CN108682831A - 一种锂电池单质硫-碳复合正极材料的制备方法 - Google Patents
一种锂电池单质硫-碳复合正极材料的制备方法 Download PDFInfo
- Publication number
- CN108682831A CN108682831A CN201810593324.9A CN201810593324A CN108682831A CN 108682831 A CN108682831 A CN 108682831A CN 201810593324 A CN201810593324 A CN 201810593324A CN 108682831 A CN108682831 A CN 108682831A
- Authority
- CN
- China
- Prior art keywords
- lithium battery
- elemental sulfur
- carbon composite
- anode material
- composite anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 39
- 239000010405 anode material Substances 0.000 title claims abstract description 33
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- GJEAMHAFPYZYDE-UHFFFAOYSA-N [C].[S] Chemical compound [C].[S] GJEAMHAFPYZYDE-UHFFFAOYSA-N 0.000 title claims description 29
- 108010010803 Gelatin Proteins 0.000 claims abstract description 51
- 239000008273 gelatin Substances 0.000 claims abstract description 51
- 229920000159 gelatin Polymers 0.000 claims abstract description 51
- 235000019322 gelatine Nutrition 0.000 claims abstract description 51
- 235000011852 gelatine desserts Nutrition 0.000 claims abstract description 51
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000003513 alkali Substances 0.000 claims abstract description 20
- 239000000499 gel Substances 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 238000005406 washing Methods 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 18
- 239000005864 Sulphur Substances 0.000 claims abstract description 18
- 239000006185 dispersion Substances 0.000 claims abstract description 18
- 239000011261 inert gas Substances 0.000 claims abstract description 18
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 18
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 238000007599 discharging Methods 0.000 claims abstract description 9
- 238000009413 insulation Methods 0.000 claims abstract description 8
- 238000002425 crystallisation Methods 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 24
- 239000002253 acid Substances 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 13
- 239000011240 wet gel Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000002386 leaching Methods 0.000 claims description 2
- 235000019795 sodium metasilicate Nutrition 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 14
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 238000001035 drying Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000008025 crystallization Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 53
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 12
- 239000003292 glue Substances 0.000 description 12
- 238000004321 preservation Methods 0.000 description 12
- 238000010792 warming Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 description 6
- 235000011152 sodium sulphate Nutrition 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂电池单质硫‑碳复合正极材料的制备方法,属于新能源电池材料技术领域。本发明首先将明胶溶液和纳米铁粉超声分散,制得分散液,再将分散液和预热后的硅酸钠溶液混合,在降温过程中调节pH,再经真空干燥,制得干凝胶,随后将干凝胶于惰性气体保护状态下,控制反应温度进行炭化,制得炭化凝胶,随后依次经酸浸和碱浸,制得负载基体,再将负载基体和饱和硫酸钠溶液混合,结晶,制得晶体‑负载基体混合物,最终将晶体‑负载基体混合物和硫粉混合后,保温保压反应,再瞬间泄压至常压,出料,水洗和干燥,即得锂电池单质硫‑碳复合正极材料。本发明技术方案制备的锂电池单质硫‑碳复合正极材料具有孔隙率高、循环稳定性良好的特点。
Description
技术领域
本发明公开了一种锂电池单质硫-碳复合正极材料的制备方法,属于新能源电池材料技术领域。
背景技术
能源短缺和环境污染是当今世界最为关注的两大难题,以燃油为动力的交通运输工具所产生的能源短缺和环境污染问题尤其突出,远期的解决方案是使用氢能,但经济和技术水平评估结果表明,氢能应用涉及的许多基础设施问题的解决尚需时日,中长期内以二次电池为纯动力或混合动力能源是解决能源短缺和环境污染的必然选择。进入21世纪,能源危机和环境污染问题日益凸显,人们对以锂离子电池为代表的可循环利用的绿色能源充满期待,具有输出电压高、能量密度大、自放电率低、使用寿命长、绿色无污染等优点。锂离子电池的应用已遍及各个领域,从手机到笔记本电脑,从电动自行车到电动汽车,从太阳能储能板到无人机等,已成为人们日常生活不可或缺的能源供应系统。锂离子电池由于具有能量密度高、自放电小、无记忆效应、工作温度范围宽、循环寿命长及对环境友好等优点,是综合性能最好的新型绿色环保高能二次电池,是最理想的动力电源之一。目前商品化锂离子电池正极材料过渡金属氧化物虽然具有循环寿命长、安全性好等优点,但是受到其相对较低的理论比容量限制,难以满足动力电池需要高容量电极材料的要求,并且锂离子电池主要由正极材料、负极材料、隔膜和电解液组成,其中正极材料是决定锂离子电池性能和成本的关键,市场主流正极材料有钴酸锂、锰酸锂、镍钴锰三元、磷酸铁锂等。其中钴酸锂是最早商业化的正极材料,具有制备工艺简单、材料性能稳定、能量密度高等优点,但其热稳定性不佳,存在一定的安全隐患。硫具有来源广泛(成本低)、无毒(无污染)等特点,因此,单质硫正极材料以其高容量、低成本、低毒性、循环性能较好等优点成为具有开发价值和应用前景的二次动力锂电池正极材料之一。
传统的锂电池单质硫-碳复合正极材料存在孔隙率低、循环稳定性不佳的问题,给实际应用带来一定的困难,因此这也是目前在锂电池单质硫-碳复合正极材料方面急需解决的问题。故研究开发孔隙率高、循环稳定性好的锂电池单质硫-碳复合正极材料非常重要。
发明内容
本发明主要解决的技术问题是:针对传统锂电池单质硫-碳复合正极材料孔隙率低、循环稳定性不佳的缺点,提供了一种锂电池单质硫-碳复合正极材料的制备方法。
为了解决上述技术问题,本发明所采用的技术方案是:
一种锂电池单质硫-碳复合正极材料的制备方法,具体制备步骤为:
(1)将明胶和水加热搅拌溶解,得明胶溶液,再加入明胶质量0.03~0.05倍的纳米铁粉,超声分散,得分散液;
(2)将分散液趁热和预热后的硅酸钠溶液混合,在降温过程中,调节pH至明胶等电点,待冷却至室温,得湿凝胶,再经真空干燥,得干凝胶;
(3)将干凝胶于惰性气体保护状态下,于温度为600~800℃条件下炭化,再继续升温至1480~1500℃,继续炭化45~60min后,冷却,出料,得炭化凝胶;
(4)将炭化凝胶依次经酸浸和碱浸后,洗涤,干燥,得负载基体;
(5)将负载基体和饱和硫酸钠溶液混合后,冷却结晶,过滤,得晶体-负载基体混合物;
(6)按质量比为10:1~30:1将所得晶体-负载基体混合物和硫粉混合倒入高压反应釜,于压力为2.8~3.5MPa,温度为450~500℃条件下,保温保压30~60min后,瞬间泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。
步骤(1)所述明胶为等电点为5.0~6.0的明胶。
步骤(2)所述预热后的硅酸钠溶液为质量分数为8~15%,温度为80~85℃的硅酸钠溶液。
步骤(3)所述惰性气体为氩气或氮气中的任意一种。
步骤(4)所述酸为磷酸,盐酸,硫酸或硝酸中的任意一种;所述酸的质量分数为5~10%。
步骤(4)所述碱为氢氧化钠溶液或氢氧化钾溶液中的任意一种;所述碱的质量分数为10~20%。
步骤(5)所述饱和硫酸钠溶液为温度为65℃条件下的饱和硫酸钠溶液。
步骤(5)所述冷却为冷却至48~50℃。
本发明的有益效果是:
(1)本发明技术方案采用明胶作为碳源,并在制备多孔的炭化凝胶过程中,在纳米铁粉催化作用下,使炭化的明胶和二氧化硅形成炭质骨架的增强体,从而使炭质骨架的力学性能得以提高,避免在产品制备和使用过程中,孔隙结构塌陷而降低产品孔隙率,使产品的孔隙率可以得以长期有效保持;
(2)本发明在步骤(4)中通过酸浸和碱浸去除体系中残留的铁粉和二氧化硅,避免杂质的引入对电池性能造成不良影响的同时,使负载基体孔隙率得以进一步提升,再通过与硫酸钠饱和溶液混合后结晶,在孔隙结构中形成十水合硫酸钠晶体,在最终和硫粉混合加压加热过程中,结晶水转变为游离水,并在压力作用下和气化的硫单质共同渗透进入体系中闭孔结构中,随着瞬间泄压,体系压力瞬间降低,内部闭孔结构中的水分和硫单质因为压力的瞬间变化而气化,并快速溢出,从而将闭孔结构打通,另外,水蒸气快速扩散过程中,可作为致孔剂,使气化的硫单质同样形成多孔结构,再经过水洗去除残留硫酸钠,最终得到孔隙结构得以加强的,且具有通孔结构的单质硫-碳复合正极材料,本申请制备得到的材料中,不仅仅炭材料基体孔隙率和通孔率较高,硫单质同样具有较好的孔隙率,从而使体系内部比表面积进一步提升,使硫单质的利用率和反应活性进一步提升,进而提高锂硫电池正极材料的嵌锂容量和循环稳定性。
具体实施方式
按质量比为1:8~1:10将明胶和水混合倒入1号烧杯中,用玻璃棒搅拌混合20~25min后,于室温条件下静置溶胀6~12h,再将1号烧杯转入数显测速恒温磁力搅拌器中,于温度为80~85℃,转速为400~500r/min条件下,加热搅拌溶解,得明胶溶液,再趁热向明胶溶液中加入明胶质量0.03~0.05倍的纳米铁粉,于超声频率为45~50kHz条件下,超声分散20~40min,得分散液;将质量分数为8~15%的硅酸钠溶液预热至80~85℃,再按质量比为3:1~5:1将分散液趁热和预热后的硅酸钠溶液混合倒入2号烧杯中,用搅拌器以800~1200r/min速率搅拌降温,在降温过程中,调节2号烧杯中物料pH至明胶等电点,待pH调节结束后,停止搅拌,静置冷却至室温后,出料,得湿凝胶,再将所得湿凝胶真空干燥至恒重,得干凝胶;将干凝胶转入炭化炉中,以200~400mL/min速率向炉内通入惰性气体,于惰性气体保护状态下,以3~6℃/min速率程序升温至600~800℃,保温炭化2~4h后,继续以8~10℃/min速率程序升温至1480~1500℃,继续保温炭化45~60min后,随炉冷却至室温,出料,得炭化凝胶;再将所得炭化凝胶浸没于质量分数为5~10%的酸中,浸泡45~60min后,水洗3~5次,再将水洗后的炭化凝胶浸没于质量分数为10~20%的碱中,浸泡45~60min后,水洗4~6次,再于温度为105~110℃条件下干燥至恒重,得负载基体;将硫酸钠和预热至65℃的去离子水混合配置饱和硫酸钠溶液,再将负载基体和饱和硫酸钠溶液按质量比为1:10~1:15混合倒入3号烧杯中,再利用搅拌器,于转速为200~300r/min条件下,自然冷却至48~50℃,结晶,过滤,得晶体-负载基体混合物;按质量比为10:1~30:1将所得晶体-负载基体混合物和硫粉混合倒入高压反应釜,于压力为2.8~3.5MPa,温度为450~500℃条件下,保温保压30~60min后,瞬间泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。所述明胶为等电点为5.0~6.0的明胶。所述惰性气体为氩气或氮气中的任意一种。所述酸为磷酸,盐酸,硫酸或硝酸中的任意一种。所述碱为氢氧化钠溶液或氢氧化钾溶液中的任意一种。
按质量比为1:10将明胶和水混合倒入1号烧杯中,用玻璃棒搅拌混合25min后,于室温条件下静置溶胀12h,再将1号烧杯转入数显测速恒温磁力搅拌器中,于温度为85℃,转速为500r/min条件下,加热搅拌溶解,得明胶溶液,再趁热向明胶溶液中加入明胶质量0.05倍的纳米铁粉,于超声频率为50kHz条件下,超声分散40min,得分散液;将质量分数为15%的硅酸钠溶液预热至85℃,再按质量比为5:1将分散液趁热和预热后的硅酸钠溶液混合倒入2号烧杯中,用搅拌器以1200r/min速率搅拌降温,在降温过程中,调节2号烧杯中物料pH至明胶等电点,待pH调节结束后,停止搅拌,静置冷却至室温后,出料,得湿凝胶,再将所得湿凝胶真空干燥至恒重,得干凝胶;将干凝胶转入炭化炉中,以400mL/min速率向炉内通入惰性气体,于惰性气体保护状态下,以6℃/min速率程序升温至800℃,保温炭化4h后,继续以10℃/min速率程序升温至1500℃,继续保温炭化60min后,随炉冷却至室温,出料,得炭化凝胶;再将所得炭化凝胶浸没于质量分数为10%的酸中,浸泡60min后,水洗5次,再将水洗后的炭化凝胶浸没于质量分数为20%的碱中,浸泡60min后,水洗6次,再于温度为110℃条件下干燥至恒重,得负载基体;将硫酸钠和预热至65℃的去离子水混合配置饱和硫酸钠溶液,再将负载基体和饱和硫酸钠溶液按质量比为1:15混合倒入3号烧杯中,再利用搅拌器,于转速为300r/min条件下,自然冷却至50℃,结晶,过滤,得晶体-负载基体混合物;按质量比为30:1将所得晶体-负载基体混合物和硫粉混合倒入高压反应釜,于压力为3.5MPa,温度为500℃条件下,保温保压60min后,瞬间泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。所述明胶为等电点为6.0的明胶。所述惰性气体为氩气。所述酸为磷酸。所述碱为氢氧化钠溶液。
按质量比为1:10将明胶和水混合倒入1号烧杯中,用玻璃棒搅拌混合25min后,于室温条件下静置溶胀12h,再将1号烧杯转入数显测速恒温磁力搅拌器中,于温度为85℃,转速为500r/min条件下,加热搅拌溶解,得明胶溶液,于超声频率为50kHz条件下,超声分散40min,得分散液;将质量分数为15%的硅酸钠溶液预热至85℃,再按质量比为5:1将分散液趁热和预热后的硅酸钠溶液混合倒入2号烧杯中,用搅拌器以1200r/min速率搅拌降温,在降温过程中,调节2号烧杯中物料pH至明胶等电点,待pH调节结束后,停止搅拌,静置冷却至室温后,出料,得湿凝胶,再将所得湿凝胶真空干燥至恒重,得干凝胶;将干凝胶转入炭化炉中,以400mL/min速率向炉内通入惰性气体,于惰性气体保护状态下,以6℃/min速率程序升温至800℃,保温炭化4h后,继续以10℃/min速率程序升温至1500℃,继续保温炭化60min后,随炉冷却至室温,出料,得炭化凝胶;再将所得炭化凝胶浸没于质量分数为10%的酸中,浸泡60min后,水洗5次,再将水洗后的炭化凝胶浸没于质量分数为20%的碱中,浸泡60min后,水洗6次,再于温度为110℃条件下干燥至恒重,得负载基体;将硫酸钠和预热至65℃的去离子水混合配置饱和硫酸钠溶液,再将负载基体和饱和硫酸钠溶液按质量比为1:15混合倒入3号烧杯中,再利用搅拌器,于转速为300r/min条件下,自然冷却至50℃,结晶,过滤,得晶体-负载基体混合物;按质量比为30:1将所得晶体-负载基体混合物和硫粉混合倒入高压反应釜,于压力为3.5MPa,温度为500℃条件下,保温保压60min后,瞬间泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。所述明胶为等电点为6.0的明胶。所述惰性气体为氩气。所述酸为磷酸。所述碱为氢氧化钠溶液。
按质量比为1:10将明胶和水混合倒入1号烧杯中,用玻璃棒搅拌混合25min后,于室温条件下静置溶胀12h,再将1号烧杯转入数显测速恒温磁力搅拌器中,于温度为85℃,转速为500r/min条件下,加热搅拌溶解,得明胶溶液,再趁热向明胶溶液中加入明胶质量0.05倍的纳米铁粉,于超声频率为50kHz条件下,超声分散40min,得分散液;将质量分数为15%的硅酸钠溶液预热至85℃,再按质量比为5:1将分散液趁热和预热后的硅酸钠溶液混合倒入2号烧杯中,用搅拌器以1200r/min速率搅拌降温,在降温过程中,调节2号烧杯中物料pH至明胶等电点,待pH调节结束后,停止搅拌,静置冷却至室温后,出料,得湿凝胶,再将所得湿凝胶真空干燥至恒重,得干凝胶;将干凝胶转入炭化炉中,以400mL/min速率向炉内通入惰性气体,于惰性气体保护状态下,以6℃/min速率程序升温至800℃,保温炭化4h后,继续以10℃/min速率程序升温至1500℃,继续保温炭化60min后,随炉冷却至室温,出料,得炭化凝胶;再将所得炭化凝胶浸没于质量分数为10%的酸中,浸泡60min后,水洗5次,再将水洗后的炭化凝胶浸没于质量分数为20%的碱中,浸泡60min后,水洗6次,再于温度为110℃条件下干燥至恒重,得负载基体;按质量比为30:1将所得负载基体混合物和硫粉混合倒入高压反应釜,于压力为3.5MPa,温度为500℃条件下,保温保压60min后,瞬间泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。所述明胶为等电点为6.0的明胶。所述惰性气体为氩气。所述酸为磷酸。所述碱为氢氧化钠溶液。
按质量比为1:10将明胶和水混合倒入1号烧杯中,用玻璃棒搅拌混合25min后,于室温条件下静置溶胀12h,再将1号烧杯转入数显测速恒温磁力搅拌器中,于温度为85℃,转速为500r/min条件下,加热搅拌溶解,得明胶溶液,再趁热向明胶溶液中加入明胶质量0.05倍的纳米铁粉,于超声频率为50kHz条件下,超声分散40min,得分散液;将质量分数为15%的硅酸钠溶液预热至85℃,再按质量比为5:1将分散液趁热和预热后的硅酸钠溶液混合倒入2号烧杯中,用搅拌器以1200r/min速率搅拌降温,在降温过程中,调节2号烧杯中物料pH至明胶等电点,待pH调节结束后,停止搅拌,静置冷却至室温后,出料,得湿凝胶,再将所得湿凝胶真空干燥至恒重,得干凝胶;将干凝胶转入炭化炉中,以400mL/min速率向炉内通入惰性气体,于惰性气体保护状态下,以6℃/min速率程序升温至800℃,保温炭化4h后,继续以10℃/min速率程序升温至1500℃,继续保温炭化60min后,随炉冷却至室温,出料,得炭化凝胶;再将所得炭化凝胶浸没于质量分数为10%的酸中,浸泡60min后,水洗5次,再将水洗后的炭化凝胶浸没于质量分数为20%的碱中,浸泡60min后,水洗6次,再于温度为110℃条件下干燥至恒重,得负载基体;将硫酸钠和预热至65℃的去离子水混合配置饱和硫酸钠溶液,再将负载基体和饱和硫酸钠溶液按质量比为1:15混合倒入3号烧杯中,再利用搅拌器,于转速为300r/min条件下,自然冷却至50℃,结晶,过滤,得晶体-负载基体混合物;按质量比为30:1将所得晶体-负载基体混合物和硫粉混合倒入高压反应釜,于压力为3.5MPa,温度为500℃条件下,保温保压60min后,3kPa/min速率缓慢泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。所述明胶为等电点为6.0的明胶。所述惰性气体为氩气。所述酸为磷酸。所述碱为氢氧化钠溶液。
按质量比为1:10将明胶和水混合倒入1号烧杯中,用玻璃棒搅拌混合25min后,于室温条件下静置溶胀12h,再将1号烧杯转入数显测速恒温磁力搅拌器中,于温度为85℃,转速为500r/min条件下,加热搅拌溶解,得明胶溶液,再趁热向明胶溶液中加入明胶质量0.05倍的纳米铁粉,于超声频率为50kHz条件下,超声分散40min,得分散液;将质量分数为15%的硅酸钠溶液预热至85℃,再按质量比为5:1将分散液趁热和预热后的硅酸钠溶液混合倒入2号烧杯中,用搅拌器以1200r/min速率搅拌降温,在降温过程中,调节2号烧杯中物料pH至明胶等电点,待pH调节结束后,停止搅拌,静置冷却至室温后,出料,得湿凝胶,再将所得湿凝胶真空干燥至恒重,得干凝胶;将干凝胶转入炭化炉中,以400mL/min速率向炉内通入惰性气体,于惰性气体保护状态下,以6℃/min速率程序升温至800℃,保温炭化4h后,继续以10℃/min速率程序升温至1000℃,继续保温炭化60min后,随炉冷却至室温,出料,得炭化凝胶;再将所得炭化凝胶浸没于质量分数为10%的酸中,浸泡60min后,水洗5次,再将水洗后的炭化凝胶浸没于质量分数为20%的碱中,浸泡60min后,水洗6次,再于温度为110℃条件下干燥至恒重,得负载基体;将硫酸钠和预热至65℃的去离子水混合配置饱和硫酸钠溶液,再将负载基体和饱和硫酸钠溶液按质量比为1:15混合倒入3号烧杯中,再利用搅拌器,于转速为300r/min条件下,自然冷却至50℃,结晶,过滤,得晶体-负载基体混合物;按质量比为30:1将所得晶体-负载基体混合物和硫粉混合倒入高压反应釜,于压力为3.5MPa,温度为500℃条件下,保温保压60min后,瞬间泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。所述明胶为等电点为6.0的明胶。所述惰性气体为氩气。所述酸为磷酸。所述碱为氢氧化钠溶液。
对比例:合肥某纳米科技发展有限公司生产的锂电池单质硫-碳复合正极材料。
将实例1至实例5所得的锂电池单质硫-碳复合正极材料及对比例产品进行性能检测,具体检测方法如下:
孔隙率采用压汞仪(Autopore9500)测量。
将实例1至实例5所得的锂电池单质硫-碳复合正极材料及对比例产品分别在0.5C下进行循环检测。
具体检测结果如表1、表2所示:
表1锂电池单质硫-碳复合正极材料具体检测结果
检测项目 | 实例1 | 实例2 | 实例3 | 实例4 | 实例5 | 对比例 |
孔隙率/% | 52 | 40 | 37 | 35 | 36 | 31 |
表2循环稳定性检测结果
检测项目 | 实例1 | 实例2 | 实例3 | 实例4 | 实例5 | 对比例 |
首次放电容量/mAh/g | 1100 | 1000 | 930 | 810 | 700 | 600 |
100次循后容量//mAh/g | 1028.5 | 915 | 813.7 | 982.6 | 514.5 | 393 |
保持率/% | 93.5 | 91.5 | 87.5 | 85.5 | 73.5 | 65.5 |
由表1检测结果可知,本发明技术方案制备的锂电池单质硫-碳复合正极材料具有孔隙率高和良好的循环稳定性的特点,在新能源电池材料技术行业的发展中具有广阔的前景。
Claims (8)
1.一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于具体制备步骤为:
(1)将明胶和水加热搅拌溶解,得明胶溶液,再加入明胶质量0.03~0.05倍的纳米铁粉,超声分散,得分散液;
(2)将分散液趁热和预热后的硅酸钠溶液混合,在降温过程中,调节pH至明胶等电点,待冷却至室温,得湿凝胶,再经真空干燥,得干凝胶;
(3)将干凝胶于惰性气体保护状态下,于温度为600~800℃条件下炭化,再继续升温至1480~1500℃,继续炭化45~60min后,冷却,出料,得炭化凝胶;
(4)将炭化凝胶依次经酸浸和碱浸后,洗涤,干燥,得负载基体;
(5)将负载基体和饱和硫酸钠溶液混合后,冷却结晶,过滤,得晶体-负载基体混合物;
(6)按质量比为10:1~30:1将所得晶体-负载基体混合物和硫粉混合倒入高压反应釜,于压力为2.8~3.5MPa,温度为450~500℃条件下,保温保压30~60min后,瞬间泄压至常压,出料,水洗,干燥,即得锂电池单质硫-碳复合正极材料。
2.根据权利要求1所述的一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于,步骤(1)所述明胶为等电点为5.0~6.0的明胶。
3.根据权利要求1所述的一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于,步骤(2)所述预热后的硅酸钠溶液为质量分数为8~15%,温度为80~85℃的硅酸钠溶液。
4.根据权利要求1所述的一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于,步骤(3)所述惰性气体为氩气或氮气中的任意一种。
5.根据权利要求1所述的一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于,步骤(4)所述酸为磷酸,盐酸,硫酸或硝酸中的任意一种;所述酸的质量分数为5~10%。
6.根据权利要求1所述的一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于,步骤(4)所述碱为氢氧化钠溶液或氢氧化钾溶液中的任意一种;所述碱的质量分数为10~20%。
7.根据权利要求1所述的一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于,步骤(5)所述饱和硫酸钠溶液为温度为65℃条件下的饱和硫酸钠溶液。
8.根据权利要求1所述的一种锂电池单质硫-碳复合正极材料的制备方法,其特征在于,步骤(5)所述冷却为冷却至48~50℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810593324.9A CN108682831B (zh) | 2018-06-11 | 2018-06-11 | 一种锂电池单质硫-碳复合正极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810593324.9A CN108682831B (zh) | 2018-06-11 | 2018-06-11 | 一种锂电池单质硫-碳复合正极材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108682831A true CN108682831A (zh) | 2018-10-19 |
CN108682831B CN108682831B (zh) | 2021-08-27 |
Family
ID=63810738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810593324.9A Active CN108682831B (zh) | 2018-06-11 | 2018-06-11 | 一种锂电池单质硫-碳复合正极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108682831B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111082155A (zh) * | 2020-01-04 | 2020-04-28 | 浙江大学 | 一种高能量长寿命锂硫电池的制造方法 |
CN112142125A (zh) * | 2020-09-29 | 2020-12-29 | 山东精工电子科技有限公司 | 二次生长法制备高镍三元正极材料的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101953001A (zh) * | 2008-03-12 | 2011-01-19 | 丰田自动车工程及制造北美公司 | 硫-碳材料 |
CN103094535A (zh) * | 2013-01-21 | 2013-05-08 | 北京化工大学 | 一种硫/碳多孔纳米复合材料及其制备方法与应用 |
CN104716300A (zh) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | 一种锂硫电池用电极正极及其制备和应用 |
CN106532043A (zh) * | 2016-12-29 | 2017-03-22 | 西安理工大学 | 一种碳凝胶负载硫‑锂硫电池正极材料的制备方法 |
WO2017078824A2 (en) * | 2015-08-17 | 2017-05-11 | The Regents Of The University Of Colorado, A Body Corporate | Sulfur-carbon tubes and/or spheres, and methods of making same |
CN108039457A (zh) * | 2017-11-08 | 2018-05-15 | 西安理工大学 | 一种锂硫电池正极材料的制备方法 |
-
2018
- 2018-06-11 CN CN201810593324.9A patent/CN108682831B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101953001A (zh) * | 2008-03-12 | 2011-01-19 | 丰田自动车工程及制造北美公司 | 硫-碳材料 |
CN103094535A (zh) * | 2013-01-21 | 2013-05-08 | 北京化工大学 | 一种硫/碳多孔纳米复合材料及其制备方法与应用 |
CN104716300A (zh) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | 一种锂硫电池用电极正极及其制备和应用 |
WO2017078824A2 (en) * | 2015-08-17 | 2017-05-11 | The Regents Of The University Of Colorado, A Body Corporate | Sulfur-carbon tubes and/or spheres, and methods of making same |
CN106532043A (zh) * | 2016-12-29 | 2017-03-22 | 西安理工大学 | 一种碳凝胶负载硫‑锂硫电池正极材料的制备方法 |
CN108039457A (zh) * | 2017-11-08 | 2018-05-15 | 西安理工大学 | 一种锂硫电池正极材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
蔡周阳 等: ""氮掺杂介孔碳/硫复合材料的制备及其用作锂硫电池正极材料的研究"", 《浙江理工大学学报(自然科学版)》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111082155A (zh) * | 2020-01-04 | 2020-04-28 | 浙江大学 | 一种高能量长寿命锂硫电池的制造方法 |
CN112142125A (zh) * | 2020-09-29 | 2020-12-29 | 山东精工电子科技有限公司 | 二次生长法制备高镍三元正极材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108682831B (zh) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105390672A (zh) | 三维氮掺杂介孔碳超薄纳米片材料制备方法 | |
CN107464938B (zh) | 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用 | |
CN109950487A (zh) | 一种锂硫电池正极材料及其制备方法 | |
CN104577123A (zh) | 一种锂离子电池正极材料的制备方法 | |
CN111211290A (zh) | 一种高性能兼顾快充石墨锂离子电池负极及其制备方法 | |
CN104843800B (zh) | 一种碳包覆四氧化三铁负极材料的溶剂热制备方法 | |
CN117996030A (zh) | 钠离子电池生物质硬碳改性复合负极材料、制备方法、应用 | |
CN110224126B (zh) | 一种铁镍硫化物纳米材料及其制备方法和应用 | |
CN108682831A (zh) | 一种锂电池单质硫-碳复合正极材料的制备方法 | |
CN111009652A (zh) | 一种硫/三聚氰胺基多孔骨架复合材料及其制备方法和应用 | |
CN108539158B (zh) | 一种rGO/WS2复合材料的制备方法及其在锂硫电池正极材料中的应用 | |
CN116190641B (zh) | 一种锂钠钾混合型正极活性材料及其制备方法和应用 | |
WO2023226550A1 (zh) | 高导电性磷酸铁锂的制备方法及其应用 | |
CN108039483B (zh) | 磷酸铁锂复合材料及制备方法 | |
CN109256547A (zh) | 一种多孔石墨烯-磷酸铁锂正极材料的制备方法 | |
CN108666569B (zh) | 一种海绵状碳材料的制备方法 | |
CN115148946A (zh) | 锂硫电池正极极片的制备方法以及锂硫电池 | |
CN115626637A (zh) | 一种碳/石墨烯/钛酸锂复合负极材料的制备方法 | |
CN113955747A (zh) | 一种石墨烯包覆天然石墨负极材料的制备方法 | |
CN107845780A (zh) | 锂硫电池碳硫复合物正极材料的溶剂热辅助制备方法 | |
CN102544458A (zh) | 锂离子动力电池改性石墨负极材料的制备方法 | |
CN111584843A (zh) | 一种聚苯胺共聚物-多孔碳-g-C3N4锂硫电池正极材料及其制法 | |
CN106784666B (zh) | 用于锂硫电池负极的碳包覆纳米硼锂复合材料的制备方法 | |
CN112186154A (zh) | 一种氟磷酸钒钠@CNTs复合材料及其制备方法和应用 | |
CN105514419A (zh) | 石墨碳/四氧化三铁复合材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210805 Address after: 317523 Ze Guo Zhen Xin Qiu Cun, Wenling City, Taizhou City, Zhejiang Province Applicant after: Zhang Huahai Address before: 528500 card 5, No.301, No.78 Jiangwan Road, Hecheng street, Gaoming District, Foshan City, Guangdong Province Applicant before: FOSHAN TENGLI NEW ENERGY TECHNOLOGY Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |