stripe laser diodes with AlInN/AlGaN multiple cladding layers
CN108767659A (zh) 一种利用二维材料隔层外延生长激光器的方法
JP5873260B2 (ja) Iii族窒化物積層体の製造方法
US20230420617A1 (en) Nitride based ultraviolet light emitting diode with an ultraviolet transparent contact
US8222639B2 (en) Nitride based semiconductor device and method of manufacturing the same
CN111463326A (zh) 半导体器件及其制备方法
CN102637794A (zh) 半导体器件及其制造方法
US7885306B2 (en) Edge-emitting semiconductor laser chip
Sohi et al. Low-temperature growth of n++-GaN by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes
Kamikawa et al. Fabricating ultralow dislocation density microlight-emitting diodes on a silicon substrate via an epitaxial lateral overgrowth method
CN107579432B (zh) InGaN/AlInN量子阱激光器及其制作方法
US20220294189A1 (en) Monolithically inverted iii-v laser diode realized using buried tunnel junction
CN112134143B (zh) 氮化镓基激光器及其制备方法
JP3869641B2 (ja) 半導体装置及び半導体レーザ装置
CN205582962U (zh) 一种量子点超辐射发光二极管
JP5898656B2 (ja) Iii族窒化物半導体素子
CN109428264A (zh) 具有低阀值电流的半导体激光二极管
KR101357795B1 (ko) 수직형 반도체 소자용 기판 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication