CN108677382B - 一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法 - Google Patents

一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法 Download PDF

Info

Publication number
CN108677382B
CN108677382B CN201810512111.9A CN201810512111A CN108677382B CN 108677382 B CN108677382 B CN 108677382B CN 201810512111 A CN201810512111 A CN 201810512111A CN 108677382 B CN108677382 B CN 108677382B
Authority
CN
China
Prior art keywords
cta
pvdf
spinning
breathable material
composite nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810512111.9A
Other languages
English (en)
Other versions
CN108677382A (zh
Inventor
张平允
高炜
舒诗湖
顾玉亮
张东
刘辛悦
朱文滨
李佳佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center of Urban Water Resources Co Ltd
Original Assignee
Shanghai National Engineering Research Center of Urban Water Resources Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center of Urban Water Resources Co Ltd filed Critical Shanghai National Engineering Research Center of Urban Water Resources Co Ltd
Priority to CN201810512111.9A priority Critical patent/CN108677382B/zh
Publication of CN108677382A publication Critical patent/CN108677382A/zh
Application granted granted Critical
Publication of CN108677382B publication Critical patent/CN108677382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明属于材料科学技术领域,具体涉及一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法。包括如下步骤:1)将适量的PVDF和AgNO3溶解于混合溶剂A中,制得纺丝液R1;2)将适量的CTA和AgNO3溶解于混合溶剂B中,制得纺丝液R2;3)将适量的AgNO3添加到混合溶剂C中,待彻底还原后得纺丝液R3;4)取完全脱泡后的纺丝液R1、R2、R3,分别置于电纺®推注装置的三个喷头上;5)分别调节纺丝液R1、R2、R3喷头位置的推注参数、平移参数和接收参数,进行静电纺丝,制得PVDF/CTA/Ag复合纳米纤维透气材料。本发明的方法操作过程灵活可控,效率高;通过本发明的方法制得的PVDF/CTA/Ag复合纳米纤维透气材料机械强度高、抗污染然性能高,透气性优良,并具有良好的抑菌性能和抗污染性能。

Description

一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气 材料的方法
技术领域
本发明涉及一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,属于材料科学技术领域。
背景技术
纳米科技推动了产品的微型化、功能化、高性能化与环境友好化,符合人类社会进步中的可持续发展理念,能极大地节约资源和能源,并促进生态环境的改善,对于传统纤维行业的发展而言,随着纳米科技应用领域的不断拓展,其研究开发已是多种学科的交叉和融合,技术创新主要体现在化学、材料科学、合成科学、仪表与仪器、工程学科等领域,而纳米科技的出现与不断突破为纤维产业在新层次上的可持续发展提供了物质和技术保证。
纤维过滤材料因其具有良好的可加工性、结构和功能的可设计性,而成为近年来发展最快、使用最为广泛的过滤材料、大量研究表明,纤维过滤材料的过滤效率随着纤维直径的降低而显著提升。因此,降低纤维直径成为改善纤维过滤材料性能的一种有效方法。而静电纺丝技术作为一种可以制备直径在几纳米到几微米范围内的超细小纤维方法,在纤维过滤材料的制备中已引起了广泛的关注。
纳米纤维是纳米科技在纤维领域的成功应用,其优点主要体现为以下四点:(1)纳米纤维制备在纤维的传统成形加工过程中即可完成,无须增加专门的工序;(2)由于纳米纤维的特性,与微米级分散相相比较,其在功能纳米纤维中的添加量非常少,可以有效节约能源资源;(3)实现传统纤维材料物理机械性能的提升,即高性能化;(4)实现纤维材料物理机械性能的提升,利用纳米材料所具备的光、电、磁等特殊功能,可以高效开发功能性纤维材料,这也是目前功能纳米纤维材料实现产品开发的主要方面,功能纳米纤维在市场上占据重要地位,并朝多种材料复配、多种功能复合的方向迅速发展。
开发功能纳米纤维透气材料在过滤机个人防护领域的应用前景广阔,其主要应用领域可分为气体过滤领域、液体过滤领域和人体防护领域。此外,功能纳米纤维透气材料还可应用于自清洁和催化载体、能源与光电磁、复合增强、食品工程、化妆品等领域。
发明内容
针对现有技术存在的上述缺陷,本发明提出了一种新的基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法。本发明的方法操作过程灵活可控,效率高;通过本发明的方法制得的PVDF/CTA/Ag复合纳米纤维透气材料机械强度高、抗污染性能高,透气性优良,并具有良好的抑菌性能和抗污染性能。
本发明是采用以下的技术方案实现的:
一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,包括如下步骤:
1)将适量的PVDF和AgNO3溶解于混合溶剂A中,室温下搅拌分散均匀后,恒温加热至完全溶解,冷却至室温,制得纺丝液R1;
2)将适量的CTA和AgNO3溶解于混合溶剂B中,室温下搅拌分散均匀后,恒温加热至完全溶解,冷却至室温,制得纺丝液R2;
3)将适量的AgNO3添加到混合溶剂C中,室温下搅拌分散均匀,完全溶解后置于自然光下,待彻底还原后得纺丝液R3;
4)取一定量的完全脱泡后的纺丝液R1、R2、R3,分别置于电纺推注装置的三个喷头上;
5)分别调节纺丝液R1、R2、R3喷头位置的推注参数、平移参数和接收参数,进行静电纺丝,制得PVDF/CTA/Ag复合纳米纤维透气材料。
作为优选,混合溶剂A、混合溶剂B、混合溶剂C均为溶剂Ⅰ和溶剂Ⅱ的混合液。
作为优选,溶剂Ⅰ为二甲基亚砜、N-甲基吡咯烷酮、二甲基乙酰胺、邻苯二甲酸二辛酯和邻苯二甲酸二丁酯中的至少一种,溶剂Ⅱ为乙醇、聚乙二醇、磷酸三乙酯、磷酸三甲酯、磷酸三丙酯中的至少一种,溶剂Ⅰ和溶剂Ⅱ的质量比为8:2。
作为优选,步骤1)中混合溶剂A中添加的PVDF和AgNO3的质量分数分别为:1~30%和0.1~20%,步骤1)中的恒温加热温度为:25~200℃。
作为优选,步骤2)中向混合溶剂B中添加的CTA和AgNO3的质量分数分别为:0.5~30%和0.1~20%,步骤2)中的恒温加热温度为:25~200℃。
作为优选,步骤3)中向混合溶剂C中添加的AgNO3的质量分数为0.1~20%。
作为优选,步骤4)中量取的完全脱泡后的纺丝液R1、R2、R3均为1~100毫升。
作为优选,步骤4)中电纺推注装置的三个喷头的可调角度为-45°~45°。
作为优选,步骤5)中纺丝液R1、R2、R3喷头位置的推注参数调节为:推注速度0.001~90 mm/min;推注行程0~100mm;喷射间距50~300mm;
平移参数调节为:平移次数 1~9999次,移动速度 1~500 mm/min,移动行程 0~600 mm,往复平移距离0~300 mm;
接收参数调节为:纺丝液R1、R2、R3喷头位置对应的喷丝接收器转速 0~140 rpm,平板接收器面积:10~800 cm2
作为优选,步骤5)中静电纺丝时的温度参数为:5~60℃;湿度参数为:10~80%;正高压参数为:0~50kV;负高压参数为:-50~0kV。
本发明的有益效果是:
与现有技术相比,本发明以疏水高分子聚合物PVDF、亲水高分子聚合物CTA为共同支撑结构,制得的PVDF/CTA/Ag复合纳米纤维透气材料的机械强度高、抗污染然性能高;本发明基于静电纺丝技术,纺丝条件灵活可控、纺丝过程简单、纺丝效率高;采用电纺推注装置(三套)静电纺丝装置将不同组分的纺丝液同步静电纺丝制备PVDF/CTA/Ag复合纳米纤维透气材料,制得的PVDF/CTA/Ag复合纳米纤维透气材料透气性优良,水蒸气透过量可达到3302~3417 g/m3, 24h;纳米银颗粒均匀分布且不易浸泡脱除;银颗粒增加了材料的粗糙度,CTA材料的亲水性和银颗粒的粗糙度大大增加了纳米纤维透气材料的抗污染性能,使得制得的PVDF/CTA/Ag复合纳米纤维透气材料具有良好的抑菌性能和抗污染性能,接触角可达到为0~65°。
附图说明
图1是本发明的方法流程图。
图2是实施例一制得的PVDF/CTA/Ag复合纳米纤维透气材料的电镜照片。
图3是实施例二制得的PVDF/CTA/Ag复合纳米纤维透气材料的电镜照片。
具体实施方式
为了充分了解本发明的目的、特征及功效,通过下述具体实施方式,对本发明作详细说明。本发明的工艺方法除下述内容外,其余均采用本领域的常规方法或者装置。下述名词术语除非另有说明,否则均具有本领域技术人员通常理解的含义。
实施例一:
如图1和图2所示,一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,包括如下步骤:
S101:步骤1),将质量分数为10%的PVDF(聚偏氟乙烯)、质量分数为5%的AgNO3溶解在质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂A中,室温下连续磁力搅拌分散均匀后,放入烘箱60℃恒温加热使其完全溶解,冷却至室温,制得纺丝液R1;
S102:步骤2),将质量分数为7%的CTA(三醋酸纤维素)、质量分数为7%的AgNO3溶解在质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂B中,室温下连续磁力搅拌分散均匀后,放入烘箱80℃恒温加热使其完全溶解,冷却至室温,制得纺丝液R2;
S103:步骤3),将质量分数为10%的AgNO3添加入质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂C中,连续磁力搅拌、完全溶解后,置于自然光下,48小时后,待彻底还原后得纺丝液R3;
S104:步骤4),取10毫升完全脱泡后的纺丝液R1、R2和R3分别置于电纺推注装置的三个喷头上,调节三喷头的角度分别为30°、30°和60°;
调节电纺推注装置的三个正高压为0~50kV、负高压-50~0kV、纺丝湿度40%、纺丝温度20℃;电纺推注装置(三套)三喷头的推注参数为:推进速度0.04 mm/min,推注行程10mm,喷射间距70 mm;平移参数为:平移次数866次,移动速度120 mm/min,移动行程80 mm,往复平移距离40 mm;接收参数为:纺丝液R1、R2、R3喷头位置对应的喷丝接收器转速 60 rpm,平板接收器面积600 cm2,进行静电纺丝,制得PVDF/CTA/Ag复合纳米纤维透气材料。所得的PVDF/CTA/Ag复合纳米纤维透气材料的各参数如下:
纤维直径/nm:519.67±81.08;
纳米纤维表面元素含量/wt.%:C:26.46±1.92;N:1.25±0.31;O:15.42±5.16;F:20.78±1.16;Ag:31.26±3.91;
纳米纤维水蒸气透过量为3377.6524±2.1213 g/m3, 24h;
纳米纤维表面接触角为:41±3.4°。
PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果如表1所示:
表1:PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果
时间 Ag+/ mg•L-1
两周后 <0.002
一个月后 <0.002
两个月后 <0.002
通过上述所得的PVDF/CTA/Ag复合纳米纤维透气材料的各参数以及PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果可以看出:经过两个月的长时间浸泡清洗浸泡液中并没有检测到Ag+,这说明PVDF/CTA/Ag复合纳米纤维中没有残留的硝酸银。
实施例二:
如图1和图3所示,一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,包括如下步骤:
S101:步骤1),将质量分数为11%的PVDF(聚偏氟乙烯)、质量分数为5%的AgNO3溶解在质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂A中,室温下连续磁力搅拌分散均匀后,放入烘箱60℃恒温加热使其完全溶解,冷却至室温,制得纺丝液R1;
S102:步骤2),将质量分数为8%的CTA(三醋酸纤维素)、质量分数为7%的AgNO3溶解在质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂B中,室温下连续磁力搅拌分散均匀后,放入烘箱80℃恒温加热使其完全溶解,冷却至室温,制得纺丝液R2;
S103:步骤3),将质量分数为12%的AgNO3添加入质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂C中,连续磁力搅拌、完全溶解后,置于自然光下,48小时后,
待彻底还原后得纺丝液R3;
S104:步骤4),取10毫升完全脱泡后的纺丝液R1、R2和R3分别置于电纺推注装置的三个喷头上,调节三喷头的角度分别为30°、30°和60°;
调节电纺推注装置的三个正高压为0~50kV、负高压-50~0kV、纺丝湿度40%、纺丝温度20℃;电纺推注装置(三套)三喷头的推注参数为:推进速度0.10 mm/min,推注行程10mm,喷射间距70 mm;平移参数为:平移次数866次,移动速度120 mm/min,移动行程80 mm,往复平移距离40 mm;接收参数为:纺丝液R1、R2、R3喷头位置对应的喷丝接收器转速 60 rpm,平板接收器面积600 cm2,进行静电纺丝,制得PVDF/CTA/Ag复合纳米纤维透气材料。所得的PVDF/CTA/Ag复合纳米纤维透气材料的各参数如下:
纤维直径/nm:593.22±73.82;
纳米纤维表面元素含量/wt.%:C:28.38±1.92;N:1.65±0.44;O:13.68±4.02;F:23.07±1.36;Ag:33.12±3.91;
纳米纤维表面接触角为:33±2.9°;
纳米纤维水蒸气透过量为3352.3651±1.8742 g/m3, 24h
PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果如表1所示:
表1:PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果
时间 Ag+/ mg•L-1
两周后 <0.002
一个月后 <0.002
两个月后 <0.002
通过上述所得的PVDF/CTA/Ag复合纳米纤维透气材料的各参数以及PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果可以看出经过两个月的长时间浸泡清洗浸泡液中并没有检测到Ag+,这说明PVDF/CTA/Ag复合纳米纤维中没有残留的硝酸银。
实施例三:
如图1所示,一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,包括如下步骤:
S101:步骤1),将质量分数为7%的PVDF(聚偏氟乙烯)、质量分数为6%的AgNO3溶解在质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂A中,室温下连续磁力搅拌分散均匀后,放入烘箱60℃恒温加热使其完全溶解,冷却至室温,制得纺丝液R1;
S102:步骤2),将质量分数为7%的CTA(三醋酸纤维素)、质量分数为7%的AgNO3溶解在质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂B中,室温下连续磁力搅拌分散均匀后,放入烘箱80℃恒温加热使其完全溶解,冷却至室温,制得纺丝液R2;
S103:步骤3),将质量分数为15%的AgNO3添加入质量比为8:2的二甲基乙酰胺(DMAc)-聚乙二醇(PEG)的混合溶剂C中,连续磁力搅拌、完全溶解后,置于自然光下,48小时后,
待彻底还原后得纺丝液R3;
S104:步骤4),取10毫升完全脱泡后的纺丝液R1、R2和R3分别置于电纺推注装置的三个喷头上,调节三喷头的角度分别为30°、30°和60°;
调节电纺推注装置的三个正高压为0~50kV、负高压-50~0kV、纺丝湿度40%、纺丝温度20℃;电纺推注装置(三套)三喷头的推注参数为:推进速度0.06 mm/min,推注行程10mm,喷射间距70 mm;平移参数为:平移次数866次,移动速度120 mm/min,移动行程80 mm,往复平移距离40 mm;接收参数为:纺丝液R1、R2、R3喷头位置对应的喷丝接收器转速 60 rpm,平板接收器面积600 cm2,进行静电纺丝,制得PVDF/CTA/Ag复合纳米纤维透气材料。所得的PVDF/CTA/Ag复合纳米纤维透气材料的各参数如下:
纤维直径/nm:320.31±51.43;
纳米纤维表面元素含量/wt.%:C:21.46±0.89;N:1.72±0.21;O:21.63±3.11;F:17.78±2.03;Ag:37.41±3.91;
纳米纤维水蒸气透过量为3397.4490±1.2132 g/m3, 24h;
纳米纤维表面接触角为:27±3.1°;
PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果如表1所示:
表1:PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果
时间 Ag+/ mg•L-1
两周后 <0.002
一个月后 <0.002
两个月后 <0.002
通过上述所得的PVDF/CTA/Ag复合纳米纤维透气材料的各参数以及PVDF/CTA/Ag复合纳米纤维透气材料纳米银浸泡水洗后溶液中Ag+检测结果可以看出:经过两个月的长时间浸泡清洗浸泡液中并没有检测到Ag+,这说明PVDF/CTA/Ag复合纳米纤维中没有残留的硝酸银,并且纤维直径小,透气性好。
以上所述仅为本发明的较佳实施例而己,并不以本发明为限制,凡在本发明的精神和原则之内所作的均等修改、等同替换和改进等,均应包含在本发明的专利涵盖范围内。

Claims (7)

1.一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,其特征在于,包括如下步骤:
1)将适量的PVDF和AgNO3溶解于混合溶剂A中,室温下搅拌分散均匀后,恒温加热至完全溶解,冷却至室温,制得纺丝液R1;
2)将适量的CTA和AgNO3溶解于混合溶剂B中,室温下搅拌分散均匀后,恒温加热至完全溶解,冷却至室温,制得纺丝液R2;
3)将适量的AgNO3添加到混合溶剂C中,室温下搅拌分散均匀,完全溶解后置于自然光下,待彻底还原后得纺丝液R3;
4)取一定量的完全脱泡后的纺丝液R1、R2、R3,分别置于电纺推注装置的三个喷头上;
5)分别调节纺丝液R1、R2、R3喷头位置的推注参数、平移参数和接收参数,进行静电纺丝,制得PVDF/CTA/Ag复合纳米纤维透气材料;
纺丝液R1、R2、R3喷头位置的推注参数调节为:推注速度0.001~90 mm/min;推注行程0~100mm;喷射间距50~300mm;
平移参数调节为:平移次数 1~9999次,移动速度 1~500 mm/min,移动行程 0~600mm,往复平移距离0~300 mm;
接收参数调节为:纺丝液R1、R2、R3喷头位置对应的喷丝接收器转速 0~140 rpm,平板接收器面积:10~800 cm2
所述混合溶剂A、混合溶剂B、混合溶剂C均为溶剂Ⅰ和溶剂Ⅱ的混合液,所述溶剂Ⅰ为二甲基亚砜、N-甲基吡咯烷酮、二甲基乙酰胺、邻苯二甲酸二辛酯和邻苯二甲酸二丁酯中的至少一种,所述溶剂Ⅱ为乙醇、聚乙二醇、磷酸三乙酯、磷酸三甲酯、磷酸三丙酯中的至少一种,溶剂Ⅰ和溶剂Ⅱ的质量比为8:2。
2.根据权利要求1所述的一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,其特征在于,所述步骤1)中混合溶剂中添加的PVDF和AgNO3的质量分数分别为:1~30%和0.1~20%,所述步骤1)中的恒温加热温度为:25~200℃。
3.根据权利要求1所述的一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,其特征在于,所述步骤2)中向混合溶剂中添加的CTA和AgNO3的质量分数分别为:0.5~30%和0.1~20%,所述步骤2)中的恒温加热温度为:25~200℃。
4.根据权利要求1所述的一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,其特征在于,所述步骤3)中向混合溶剂中添加的AgNO3的质量分数为0.1~20%。
5.根据权利要求1所述的一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,其特征在于,所述步骤4)中量取的完全脱泡后的纺丝液R1、R2、R3均为1~100毫升。
6.根据权利要求1所述的一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,其特征在于,所述步骤4)中电纺推注装置的三个喷头的可调角度为-45°~45°。
7.根据权利要求1所述的一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法,其特征在于,所述步骤5)中静电纺丝时的温度参数为:5~60℃;湿度参数为:10~80%;正高压参数为:0~50kV;负高压参数为:-50~0kV。
CN201810512111.9A 2018-05-25 2018-05-25 一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法 Active CN108677382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810512111.9A CN108677382B (zh) 2018-05-25 2018-05-25 一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810512111.9A CN108677382B (zh) 2018-05-25 2018-05-25 一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法

Publications (2)

Publication Number Publication Date
CN108677382A CN108677382A (zh) 2018-10-19
CN108677382B true CN108677382B (zh) 2022-07-26

Family

ID=63808131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810512111.9A Active CN108677382B (zh) 2018-05-25 2018-05-25 一种基于静电纺丝技术制备PVDF/CTA/Ag复合纳米纤维透气材料的方法

Country Status (1)

Country Link
CN (1) CN108677382B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214505B (zh) * 2011-03-11 2012-09-05 长春理工大学 一种NiO@Al2O3@TiO2同轴三层纳米电缆的制备方法
CN102302903A (zh) * 2011-08-03 2012-01-04 济南大学 一种纳米银-聚偏氟乙烯复合分离膜及其制备方法
CN103285740B (zh) * 2012-02-23 2015-04-22 中国科学院宁波材料技术与工程研究所 一种抗菌双层中空纤维膜的制备方法
CN102863721A (zh) * 2012-10-15 2013-01-09 天津工业大学 一种抗菌改性聚偏氟乙烯膜及其制备方法
WO2014160174A1 (en) * 2013-03-14 2014-10-02 Cornell University Carbon and carbon precursors in nanofibers
CN103263856B (zh) * 2013-05-28 2015-05-13 东华大学 一种膜蒸馏用静电纺丝疏水纳米纤维多孔膜的制备方法
CN105696197B (zh) * 2016-03-22 2018-01-19 东华大学 一种c型核壳纳米纤维膜及其偏心轴静电纺丝制备方法
CN106492638B (zh) * 2017-01-17 2019-03-29 哈尔滨工业大学 一种纳米银有机框架超滤膜的制备方法及利用其净水的方法

Also Published As

Publication number Publication date
CN108677382A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
Cui et al. High performance, environmentally friendly and sustainable nanofiber membrane filter for removal of particulate matter 1.0
Yu et al. Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability
Yan et al. Electrospinning nanofibers and nanomembranes for oil/water separation
Liu et al. Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances
Zhang et al. Structural design and environmental applications of electrospun nanofibers
CN108286127B (zh) 一种疏水疏油纳米纤维膜的制备方法
Deng et al. Hierarchical fiber with granular-convex structure for highly efficient PM2. 5 capture
CN107596791B (zh) 一种具有光催化功能的复合纳米纤维过滤材料及其制备方法
Wang et al. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration
Li et al. MOF-embedded bifunctional composite nanofiber membranes with a tunable hierarchical structure for high-efficiency PM0. 3 purification and oil/water separation
Li et al. Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol (PVA)/Chitosan (CS)/Graphene (Gr) nanofibrous membranes
Sun et al. Bioinspired design of underwater superoleophobic Poly (N-isopropylacrylamide)/polyacrylonitrile/TiO2 nanofibrous membranes for highly efficient oil/water separation and photocatalysis
CN108404687B (zh) 一种用于空气净化的多层次功能膜的制备方法
Nam et al. Electrospun nanofiber filters for highly efficient PM 2.5 capture
CN108176256B (zh) 一种耐高温复合纳米纤维过滤膜制备方法
Song et al. Continuous production and properties of mutil-level nanofiber air filters by blow spinning
Gao et al. Enhanced air filtration performance under high-humidity condition through electrospun membranes with optimized structure
CN111013255B (zh) 一种微/纳米纤维气凝胶复合滤料的制备方法
Sepahvand et al. Recent developments in nanocellulose-based aerogels as air filters: A review
Zhao et al. Cellulose nanofibril/PVA/bamboo activated charcoal aerogel sheet with excellent capture for PM2. 5 and thermal stability
Su et al. Multilevel structured PASS nanofiber filter with outstanding thermal stability and excellent mechanical property for high-efficiency particulate matter removal
CN106390766B (zh) 一种具有自清洁功能的仿鼻腔纤毛结构过滤材料
CN112522856A (zh) 一种金属有机骨架和电纺纳米纤维复合防护罩覆膜及制备
CN114100385B (zh) 疏水性复合纳米纤维空气过滤膜制备方法
Mukherjee et al. PVA-graphene-hydroxyapatite electrospun fibres as air-filters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant