CN108733116B - 恒压电源电路 - Google Patents

恒压电源电路 Download PDF

Info

Publication number
CN108733116B
CN108733116B CN201810377596.5A CN201810377596A CN108733116B CN 108733116 B CN108733116 B CN 108733116B CN 201810377596 A CN201810377596 A CN 201810377596A CN 108733116 B CN108733116 B CN 108733116B
Authority
CN
China
Prior art keywords
transistor
power supply
terminal
error amplifier
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810377596.5A
Other languages
English (en)
Other versions
CN108733116A (zh
Inventor
永井俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Publication of CN108733116A publication Critical patent/CN108733116A/zh
Application granted granted Critical
Publication of CN108733116B publication Critical patent/CN108733116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

本发明提供一种谋求改善负载调节的恒压电源电路。恒压电源电路具备:误差放大器(6),具备反相输入端子(61)和非反相输入端子(62);基准电压源(5),与该误差增幅器(6)的反相输入端子(61)连接;输出用的晶体管(MP1),源极与电源端子(1)连接,漏极与电路输出端子(3)连接,栅极与误差放大器(6)的输出端子(63)连接;以及输出电压检测电路(7),连接在电路输出端子(3)与电源端子(2)之间,检测电路输出端子(3)的电压并输入至误差放大器(6)的非反相输入端子(62),其中,在误差放大器(6)的输出端子(63)与晶体管(MP1)的栅极之间连接有正反馈电路(8)。

Description

恒压电源电路
技术领域
本发明涉及一种在输出电流的整个区域负载调节特性优异的恒压电源电路。
背景技术
图5示出了以往的恒压电源电路10E(例如,专利文献1)。1是电压为VDD的高电位电源端子,2是电压为VSS(<VDD)的低电位电源端子,3是输出电压为VREG的电路输出端子,4是电流为IS的电流源,5是电压为VR的基准电压源。MN4、MN5、MN6是构成差分电路的NMOS晶体管,MP3、MP4是构成此差分电路的有源负载的电流反射镜连接的PMOS晶体管。由这些晶体管MN4~MN6、MP3、MP4构成误差放大器6,且此误差放大器6的反相输入端子61与基准电压源5连接。MN7是与晶体管MN6电流反射镜连接的NMOS晶体管,将电流源4的电流IS作为偏置电流供给至晶体管MN6。MP1是栅极与误差放大器6的输出端子63连接的输出用的PMOS晶体管,其漏极与电路输出端子3连接。电阻R3、R4构成检测输出电压VREG的输出电压检测电路7,连接在电路输出端子3与电源端子2之间,此电阻R3、R4的共同连接点与误差放大器6的非反相输入端子62连接。
然后,通过该恒压电源电路10E得到的输出电压VREG是:
Figure BDA0001640208830000011
在此,想到了从电路输出端子3引出输出电流的情况。
在完全没有输出电流的无负载的情况下,晶体管MP1仅供给流过电阻R3、R4的电流。通常,为了极力谋求低消耗电流化,在电阻R3、R4使用几MΩ的高电阻值的电阻。此时,驱动负载的晶体管MP1由误差放大器进行控制,以便在亚阈值区(sub-threshold region)动作。当输出电流逐渐增大时,晶体管MP1向在饱和区的动作转移,而且当输出电流增大时,向在非饱和区的动作转移,输出电压VREG随着输出电流的增大而呈线性降低。
现有技术文献
专利文献
专利文献1:日本特开2010-079653号公报
发明内容
发明所要解决的问题
在图6示出了该输出电流的特性。用实线表示的特性B是表示图5的恒压电源电路10E的相对于输出电流的输出电压的变化的特性。该输出电压特性被用作恒压电源电路的性能指标之一,该特性的好坏是电路选择的重要要素。
在图6的特性中,如前所述,在输出电流小的区域,由于晶体管MP1在亚阈值区动作,因此电压大幅变动。当输出电流进一步增大时,变为在饱和区的动作,并向相对于输出电流呈平方的特性转移,最终变为在非饱和区的动作,并遵循电压线性降低的轨跡。
该输出电压特性能够呈现作负载调节特性,该负载调节特性由在输出电流的任意2点I1、I2之间的输出电压VREG的降低倾斜的程度来表示,一般由以下算式(2)来定义:
Figure BDA0001640208830000021
VR1是输出电流为I1时的输出电压,VR2是输出电流为I2时的输出电压。图6中以LRb来表示图5的恒压电源电路10E的负载调节特性。
根据图6也可知,为了在输出电流的整个区域改善负载调节特性,要求改善在输出电流小的区域的特性。算式(2)的LR的值越小,负载调节越“好”。
本发明的目的在于提供一种谋求改善这样的负载调节的恒压电源电路。
用于解决问题的方案
为了达到上述目的,方案1的发明是一种恒压电源电路,其具备:误差放大器,具备反相输入端子和非反相输入端子;基准电压源,与该误差放大器的所述反相输入端子连接;输出用的第一导电型的第一晶体管,源极与第一电源端子连接,漏极与电路输出端子连接,栅极与所述误差放大器的输出端子连接;以及输出电压检测电路,连接在所述电路输出端子与第二电源端子之间,检测所述电路输出端子的电压并输入至所述误差放大器的非反相输入端子,其特征在于,在所述误差增幅器的输出端子与所述第一导电型的第一晶体管的栅极之间连接有正反馈电路。
方案2的发明的特征在于,在方案1所述的恒压电源电路中,所述正反馈电路包含:第一导电型的第二晶体管,栅极与所述误差放大器的输出端子连接,源极与所述第一电源端子连接;第二导电型的第一晶体管,漏极和栅极与该第一导电型的第二晶体管的漏极连接,源极与所述第二电源端子连接;以及第二导电型的第二晶体管,漏极与所述误差放大器的输出端子连接,源极与所述第二电源端子连接,栅极与所述第二导电型的第一晶体管的栅极连接。
方案3的发明的特征在于,在方案2所述的恒压电源电路中,在所述第一导电型的第二晶体管的漏极与所述第二导电型的第一晶体管的漏极之间插入连接有第一电阻。
方案4的发明的特征在于,在方案2所述的恒压电源电路中,在所述第一导电型的第二晶体管的漏极与所述第二导电型的第一晶体管的漏极之间,插入连接有漏极与所述第一导电型的第二晶体管的漏极连接、源极和栅极与所述第二导电型的第一晶体管的漏极连接的第二导电型的耗尽型晶体管。
方案5的发明的特征在于,在方案2、3或4所述的恒压电源电路中,在所述第二导电型的第二晶体管的源极与所述第二电源端子之间插入连接有第二电阻。
发明效果
根据本发明,在误差放大器的输出端子与作为输出晶体管的第一导电型的第一晶体管的栅极之间插入连接有正反馈电路,由此,能改善负载调节特性。
附图说明
图1是本发明的第一实施例的恒压电源电路的电路图。
图2是本发明的第二实施例的恒压电源电路的电路图。
图3是本发明的第三实施例的恒压电源电路的电路图。
图4是本发明的第四实施例的恒压电源电路的电路图。
图5是以往的恒压电源电路的电路图。
图6是负载调节特性图。
附图标记说明:
10A~10E 恒压电源电路
1 高压电源端子
2 低压电源端子
3 电路输出端子
4 电流源
5 基准电压源(reference voltage source)
6 误差放大器
61 反相输入端子(inverting input terminal)
62 非反相输入端子(noninverting input terminal)
63 输出端子
7 输出电压检测电路
8 正反馈电路
具体实施方式
<第一实施例>
图1示出了本发明的第一实施例的恒压电源电路10A。在图1中,对与通过图5进行了说明的构成相同的构成标注相同的附图标记并省略重复说明。8是正反馈电路,由PMOS晶体管MP2和NMOS晶体管MN1、MN2构成。晶体管MP2的源极与电源端子1连接,栅极与误差放大器6的输出端子63连接。晶体管MN1的栅极和漏极与晶体管MP2的漏极连接,源极与电源端子2连接。晶体管MN2的漏极与误差放大器6的输出端子63连接,栅极与晶体管MN1的栅极连接,源极与电源端子2连接。这些晶体管MN1、MN2构成电流反射镜,并且将晶体管MP2的漏极电流反射至晶体管MN2的漏极。
晶体管MP2与晶体管MP1栅极长度相等,栅极宽度的比设定为MP2:MP1=1:n(n>1)。由此,晶体管MP2的漏极电流是晶体管MP1的漏极电流的1/n。
晶体管MN1和MN2的栅极宽度比设定为MN1:MN2=m:1(m>1)。因此,在将晶体管MN2的漏极与误差放大器6的输出端子63连接时,晶体管MN2从误差放大器6的输出端子63引入晶体管MP1的输出电流量的1/(m×n)的电流,能使误差放大器6的输出特性大幅转变(迁移)。
这样,在本实施例的恒压电源电路10A中,由于除了误差放大器6固有的增益之外还加上正反馈电路8的增益,因此能使晶体管MP1的栅极电压变化,能改善在输出电流的整个区域的负载调节(load regulation)特性。
以上的结果是,如图6所示的特性A那样,具有与图5的恒压电源电路的特性B相比,能将电压降改善为大幅平缓的特性的特征。在图6中,输出电流为I2的点的输出电压的值从VR2向VR2’变化,可知其负载调节特性LRa的值会大幅改善。
<第二实施例>
图2示出了第二实施例的恒压电源电路10B。在通过图1进行了说明的第一实施例的恒压电源电路10A中,采用通过由误差放大器6的输出端子63的电压产生的电流来对误差放大器6的输出端子63施加正反馈的构成,因此还可想到因反馈量而附带振荡的风险。
因此,在图2所示的第二实施例的恒压电源电路10B中,在正反馈电路8的晶体管MP2的漏极与晶体管MN1的漏极之间插入了电阻R1。由此,在晶体管MP2的漏极电流大幅增大的情况下(晶体管MP1的输出电流也同样增大),能减小向误差放大器6的输出端子63的反馈量,降低振荡的风险。
<第三实施例>
图3示出了第三实施例的恒压电源电路10C。在即使通过如图2说明的那样将电阻R1插入连接到正反馈电路8的第二实施例的恒压电源电路10B也无法降低振荡的风险的情况下,如图3所示,以连接栅极、源极的构成插入连接耗尽型NMOS晶体管MN3来代替电阻R1。
这样,由于流过晶体管MP2的漏极电流增大,由此晶体管MN3的漏极电压上升,因此晶体管MN3的源极、背栅极(back gate)间的电位差增大。其结果是,由于晶体管MN3的背栅效应,其阈值电压升高,漏极、源极间的电阻进一步高电阻化。由此,在晶体管MP1流过大的输出电流时,能进一步减小向误差放大器6的反馈量。
根据以上,与通过图2进行了说明的恒压电源电路10B相比,能进一步降低振荡的风险。需要说明的是,作为背栅效应的算式,NMOS晶体管MN3的阈值电压Vth如以下的算式(3)那样来表示。
Figure BDA0001640208830000061
在此,Vth0是零偏置时的阈值电压,γ是基板效应系数,VSB是源极、背栅极间电压,φF是P型基板的费米能级。
<第四实施例>
图4示出了第四实施例的恒压电源电路10D。在本实施例中,在通过图1进行了说明的恒压电源电路10A中的正反馈电路8的输出侧的晶体管MN2的源极、背栅极端子与电源端子2之间插入电阻R2,以便进行电流限制。在该情况下,与通过图2以及图3进行了说明的恒压电源电路10B、10C同样,在晶体管MP1流过大的输出电流时,能减小向误差放大器6的反馈量。
<其他实施例>
需要说明的是,在以上的实施例中,在电源电压为VDD>VSS的条件的情况下进行了说明,但在电源电压的高低关系相反的情况下,将PMOS晶体管替换为NMOS晶体管,并将NMOS晶体管替换为PMOS晶体管即可。此外,在权利要求中将PMOS晶体管和NMOS晶体管的一方记载为第一导电型,将另一方记载为第二导电型。

Claims (5)

1.一种恒压电源电路,具备:误差放大器,具备反相输入端子和非反相输入端子以及差分电路;基准电压源,与该误差放大器的所述反相输入端子连接;输出用的第一导电型的第一晶体管,源极与第一电源端子连接,漏极与电路输出端子连接,栅极与所述误差放大器的输出端子连接;以及输出电压检测电路,连接在所述电路输出端子与第二电源端子之间,检测所述电路输出端子的电压并输入至所述误差放大器的非反相输入端子,其中,
在所述误差放大器的输出端子与所述第一导电型的第一晶体管的栅极之间连接有正反馈电路,所述正反馈电路的输入端子和输出端子是同一端子,所述正反馈电路的输入端子和输出端子连接于第一导电型的第一晶体管的栅极,所述正反馈电路的输入端子和输出端子直接连接于误差放大器的输出端子。
2.根据权利要求1所述的恒压电源电路,其特征在于,
所述正反馈电路包含:第一导电型的第二晶体管,栅极与所述误差放大器的输出端子连接,源极与所述第一电源端子连接;第二导电型的第一晶体管,漏极和栅极与该第一导电型的第二晶体管的漏极连接,源极与所述第二电源端子连接;以及第二导电型的第二晶体管,漏极与所述误差放大器的输出端子连接,源极与所述第二电源端子连接,栅极与所述第二导电型的第一晶体管的栅极连接。
3.根据权利要求2所述的恒压电源电路,其特征在于,
在所述第一导电型的第二晶体管的漏极与所述第二导电型的第一晶体管的漏极之间插入连接有第一电阻。
4.根据权利要求2所述的恒压电源电路,其特征在于,
在所述第一导电型的第二晶体管的漏极与所述第二导电型的第一晶体管的漏极之间,插入连接有漏极与所述第一导电型的第二晶体管的漏极连接、源极和栅极与所述第二导电型的第一晶体管的漏极连接的第二导电型的耗尽型晶体管。
5.根据权利要求2~4中任一项所述的恒压电源电路,其特征在于,
在所述第二导电型的第二晶体管的源极与所述第二电源端子之间插入连接有第二电阻。
CN201810377596.5A 2017-04-25 2018-04-25 恒压电源电路 Active CN108733116B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017085769A JP6902917B2 (ja) 2017-04-25 2017-04-25 定電圧電源回路
JP2017-085769 2017-04-25

Publications (2)

Publication Number Publication Date
CN108733116A CN108733116A (zh) 2018-11-02
CN108733116B true CN108733116B (zh) 2021-01-01

Family

ID=63714378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810377596.5A Active CN108733116B (zh) 2017-04-25 2018-04-25 恒压电源电路

Country Status (4)

Country Link
US (1) US10838445B2 (zh)
JP (1) JP6902917B2 (zh)
CN (1) CN108733116B (zh)
DE (1) DE102018109823A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10041982B2 (en) * 2012-08-15 2018-08-07 Texas Instruments Incorporated Switch mode power converter current sensing apparatus and method
JP7292108B2 (ja) * 2019-05-27 2023-06-16 エイブリック株式会社 ボルテージレギュレータ
KR20220131063A (ko) * 2021-03-19 2022-09-27 에스케이하이닉스 주식회사 저전압 강하 레귤레이터
CN113806269A (zh) * 2021-09-14 2021-12-17 深圳群芯微电子有限责任公司 Usb端口恒压供电电路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867015A (en) * 1996-12-19 1999-02-02 Texas Instruments Incorporated Low drop-out voltage regulator with PMOS pass element
US6046577A (en) * 1997-01-02 2000-04-04 Texas Instruments Incorporated Low-dropout voltage regulator incorporating a current efficient transient response boost circuit
JP2000075941A (ja) * 1998-08-31 2000-03-14 Hitachi Ltd 半導体装置
US6150871A (en) * 1999-05-21 2000-11-21 Micrel Incorporated Low power voltage reference with improved line regulation
US6300749B1 (en) 2000-05-02 2001-10-09 Stmicroelectronics S.R.L. Linear voltage regulator with zero mobile compensation
JP4402465B2 (ja) * 2004-01-05 2010-01-20 株式会社リコー 電源回路
US7368896B2 (en) * 2004-03-29 2008-05-06 Ricoh Company, Ltd. Voltage regulator with plural error amplifiers
JP5097664B2 (ja) 2008-09-26 2012-12-12 ラピスセミコンダクタ株式会社 定電圧電源回路
JP5402530B2 (ja) * 2009-10-27 2014-01-29 株式会社リコー 電源回路
US20130119954A1 (en) 2011-11-16 2013-05-16 Iwatt Inc. Adaptive transient load switching for a low-dropout regulator
CN103149962B (zh) 2011-12-07 2015-07-22 深圳市汇春科技有限公司 极低静态电流的低压降稳压器
US20150015222A1 (en) * 2013-07-09 2015-01-15 Texas Instruments Deutschland Gmbh Low dropout voltage regulator
JP6363386B2 (ja) * 2014-04-25 2018-07-25 ラピスセミコンダクタ株式会社 レギュレータ及び半導体装置
CN106292824B (zh) 2015-06-29 2017-11-24 展讯通信(上海)有限公司 低压差稳压器电路
JP2017085769A (ja) 2015-10-28 2017-05-18 パナソニックIpマネジメント株式会社 電力変換システム及び制御装置
US9904305B2 (en) * 2016-04-29 2018-02-27 Cavium, Inc. Voltage regulator with adaptive bias network

Also Published As

Publication number Publication date
US20180307260A1 (en) 2018-10-25
DE102018109823A1 (de) 2018-10-25
CN108733116A (zh) 2018-11-02
JP2018185595A (ja) 2018-11-22
US10838445B2 (en) 2020-11-17
JP6902917B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
CN108733116B (zh) 恒压电源电路
US7746047B2 (en) Low dropout voltage regulator with improved voltage controlled current source
JP5078502B2 (ja) 基準電圧回路
JP4937865B2 (ja) 定電圧回路
JP5008472B2 (ja) ボルテージレギュレータ
TWI476557B (zh) 低壓降電壓調節器及其方法
JP3575453B2 (ja) 基準電圧発生回路
US8476967B2 (en) Constant current circuit and reference voltage circuit
US7872519B2 (en) Voltage divider circuit
US20070057717A1 (en) Circuits for generating reference current and bias voltages, and bias circuit using the same
US7564225B2 (en) Low-power voltage reference
US20100019747A1 (en) Low dropout regulator
KR101733157B1 (ko) 리퀴지 전류를 이용한 저전력 밴드갭 기준전압 발생 회로
US10574200B2 (en) Transconductance amplifier
US20090102561A1 (en) Amplifier having an output protection, in particular operational amplifier for audio application
JP2006338434A (ja) 基準電圧発生回路
US9874894B2 (en) Temperature stable reference current
JP4868868B2 (ja) 基準電圧発生回路
JP4749105B2 (ja) 基準電圧発生回路
JPH1167931A (ja) 基準電圧発生回路
TWI698731B (zh) 電壓調節器
JP5008846B2 (ja) 電子回路
JP2021170323A (ja) 定電圧電源回路
CN115202427B (zh) 一种稳压电路及电源管理芯片
JP2012244558A (ja) 差動増幅回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant