CN108714428A - 一种纳米线光催化剂及其制备方法与应用 - Google Patents

一种纳米线光催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN108714428A
CN108714428A CN201810617995.4A CN201810617995A CN108714428A CN 108714428 A CN108714428 A CN 108714428A CN 201810617995 A CN201810617995 A CN 201810617995A CN 108714428 A CN108714428 A CN 108714428A
Authority
CN
China
Prior art keywords
nano wire
photochemical catalyst
wire photochemical
added
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810617995.4A
Other languages
English (en)
Other versions
CN108714428B (zh
Inventor
滕飞
刘芯汝
滕怡然
顾文浩
杨志成
杨晋宇
汤茂源
袁晨
朱芷萱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201810617995.4A priority Critical patent/CN108714428B/zh
Publication of CN108714428A publication Critical patent/CN108714428A/zh
Application granted granted Critical
Publication of CN108714428B publication Critical patent/CN108714428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米线光催化剂,该纳米线光催化剂的化学式为Bi2O(OH)2SO4;纳米线光催化剂呈纳米线结构,直径为100‑200nm。本发明通过简单的水热反应即可制备得到性能优越的Bi2O(OH)2SO4纳米线:该Bi2O(OH)2SO4纳米线光催化剂,50分钟就可以把200毫升、7.5毫克每升的罗丹明B降解90%以上,预示着Bi2O(OH)2SO4纳米线具有良好的应用前景。

Description

一种纳米线光催化剂及其制备方法与应用
技术领域
本发明涉及一种新型纳米线光催化剂及其简易制备方法、以及光催化活性。
背景技术
进入21世纪,人类面临着能源和环境两个非常严峻的问题,特别是有毒且难降解有机污染物(如多环芳烃、多氯联苯、农药、染料等)引起的环境问题,已成为影响人类生存与健康的重大问题。利用半导体氧化物材料在太阳光照射下表面能受激活化的特性,可有效地氧化分解有机污染物。与传统的净化环境处理方法相比,半导体光催化技术拥有反应条件温和、无二次污染、操作简单和降解效果显著等优势。调研表明,光催化研究和应用最多的光催化剂是TiO2。但其产生的光生电子空穴对很容易复合,导致电子和空穴不能及时迁移至表面参与氧化还原反应,从而光转化效率较低。因此寻找性能优异的新型光催化材料以获得高效的光催化剂非常重要。由于铋元素是一种无毒绿色的金属,含铋化合物有着广泛的用途,近年来在光催化剂方面,日益取代含铅、锑、镉、汞等有毒元素的化合物,如BiVO4,Bi2WO6,BiOX (X= Cl, Br, I)等。其中,Bi2O(OH)2SO4由于其独特的层状结构,引起了广泛的关注。但是其电子空穴对的分离效率还是不够高,因此,设计有利于电子空穴对分离的结构,是一种非常有效的提高电子空穴对分离效率的手段。
发明内容
本发明的目的是为了解决现有技术中存在的缺陷,提供一种制备方法简单,且光催化性能优异的材料。
为了达到上述目的,本发明提供了一种纳米线光催化剂,该纳米线光催化剂的化学式为Bi2O(OH)2SO4;纳米线光催化剂呈纳米线结构,直径为 100-200nm。
本发明还提供了上述纳米线光催化剂的制备方法,包括以下步骤:
1) 将1mmol的五水硝酸铋加入盛有15mL蒸馏水烧杯中,搅拌三十分钟;
2) 再加入0.09g的乌洛托品,搅拌三十分钟;
3) 再加入1mmol硫酸钠,搅拌三十分钟;
4) 将上述混合液转移到聚四氟乙烯内衬中,180℃恒温水热反应24小时;洗涤、离心、干燥,得到Bi2O(OH)2SO4纳米线。
本发明还提供了上述纳米线光催化剂在有机污染物光催化降解方面的应用。
具体在进行有机污染物光催化降解时,在有机污染物废水溶液中加入所述纳米线光催化剂,避光搅拌30min后,开启氙灯光源在紫外光照射下进行光催化反应40-50min,即可;其中,有机污染物废水水溶液的浓度不高于于7.5mg/L;纳米线光催化剂的加入量为每200mL有机污染物废水溶液加入0.1g。
进行光催化降解的有机污染物优选罗丹明B。
本发明相比现有技术具有以下优点:
本发明通过简单的水热反应即可制备得到性能优越的Bi2O(OH)2SO4纳米线:该Bi2O(OH)2SO4纳米线光催化剂,50分钟就可以把200毫升、7.5毫克每升的罗丹明B降解90%以上,预示着Bi2O(OH)2SO4纳米线具有良好的应用前景。
本发明制备方法简易、成本低廉,紫外光下催化性能优越,能够高效降解罗丹明B(RhB)染料废水。
附图说明
图1为为实施例一制备得到的Bi2O(OH)2SO4纳米线光催化剂的X射线衍射(XRD)图;
图2为实施例一制备得到的Bi2O(OH)2SO4纳米线光催化剂的扫面电子显微镜(SEM)图;
图3为对比实施例二制备的棒状Bi2O(OH)2SO4 光催化剂的X射线衍射(XRD)图;
图4为对比实施例二制备的Bi2O(OH)2SO4纳米线光催化剂的扫面电子显微镜(SEM)图;
图5为效果实施例三中Bi2O(OH)2SO4纳米线光催化剂与棒状Bi2O(OH)2SO4光催化剂降解罗丹明B(RhB)染料废水的活性对比图;
其中C0为RhB的初始浓度,C为经过可见光照射一段时间后测量的RhB浓度,t为时间;
由图5可见,在加入Bi2O(OH)2SO4纳米线光催化剂后,能高效催化降解RhB染料废水,并且活性远高于棒状Bi2O(OH)2SO4催化剂。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
实施例一:
室温下,在烧杯中,将1mmol的五水硝酸铋加入15mL蒸馏水中,搅拌三十分钟;再加入0.09g乌洛托品,搅拌半小时;再加入1mmol硫酸钠,搅拌三十分钟;然后,转移到聚四氟乙烯内衬中,180℃恒温水热反应24小时;离心、洗涤、、干燥,得到Bi2O(OH)2SO4纳米线。
由图1可见,制备得到的Bi2O(OH)2SO4纳米线光催化剂的XRD图与Bi2O(OH)2SO4标准卡(JCPDS:76-1102)一致,证明是纯相的Bi2O(OH)2SO4
由图2可见,本发明制备的Bi2O(OH)2SO4为均匀的纳米线形貌,直径为 100-200nm。
对比实施例二:
室温下,在烧杯中,将1mmol的五水硝酸铋加入15mL蒸馏水中,搅拌三十分钟;再加入1mmol硫酸钠,搅拌三十分钟;然后,转移到聚四氟乙烯内衬中,180℃恒温水热反应24小时;洗涤、离心、干燥,得到棒状Bi2O(OH)2SO4
由图3可见,制备得到的棒状Bi2O(OH)2SO4光催化剂的XRD图与Bi2O(OH)2SO4标准卡(JCPDS:76-1102)一致,证明是纯相的Bi2O(OH)2SO4
由图4可见,本发明制备的Bi2O(OH)2SO4为均匀的棒状形貌。
效果实施例三:
测试过程如下:
分别用实施例一制得到的Bi2O(OH)2SO4纳米线光催化剂以及对比实施例二制备得到的棒状Bi2O(OH)2SO4,降解含有RhB的有机废水。
分别称取上述两个实施例制备得到的样品0.1g,分别加入200ml RhB水溶液,其中RhB浓度都为7.5mg/L,先避光搅拌30min,使染料在催化剂表面达到吸附/脱附平衡。然后开启氙灯光源在紫外光照射下进行光催化反应,上清液用分光光度计检测。根据Lambert–Beer定律,有机物特征吸收峰强度的变化,可以定量计算其浓度变化。当吸光物质相同、比色皿厚度相同时,可以用吸光度的变化直接表示溶液浓度的变化。因为RhB在554 nm处有一个特征吸收峰,所以可以利用吸光度的变化来衡量溶液中RhB的浓度变化。
如图5所示,(横坐标:紫外光照射时间;纵坐标:经过紫外光照射一段时间后测量的RhB浓度值与RhB的初始浓度的比值。)可以看出光照50min后,Bi2O(OH)2SO4纳米线光催化剂降解RhB高达90%,与棒状的Bi2O(OH)2SO4相比,Bi2O(OH)2SO4纳米线光催化剂对RhB具有较高的催化活性。

Claims (5)

1.一种纳米线光催化剂,其特征在于:所述纳米线光催化剂的化学式为Bi2O(OH)2SO4;所述纳米线光催化剂呈纳米线结构,直径为 100-200nm。
2.权利要求1所述纳米线光催化剂的制备方法,其特征在于:包括以下步骤:
1) 将1mmol的五水硝酸铋加入盛有15mL蒸馏水烧杯中,搅拌三十分钟;
2) 再加入0.09g的乌洛托品,搅拌三十分钟;
3) 再加入1mmol硫酸钠,搅拌三十分钟;
4) 将上述混合液转移到聚四氟乙烯内衬中,180℃恒温水热反应24小时;洗涤、离心、干燥,得到Bi2O(OH)2SO4纳米线。
3.权利要求1所述纳米线光催化剂在有机污染物光催化降解方面的应用。
4.根据权利要求3所述的应用,其特征在于:所述纳米线光催化剂在进行有机污染物光催化降解时,在有机污染物废水溶液中加入所述纳米线光催化剂,避光搅拌30min后,开启氙灯光源在紫外光照射下进行光催化反应40-50min,即可;所述有机污染物废水水溶液的浓度不高于于7.5mg/L;所述纳米线光催化剂的加入量为每200mL有机污染物废水溶液加入0.1g。
5.根据权利要求4所述的应用,其特征在于:所述有机污染物为罗丹明B。
CN201810617995.4A 2018-06-15 2018-06-15 一种纳米线光催化剂及其制备方法与应用 Active CN108714428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810617995.4A CN108714428B (zh) 2018-06-15 2018-06-15 一种纳米线光催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810617995.4A CN108714428B (zh) 2018-06-15 2018-06-15 一种纳米线光催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN108714428A true CN108714428A (zh) 2018-10-30
CN108714428B CN108714428B (zh) 2021-02-09

Family

ID=63912985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810617995.4A Active CN108714428B (zh) 2018-06-15 2018-06-15 一种纳米线光催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN108714428B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389417A (zh) * 2020-03-24 2020-07-10 武汉理工大学 富硫空位硫化铋纳米线及其制备方法和应用
CN113877564A (zh) * 2021-09-06 2022-01-04 南京信息工程大学 一种原位制备宽光谱Bi2O3@Bi纳米片的方法及其高效降解有机污染物应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785425A (zh) * 2014-03-04 2014-05-14 南京信息工程大学 一种花状Bi2O(OH)2SO4光催化剂的制备方法及应用
CN103787413A (zh) * 2014-03-04 2014-05-14 南京信息工程大学 六角空心管状Bi2O(OH)2SO4光催化剂的制备方法及应用
CN104874409A (zh) * 2015-05-07 2015-09-02 南京信息工程大学 一种新型纳米棒Bi2O(OH)2SO4光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785425A (zh) * 2014-03-04 2014-05-14 南京信息工程大学 一种花状Bi2O(OH)2SO4光催化剂的制备方法及应用
CN103787413A (zh) * 2014-03-04 2014-05-14 南京信息工程大学 六角空心管状Bi2O(OH)2SO4光催化剂的制备方法及应用
CN104874409A (zh) * 2015-05-07 2015-09-02 南京信息工程大学 一种新型纳米棒Bi2O(OH)2SO4光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANGLE WU ET AL: ""Hydrothermal synthesis and characterization of Bi2O3 nanowires"", 《MATERIALS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389417A (zh) * 2020-03-24 2020-07-10 武汉理工大学 富硫空位硫化铋纳米线及其制备方法和应用
CN111389417B (zh) * 2020-03-24 2021-06-08 武汉理工大学 富硫空位硫化铋纳米线及其制备方法和应用
CN113877564A (zh) * 2021-09-06 2022-01-04 南京信息工程大学 一种原位制备宽光谱Bi2O3@Bi纳米片的方法及其高效降解有机污染物应用

Also Published As

Publication number Publication date
CN108714428B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Adegoke et al. Synthesis, characterization and application of CdS/ZnO nanorod heterostructure for the photodegradation of Rhodamine B dye
US11345616B2 (en) Heterojunction composite material consisting of one-dimensional IN2O3 hollow nanotube and two-dimensional ZnFe2O4 nanosheet, and application thereof in water pollutant removal
van Grieken et al. Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors
CN102580742B (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
Liao et al. Enhanced photocatalytic performance through the ferroelectric synergistic effect of pn heterojunction BiFeO3/TiO2 under visible-light irradiation
Feng et al. Postillumination activity in a single-phase photocatalyst of Mo-doped TiO2 nanotube array from its photocatalytic “memory”
CN106902810A (zh) 碳量子点修饰的单层钨酸铋纳米片复合光催化剂及其制备方法和应用
CN104475140A (zh) 一种银改性氮化碳复合光催化材料及其制备方法
CN103920479A (zh) 生物质改性TiO2可见光光催化剂的制备方法及其应用
Dong et al. Triboelectric nanogenerator enhanced radical generation in a photoelectric catalysis system via pulsed direct-current
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN107486198B (zh) 一种基于桃花生物质碳修饰的Bi2WO6复合光催化剂的制备方法及用途
CN106044842B (zh) 一种扇形羟基氟化锌的制备方法及其应用
Liu et al. Pumice-loaded rGO@ MnO2 nanomesh photocatalyst with visible light response for rapid degradation of ciprofloxacin
Merah Electrosynthesis of silver oxide deposited onto hot spring mud with enhanced degradation of Congo red
CN106582626A (zh) 一种新型银离子掺杂TiO2复合材料的制备方法及应用
CN106311288A (zh) 一种新型Bi7F11O5/BiOCl复合光催化剂的简易制备方法及其光催化性能
CN105056986B (zh) 一种制备片状羟基硝酸氧铋光催化剂的方法及催化剂用途
He et al. Synergistic effect of TiO 2-CuWO 4 on the photocatalytic degradation of atrazine
CN108704645A (zh) 一种新型铜-氧化钛复合光催化剂及其制备方法与应用
CN108714428A (zh) 一种纳米线光催化剂及其制备方法与应用
Zhao et al. Preparation of TiO 2/sponge composite for photocatalytic degradation of 2, 4, 6-trichlorophenol
Guan et al. Effect of Sb doping on the photocatalytic performance of Z-scheme TiO2NRA/SnO2/potassium titanate heterojunction and its photocatalytic mechanism
Khalik et al. Converting synthetic azo dye and real textile wastewater into clean energy by using synthesized CuO/C as photocathode in dual-photoelectrode photocatalytic fuel cell
CN108543538A (zh) 一种纳米硫化镉-二氧化钛复合物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant