CN108712098B - 用于静止无功补偿装置的三电平逆变器及其逆变电路结构 - Google Patents

用于静止无功补偿装置的三电平逆变器及其逆变电路结构 Download PDF

Info

Publication number
CN108712098B
CN108712098B CN201810868913.3A CN201810868913A CN108712098B CN 108712098 B CN108712098 B CN 108712098B CN 201810868913 A CN201810868913 A CN 201810868913A CN 108712098 B CN108712098 B CN 108712098B
Authority
CN
China
Prior art keywords
igbt device
inverter circuit
clamping diode
power supply
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810868913.3A
Other languages
English (en)
Other versions
CN108712098A (zh
Inventor
黄权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoyu Holding Co ltd
Original Assignee
Baoyu Holding Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoyu Holding Co ltd filed Critical Baoyu Holding Co ltd
Priority to CN201810868913.3A priority Critical patent/CN108712098B/zh
Publication of CN108712098A publication Critical patent/CN108712098A/zh
Application granted granted Critical
Publication of CN108712098B publication Critical patent/CN108712098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种用于静止无功补偿装置的三电平逆变器及其逆变电路结构,其中电路结构包括电源电路和第一、第二逆变支路,第一逆变支路由第一、第二IGBT器件和第一箝位二极管组成,第二逆变支路由第三、第四IGBT器件和第二箝位二极管组成,第一、第二箝位二极管串联,二者中间接地;第一箝位二极管的另一端连接在第一、第二IGBT器件中间,第二箝位二极管的另一端连接第三IGBT器件,第三IGBT器件的另一端与第二IGBT器件连接,第四IGBT器件的一端连接逆变电路的输出端,另一端连接电源电路。本发明,能够有效降低导通损耗和开关损耗,在开关频率较高的SVG应用场合,转换效率得以大大提升。

Description

用于静止无功补偿装置的三电平逆变器及其逆变电路结构
技术领域
本发明涉及电力电子技术领域,具体涉及一种三电平逆变器及其逆变电路结构,适用于静止无功补偿装置。
背景技术
静止无功补偿装置(SVG)装置是一种综合治理电压波动和闪变、谐波以及电压不平衡的重要设备。SVG凭借着其优越的性能特点,成为了灵活柔性交流输电系统(FACTS)技术和定制电力(CP)技术的重要组成部分,是现代无功功率补偿装置的发展方向,在电力系统中的应用将越来越广泛。
静止无功补偿装置(SVG)大多采用三电平逆变器拓扑电路结构,且多采用模块化以实现更大功率。然而,由于模块化之后,单元功率较小,所以其开关频率也相对较高,多高于20kHz,以减小滤波器电感等无源器件尺寸。
目前,三电平逆变器的三电平逆变器拓扑电路结构通常有I型和T型两种。
图1所示为传统的I型三电平拓扑电路结构,其由4个IGBT(S1,S2,S3,S4)和两个箝位二极管D1,D2组成。它的局限性在于,当三电平输出电压为正母线电压(S1,S2导通,S3,S4关断)或负母线电压时(S1,S2关断,S3,S4导通),电流都必须流经两个功率管或其并联的二极管,所以,导通损耗较大。
图2所示为传统的T型三电平拓扑电路结构,其由4个IGBT(S1,S2,S1c,S2c)组成。其中,S1和S2c都必须承受整个母线电压,然而由于在SVG中,直流母线一般为800V,所以,S1和S2c都需要选择1200V IGBT,而不是I型中的4个600V IGBT。由于1200V器件的开关损耗要明显高于600V器件,因此限制了T型三电平拓扑开关频率的提高,限制了T型三电平在SVG中的应用。
综上所述,现有的三电平拓扑电路结构在SVG中的应用时,存在导通损耗较大或者开关损耗大、开关频率受限的问题。
发明内容
本发明所要解决的技术问题是现有的三电平拓扑电路结构在SVG中的应用时,存在导通损耗较大或者开关损耗大、开关频率受限的问题。
为了解决上述技术问题,本发明所采用的技术方案是提供了一种适用于静止无功补偿装置的三电平逆变电路结构,包括电源电路和第一、第二逆变支路,所述第一逆变支路由第一IGBT器件、第二IGBT器件和第一箝位二极管组成,第一IGBT器件与第二IGBT器件串联后,一端连接直流电源电路,所述第二逆变支路由第三IGBT器件、第四IGBT器件和第二箝位二极管组成,第一箝位二极管与第二箝位二极管串联,二者中间接地;第一箝位二极管的另一端连接在第一IGBT器件与第二IGBT器件中间,第二箝位二极管的另一端连接第三IGBT器件,第三IGBT器件的另一端与第二IGBT器件连接,第四IGBT器件的一端连接逆变电路的输出端,另一端连接电源电路。
在上述电路结构中,还包括第三二极管,连接逆变电路的输出端与电源电路。
在上述电路结构中,所述电源电路包括直流电源、第一分压电容和第二分压电容,直流电源的正极连接第一分压电容的正极端,负极连接第二分压电容的负极端,第一分压电容的负极端与第二分压电容的正极端连接并接地。
在上述电路结构中,
第一IGBT器件与第二IGBT器件串联后,第一IGBT器件的集电极连接电源电路的正极,第一箝位二极管的阳极接地,阴极连接到第一IGBT器件和第二IGBT器件中间;
第三IGBT器件的集电极与第二IGBT器件的发射极连接,第三IGBT器件的发射极连接第二箝位二极管的阳极,第二箝位二极管的阴极与第一箝位二极管的阳极连接,第四IGBT器件的集电极连接逆变电路的输出端,发射极端连接电源电路的负极。
在上述电路结构中,
第一IGBT器件与第二IGBT器件串联后,第一IGBT器件的发射极连接电源电路的负极,第一箝位二极管的阴极接地,阳极连接到第一IGBT器件和第二IGBT器件中间;
第三IGBT器件的发射极与第二IGBT器件的集电极连接,第三IGBT器件的集电极连接第二箝位二极管的阴极,第二箝位二极管的阳极与第一箝位二极管的阴极连接,并接地,第四IGBT器件的发射极连接逆变电路的输出端,集电极连接电源电路的正极。
在上述电路结构中,还包括第三二极管,其阳极连接逆变电路的输出端,阴极连接电源电路的正极。
在上述电路结构中,还包括第三二极管,其阴极连接逆变电路的输出端,阳极连接电源电路的负极。
本发明还提供了一种适用于静止无功补偿装置的逆变器,包括PWM信号生成装置和逆变电路,所述逆变电路采用的是上述结构的逆变电路,所述PWM信号生成装置用于产生PWM信号,控制第一、第二、第三或第四IGBT器件中相应的IGBT器件开通或关断。
在上述逆变器中,所述PWM信号生成装置包括:
DSP,用于产生调制函数并传送给FPGA;
FPGA,用于根据所述调制函数生成PWM控制信号;
模数转换装置,用于对逆变电路的输出电压和输出电流进行采样,并转换为数字采样数据,所述数字采样数据经所述FPGA输送给DSP,DSP根据所述数字采样数据调整所述调制函数,以改变PWM控制信号的脉宽。
本发明,在传统I型逆变电路的基础上,通过改变其中一路逆变支路中的两个IGBT器件的连接关系,使该逆变支路中的一个IGBT器件,一端连接逆变器的输出端Vout,另一端连接直流电源,与传统I型三电平拓扑相比,在工作区间Ⅰ、Ⅲ、Ⅳ,由于导通的功率器件数目减少,新型逆变器的导通损耗有所降低。与传统T型三电平拓扑相比,仅有一个功率器件需要承受全部的输入电压,进一步的,只有在区间Ⅳ,才存在承受高压的S4管带电流开关的工况,在其它区间,耐压较高的IGBT的实际电流是由其反并二极管导通的,这大大降低了其开关损耗,可以有效地提升逆变器效率。
附图说明
图1为传统I型三电平逆变电路示意图;
图2为传统T型三电平逆变电路示意图;
图3为本发明中三电平逆变电路实施例1示意图;
图4为本发明中三电平逆变电路实施例2示意图;
图5为本发明中三电平逆变电路实施例3示意图;
图6为本发明中三电平逆变电路实施例4示意图;
图7为逆变器输出感性无功时,输出电压和电流波形示意图及工作区间划分示意图;
图8为正电平输出时电流流动路径示意图;
图9为零电平输出时电流流动路径示意图;
图10为负电平输出时电流流动路径示意图;
图11为本发明中三电平逆变器的示意图。
具体实施方式
本发明提供了一种用于静止无功补偿装置的三电平逆变器及其逆变电路结构,能够有效降低导通损耗和开关损耗,在开关频率较高的SVG应用场合,转换效率得以大大提升。下面结合说明书附图和具体实施例对本发明做出详细说明。
本发明的实现原理是:
在传统I型逆变电路的基础上,通过改变其中一路逆变支路中的两个IGBT器件的连接关系,使该逆变支路中的一个IGBT器件,一端连接逆变器的输出端Vout,另一端连接直流电源,从而减少了导通的功率器件数目,降低了导通损耗,提高了逆变转换效率。
结合以上原理,本发明提供的用于静止无功补偿装置的三电平逆变器的逆变电路结构,其基本技术方案的实现,包括电源电路和第一、第二逆变支路,所述第一逆变支路由第一IGBT器件、第二IGBT器件和第一箝位二极管组成,第一IGBT器件与第二IGBT器件串联后,一端连接直流电源电路,其特征在于,所述第二逆变支路由第三IGBT器件、第四IGBT器件和第二箝位二极管组成,第一箝位二极管与第二箝位二极管串联,二者中间接地;第一箝位二极管的另一端连接在第一IGBT器件与第二IGBT器件中间,第二箝位二极管的另一端连接第三IGBT器件,第三IGBT器件的另一端与第二IGBT器件连接,第四IGBT器件的一端连接逆变电路的输出端,另一端连接电源电路。
为了对本发明的技术方案和实现方式做出更清楚地解释和说明,以下介绍实现本发明技术方案的几个优选的具体实施例。显然,以下所描述的具体实施例仅为本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施例1。
如图3所示,本发明提供的三电平逆变器的逆变电路结构,由电源电路10和第一、第二逆变支路20、30构成,第一、第二逆变支路20、30又称为逆变电路的上、下桥臂,可以输出三个电平值。
其中,电源电路10包括直流电源DC、第一分压电容C1和第二分压电容C2,直流电源DC的正极连接第一分压电容C1的正极端,负极连接第二分压电容C2的负极端,第一分压电容C1的负极端与第二分压电容C2的正极端连接并接地。
第一逆变支路20包括第一IGBT器件S1、第二IGBT器件S2和第一箝位二极管D1。第一IGBT器件S1与第二IGBT器件S2串联后,第一IGBT器件S1的集电极连接直流电源DC的正极,第一箝位二极管D1的阳极接地,阴极连接第一IGBT器件S1和第二IGBT器件S2之间。
第二逆变支路30包括第三IGBT器件S3、第四IGBT器件S4和第二箝位二极管D2。第三IGBT器件S3的集电极连接第二IGBT器件S2的发射极,第三IGBT器件S3的发射极连接第二箝位二极管D2的阳极,第二箝位二极管D2的阴极与第一箝位二极管D1的阳极连接,并接地。第四IGBT器件S4的集电极连接逆变电路的输出端Vout,第四IGBT器件S4的发射极连接直流电源DC的负极。
具体实施例2。
如图4所示,本具体实施例中,相当于对第一、第二逆变支路进行了互换。
具体电路结构为,第一逆变支路20包括第一IGBT器件S1、第二IGBT器件S2和第一箝位二极管D1。第一IGBT器件S1与第二IGBT器件S2串联后,第一IGBT器件S1的发射极连接直流电源DC的负极,第一箝位二极管D1的阴极接地,阳极连接第一IGBT器件S1和第二IGBT器件S2之间。
第二逆变支路30包括第三IGBT器件S3、第四IGBT器件S4和第二箝位二极管D2。第三IGBT器件S3发射极与第二IGBT器件S2集电极连接,第三IGBT器件S3的集电极连接第二箝位二极管D2的阴极,第二箝位二极管D2的阳极与第一箝位二极管D1的阴极连接,并接地。第四IGBT器件S4的发射极连接逆变电路的输出端Vout,集电极连接直流电源DC的正极。
具体实施例3。
本具体实施例3是在具体实施例1的基础上进行了改进,增加了一个第三二极管D3,用于替代S1,S2的反并联二极管,如此,当S1,S2导通,而电流为负时,电流将经过D3续流,而不是通过两个二极管续流,从而能够减少导通损耗。
如图5所示,第三二极管D3的阳极连接逆变电路的输出端Vout,阴极连接直流电源DC的正极。
具体实施例4。
本具体实施例4是在具体实施例2的基础上进行了改进,同样是增加了一个第三二极管D3,用于替代S3,S4的反并联二极管,如此,当S3,S4导通,而电流为正时,电流将经过D3续流,而不是通过两个二极管续流,从而能够减少导通损耗。
如图6所示,第三二极管D3的阴极连接逆变电路的输出端Vout,阳极连接直流电源DC的负极。
下面以图5所示的逆变电路,逆变器输出感性无功为例,对本发明的工作情况进行分析如下。
当逆变器输出感性无功时,输出电压和电流的波形如图7所示,其中电流的相位滞后电压90°,据此波形,将其分为I、II、III、IV四个工作区间。
一、工作区间Ⅰ,u>0,i<0。
输出正电平时,S1和S2开通,S3和S4关断。因为电流为负,所以电流流动路径仅通过第三二极管D3,如图8中虚线所示的电流路径1。
输出零电平时,S2和S3开通,S1和S4关断。因为电流为负,所以电流流动路径为S3+D2,如图9中虚线所示的电流路径4。
二、工作区间Ⅱ,u>0,i>0。
输出正电平时,S1和S2开通,S3和S4关断,因为电流为正,所以电流流动路径为S1+S2,如图8中虚线所示的电流路径2。
输出零电平时,S2和S3开通,S1和S4关断,因为电流为正,所以电流流动路径为D1+S2,如图9中虚线所示的电流路径3。
三、工作区间Ⅲ,u<0,i>0。
输出负电平时,S1,S2,S3关断,S4开通时,因为电流为正,所以电流流动路径为S4的反并联二极管,如图10中虚线所示的电流路径6。
输出零电平时,S1和S4关断,S2和S3开通,因为电流为正,所以电流流动路径为D1+S2,如图9中所示虚线所示的电流路径3。
四、工作区间Ⅳ,u<0,i<0。
输出负电平时,S1,S2,S3关断,S4开通,因为电流为负,所以电流流动路径为S4,如图10中所示虚线所示的电流路径5。
输出零电平时,S1和S4关断,S2和S3开通,因为电流为负,所以电流流动路径为D2+S3,如图9中所示虚线所示的电流路径4。
同理可以分析图3、图4所示的电路拓扑结构。该方案中,S1,S2都有各自的反并联二极管,没有D3,因此电流则经过这两个二极管续流。
通过上述对逆变器工作情况的分析可以看出,本发明提出的新型三电平拓扑的优势主要体现在:
(1)与传统I型三电平拓扑相比,在工作区间Ⅰ、Ⅲ、Ⅳ,由于导通的功率器件数目减少,新型逆变器的导通损耗有所降低。
(2)与传统T型三电平拓扑相比,仅有一个功率器件需要承受全部的输入电压,进一步的,只有在区间Ⅳ,才存在承受高压的S4管带电流开关的工况,在其它区间,耐压较高的IGBT的实际电流是由其反并二极管导通的,这大大降低了开关损耗,可以有效地提升逆变器开关水平。
具体实施例5。
本发明还提供了一种适用于静止无功补偿装置的逆变器,如图11所示,包括上述结构的逆变电路和PWM控制信号生成装置,PWM信号生成装置用于产生PWM信号,控制第一、第二、第三或第四IGBT器件中相应的IGBT器件开通或关断。
PWM信号生成装置包括:
DSP,用于产生调制函数并传送给FPGA;
FPGA,用于根据所述调制函数生成PWM控制信号;
模数转换装置,用于对逆变电路的输出电压和输出电流进行采样,并转换为数字采样数据,所述数字采样数据经所述FPGA输送给DSP,DSP根据所述数字采样数据调整所述调制函数,以改变PWM控制信号的脉宽。
本发明并不局限于上述最佳实施方式,任何人应该得知在本发明的启示下做出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。

Claims (7)

1.一种适用于静止无功补偿装置的三电平逆变电路结构,包括电源电路和第一、第二逆变支路,所述第一逆变支路由第一IGBT器件、第二IGBT器件和第一箝位二极管组成,第一IGBT器件与第二IGBT器件串联后,一端连接直流电源电路,其特征在于,所述第二逆变支路由第三IGBT器件、第四IGBT器件和第二箝位二极管组成,第一箝位二极管与第二箝位二极管串联,二者中间接地;第一箝位二极管的另一端连接在第一IGBT器件与第二IGBT器件中间,第二箝位二极管的另一端连接第三IGBT器件的一端,第三IGBT器件与第二1GBT器件的连接点与逆变电路的输出端直接连接,第三IGBT器件的另一端与第二IGBT器件连接,第四IGBT器件的一端直接连接逆变电路的输出端,另一端连接电源电路;
所述电源电路包括直流电源、第一分压电容和第二分压电容,直流电源的正极连接第一分压电容的正极端,负极连接第二分压电容的负极端,第一分压电容的负极端与第二分压电容的正极端连接并接地;
还包括第三二极管,连接逆变电路的输出端与电源电路。
2.根据权利要求1所述的三电平逆变电路结构,其特征在于,
第一IGBT器件与第二IGBT器件串联后,第一IGBT器件的集电极连接电源电路的正极,第一箝位二极管的阳极接地,阴极连接到第一IGBT器件和第二IGBT器件中间;
第三IGBT器件的集电极与第二IGBT器件的发射极连接,第三IGBT器件的发射极连接第二箝位二极管的阳极,第二箝位二极管的阴极与第一箝位二极管的阳极连接,第四IGBT器件的集电极连接逆变电路的输出端,发射极连接电源电路的负极。
3.根据权利要求1所述的三电平逆变电路结构,其特征在于,
第一IGBT器件与第二IGBT器件串联后,第一IGBT器件的发射极连接电源电路的负极,第一箝位二极管的阴极接地,阳极连接到第一IGBT器件和第二IGBT器件中间;
第三IGBT器件的发射极与第二IGBT器件的集电极连接,第三IGBT器件的集电极连接第二箝位二极管的阴极,第二箝位二极管的阳极与第一箝位二极管的阴极连接,并接地,第四IGBT器件的发射极连接逆变电路的输出端,集电极连接电源电路的正极。
4.根据权利要求2所述的三电平逆变电路结构,其特征在于,还包括第三二极管,其阳极连接逆变电路的输出端,阴极连接电源电路的正极。
5.根据权利要求3所述的三电平逆变电路结构,其特征在于,还包括第三二极管,其阴极连接逆变电路的输出端,阳极连接电源电路的负极。
6.一种适用于静止无功补偿装置的逆变器,包括PWM信号生成装置和逆变电路,其特征在于,所述逆变电路采用的是如权利要求1-5项任一项所述的逆变电路,所述PWM信号生成装置用于产生PWM信号,控制第一、第二、第三或第四IGBT器件中相应的IGBT器件开通或关断。
7.根据权利要求6所述的逆变器,其特征在于,所述PWM信号生成装置包括:
DSP,用于产生调制函数并传送给FPGA;
FPGA,用于根据所述调制函数生成PWM控制信号;
模数转换装置,用于对逆变电路的输出电压和输出电流进行采样,并转换为数字采样数据,所述数字采样数据经所述FPGA输送给DSP,DSP根据所述数字采样数据调整所述调制函数,以改变PWM控制信号的脉宽。
CN201810868913.3A 2018-08-02 2018-08-02 用于静止无功补偿装置的三电平逆变器及其逆变电路结构 Active CN108712098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810868913.3A CN108712098B (zh) 2018-08-02 2018-08-02 用于静止无功补偿装置的三电平逆变器及其逆变电路结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810868913.3A CN108712098B (zh) 2018-08-02 2018-08-02 用于静止无功补偿装置的三电平逆变器及其逆变电路结构

Publications (2)

Publication Number Publication Date
CN108712098A CN108712098A (zh) 2018-10-26
CN108712098B true CN108712098B (zh) 2024-02-09

Family

ID=63875546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810868913.3A Active CN108712098B (zh) 2018-08-02 2018-08-02 用于静止无功补偿装置的三电平逆变器及其逆变电路结构

Country Status (1)

Country Link
CN (1) CN108712098B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163852A (zh) * 2011-03-15 2011-08-24 南京航空航天大学 一种中点箝位非隔离光伏并网逆变器
WO2013151542A1 (en) * 2012-04-04 2013-10-10 Otis Elevator Company Multilevel converter
CN103701344A (zh) * 2013-12-16 2014-04-02 上海交通大学无锡研究院 一种三电平逆变器及其控制方法
EP2728734A1 (en) * 2012-11-02 2014-05-07 ABB Oy A three-level neutral-point-clamped inverter
CN106655853A (zh) * 2015-07-22 2017-05-10 艾默生网络能源有限公司 一种三电平逆变器
CN107317508A (zh) * 2017-08-15 2017-11-03 华为技术有限公司 一种电能变换器
CN107888100A (zh) * 2016-09-30 2018-04-06 维谛技术有限公司 一种逆变器、控制逆变器的方法及控制装置
CN208638264U (zh) * 2018-08-02 2019-03-22 宝雨控股有限公司 用于静止无功补偿装置的三电平逆变器及其逆变电路结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163852A (zh) * 2011-03-15 2011-08-24 南京航空航天大学 一种中点箝位非隔离光伏并网逆变器
WO2013151542A1 (en) * 2012-04-04 2013-10-10 Otis Elevator Company Multilevel converter
EP2728734A1 (en) * 2012-11-02 2014-05-07 ABB Oy A three-level neutral-point-clamped inverter
CN103701344A (zh) * 2013-12-16 2014-04-02 上海交通大学无锡研究院 一种三电平逆变器及其控制方法
CN106655853A (zh) * 2015-07-22 2017-05-10 艾默生网络能源有限公司 一种三电平逆变器
CN107888100A (zh) * 2016-09-30 2018-04-06 维谛技术有限公司 一种逆变器、控制逆变器的方法及控制装置
CN107317508A (zh) * 2017-08-15 2017-11-03 华为技术有限公司 一种电能变换器
CN208638264U (zh) * 2018-08-02 2019-03-22 宝雨控股有限公司 用于静止无功补偿装置的三电平逆变器及其逆变电路结构

Also Published As

Publication number Publication date
CN108712098A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
US20160268924A1 (en) Multi-Level Inverter Apparatus and Method
CN107204626A (zh) 一种lcc‑mmc交错混合双极直流输电系统
CN110323959B (zh) 可抑制二次纹波和共模漏电流的单相逆变器及其控制方法
JP2017077163A (ja) 5レベルインバータおよび同インバータの応用回路
CN108418455B (zh) 一种多电平逆变器的控制方法、装置以及逆变器
CN110768549B (zh) 一种单相零电压软开关充电器拓扑及其调制方法
CN110061650B (zh) 单级式隔离型三相双向ac/dc变换器及控制方法
CN108599604B (zh) 一种单相七电平逆变电器及其pwm信号调制方法
CN109755960A (zh) 一种单相并网开关电容九电平逆变器拓扑结构
CN103972920A (zh) 紧凑型模块化多电平三极直流输电系统
CN111740626B (zh) X型模块化扩展多电平变换器及其控制方法
SE1650845A1 (en) Modular multilevel converter and cell for reducing current conduction losses
CN114844384A (zh) 一种五电平并网逆变结构、逆变器和光伏电源系统
WO2018171769A1 (zh) Z源网络有源中点钳位五电平光伏并网逆变系统
CN110572061A (zh) 一种混合t型多电平逆变装置及其控制方法
WO2018113309A1 (zh) 变流器
CN102403922A (zh) Dc/ac并网逆变电路及功率因数调节方法
CN102496932A (zh) 一种并联型电压暂降补偿装置
CN110061645B (zh) 一种电容缩减的高压柔性直流装置
CN108712098B (zh) 用于静止无功补偿装置的三电平逆变器及其逆变电路结构
CN205265554U (zh) 一种五电平逆变单元及其应用电路
CN217883245U (zh) 一种三相三电平变流器电路
CN203872078U (zh) N输出单相n+1开关组mmc逆变器
CN116094354A (zh) 一种低损耗五电平拓扑
CN110098755B (zh) 一种五电平混合π型变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 325603 Shuanghuanglou Industrial Zone, Beibaixiang Town, Leqing City, Wenzhou City, Zhejiang Province

Patentee after: BAOYU HOLDING Co.,Ltd.

Country or region after: China

Address before: 325603 Wenzhou Daqiao Industrial Zone, Beibaixiang Town, Leqing City, Zhejiang Province (within Zhejiang Hengli Heavy Duty Transmission Shaft Co., Ltd.)

Patentee before: BAOYU HOLDING Co.,Ltd.

Country or region before: China