CN108671939A - 一种花状四氧化三钴纳米微球负载双金属催化剂及其用于hmf氢解制备dmf反应的方法 - Google Patents

一种花状四氧化三钴纳米微球负载双金属催化剂及其用于hmf氢解制备dmf反应的方法 Download PDF

Info

Publication number
CN108671939A
CN108671939A CN201810412906.2A CN201810412906A CN108671939A CN 108671939 A CN108671939 A CN 108671939A CN 201810412906 A CN201810412906 A CN 201810412906A CN 108671939 A CN108671939 A CN 108671939A
Authority
CN
China
Prior art keywords
catalyst
flower
shaped
hmf
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810412906.2A
Other languages
English (en)
Inventor
李峰
董慧娟
范国利
谢仁峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201810412906.2A priority Critical patent/CN108671939A/zh
Publication of CN108671939A publication Critical patent/CN108671939A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/36Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种花状Co3O4纳米微球负载双金属催化剂及其制备方法和用于HMF氢解制备DMF反应的方法。本发明通过简单的一步封装水热‑焙烧法合成MOx‑Co3O4杂化催化剂前体,再经过还原得到高分散的具有蒲公英针状分级花状结构Co3O4微球负载型的双金属M‑Co催化剂(M‑Co/Co3O4),M=Ru,Pd,Pt,Cu,Ni。将制备的催化剂应用于高效HMF选择性氢解制备DMF反应中,HMF的转化率和对DMF的选择性分别可达到90%~100%和89%~100%。该负载型双金属催化剂M‑Co/Co3O4,结构独特新颖,表面活性位丰富,稳定性强,具有广泛的应用前景。

Description

一种花状四氧化三钴纳米微球负载双金属催化剂及其用于 HMF氢解制备DMF反应的方法
技术领域
本发明属于催化剂技术领域,具体来说,涉及一种花状Co3O4纳米微球负载的M-Co双金属(M=Ru,Pd,Pt,Cu,Ni)催化剂及其制备方法和催化剂用于5-羟甲基糠醛氢解制备2,5-二甲基呋喃反应的方法。
背景技术
5-羟甲基糠醛(HMF)是生物质转化领域重要的平台分子之一,可由生物质衍生的糖类得到。同时,HMF能被转化为多种重要的化学品,如2,5-呋喃二甲酸(FDCA)、2,5-二甲酰基呋喃(DFF)、2,5-二羟甲基呋喃(BHMF)、2,5-二羟甲基四氢呋喃(DHMTHF)、以及非常有前景的液态燃料2,5-二甲基呋喃(DMF)[L.C.Gao,K.J.Deng,J.D.Zheng,B.Liu,Z.H.Zhang,Efficient oxidation of biomass derived 5-into 2,5-furandicarboxylic acidcatalyzed by Merrifield resin supported cobalt porphyrin,Chem.Eng.J.2015,270:444–449]。DMF因具有独特的性质,包括:高的能量密度、高的辛烷值和低的沸点,相比于乙醇DMF是更为合适和有前景的可再生液态燃料。
催化剂表面的几何和电子结构会对催化反应有很重要的影响[J.Anton,J.Nebel,H.Q.Song,C.Froese,P.Weide,H.Ruland,M.Muhler,S.Kaluza,The effect of sodium onthe structure–activity relationships of cobalt-modified Cu/ZnO/Al2O3catalystsapplied in the hydrogenation of carbon monoxide to higher alcohols,J.Catal.2016,335:175-186]。表面缺陷很容易与反应物分子相互作用,从而促进它的活化。因此,精细调控载体的微观结构有望实现高性能负载型催化剂的制备。双金属纳米催化剂对比单金属催化剂其独特的协同效应往往能够诱导出优良特性。除了能够降低催化剂的成本,在贵金属催化剂中引入非贵金属成分还能够产生独特的活性位,它来源于两个金属之间独特的电子和几何效应。对于HMF选择性氢解制备DMF反应,氢需要选择性与羰基和羟基反应,而不能深度加氢或开呋喃环。
发明内容
为解决上述技术问题,本发明提供了一种花状Co3O4纳米微球负载双金属催化剂及其制备方法和用于HMF氢解制备DMF反应的方法。
本发明所述的花状Co3O4纳米微球负载双金属催化剂是高分散的具有分级花状结构Co3O4微球负载型的M-Co双金属催化剂,其中M为Cu,Ni,Pt,Ru,Pd或Rh中的任意一种。其中M的质量百分含量为1~5%,M-Co合金纳米粒子的平均粒径大小为2~10nm。
所述的催化剂微球的大小为2~5μm,比表面积为80~160m2/g。
本发明所述的花状Co3O4纳米微球负载双金属催化剂的制备方法是通过一步封装水热-焙烧法制备出金属M氧化物与Co3O4杂化催化剂前体,进一步通过还原得到高分散的具有分级花状结构催化剂M-Co/Co3O4,其中M为Ru,Pd,Pt,Cu或Ni中的任意一种。
所述的花状Co3O4纳米微球负载双金属催化剂的制备方法,包括以下具体步骤:
1)用去离子水配制硫酸钴、尿素、柠檬酸钠以及贵金属物种或非贵金属盐混合溶液,将配好的溶液进行水热晶化,晶化温度为120~250℃,时间为48~72h;将所得沉淀使用去离子水和乙醇洗涤到中性,干燥;
2)将所得到的固体置于马弗炉中焙烧得到金属M氧化物与Co3O4杂化催化剂前体,其中M为Ru,Pd,Pt,Cu或Ni中的任意一种;
3)用氢气和氮气的混合气在气氛炉中还原杂化催化剂前体得到花状Co3O4纳米微球负载双金属催化剂。
步骤1)中,硫酸钴的浓度为0.05mol/L~0.25mol/L,尿素的浓度为0.1mol/L~0.3mol/L,柠檬酸钠的浓度为0.01mol/L~0.05mol/L,贵金属的浓度为0.5~6.0mmol/L,非贵金属盐浓度为2.0~10mmol/L。
步骤1)中,贵金属物种为H2PtCl6,RuCl3或H2PdCl4中的任意一种,非贵金属为Cu或Ni中的一种,非贵金属盐为硫酸盐或硝酸盐中的一种,钴与贵金属或者非贵金属的摩尔浓度比为100~25:1。
步骤2)中,升温速率为2~5℃ min-1,从室温升温到350~550℃,之后在恒温温度下保温4~6h进行焙烧;
步骤3)中,还原条件为:以2~5℃ min-1的升温速率从室温升温到300~600℃,并在恒温温度下保温3~6h。
对得到的M-Co双金属(M=Ru,Pd,Pt,Cu,Ni)催化剂进行扫描电镜(SEM)表征,显示出带有针刺表面的蒲公英花状微球形貌。X-射线衍射(XRD)、高分辨投射电镜(HRTEM)和高角度暗场扫描投射电镜-能量散射X射线光谱(HAADF-STEM)表征出高分散的纳米合金粒子。
一种花状Co3O4纳米微球负载双金属催化剂用于HMF氢解制备DMF反应。其具体步骤为:将HMF溶于1,4-二氧六环,加入上述的催化剂于反应釜中,反应温度设为150-250℃,氢气气氛中反应1-3h。
产物使用Agilent GC7890B气相色谱进行分析,HMF的转化率和对DMF的选择性分别可达到90%~100%和89%~100%。
本发明的技术优势在于:
(1)通过一步封装水热法合成了蒲公英状Co3O4纳米微球负载的M-Co双金属(M=Ru,Pd,Pt,Cu,Ni)催化剂;
(2)一步封装法可以有效提高金属M与Co3O4载体的相互作用,利用表面形成高稳定的M-Co双金属纳米粒子;
(3)催化剂独特的蒲公英状形貌以有利于双金属纳米粒子分散,同时有利于反应物和表面活性位的紧密接触;
(4)双金属钴基纳米催化剂的双金属协同效应,表面丰富的氧空位以及催化剂的高稳定性,用于HMF选择性氢解制备DMF反应,显示出高的性能,能够克服严苛的反应条件,如高的催化剂用量、高的反应温度或长的反应时间等问题,显示出较高的活性,且催化剂具有高稳定性和重复性,前景非常广泛。
附图说明
图1为实施例1制备的蒲公英状Ru-Co/Co3O4双金属RuCo纳米催化剂的XRD谱图;其中(a)Ru/Co3O4,(b)Co/Co3O4,(c)RuCo/Co3O4
图2为实施例1制备的蒲公英状Ru-Co/Co3O4双金属RuCo纳米催化剂的SEM(a,b和c)及Ru、Co、O元素的面扫谱图。
图3为实施例1制备的蒲公英状Ru-Co/Co3O4双金属RuCo纳米催化剂的HRTEM(a,b,c),HAADF-STEM谱图(d1),Co-K、O-K和Ru-K的EDX面扫(d2,d3,d4),Co-K、O-K和Ru-K沿着e图中红线的线扫(f)。
图4为实施例1制备的Ru-Co/Co3O4催化剂用于HMF选择性氢解随反应时间HMF的转化率以及DMF的选择性变化曲线图。
具体实施方式
下面结合具体的实施例对本发明所述的一种花状Co3O4纳米微球负载双金属催化剂及其制备方法和用于HMF氢解制备DMF反应的方法做进一步说明,但是本发明的保护范围并不限于此。
实施例1
称量1.968g七水合硫酸钴CoSO4·7H2O,0.63g的CO(NH2)2,0.41g柠檬酸钠Na3C6H5O7·2H2O,称取0.33mmol RuCl3溶解在80mL去离子水中超声溶解形成红色溶液。将上面所得到的溶液转移到聚四氟乙烯水热釜,放入烘箱中180℃水热晶化48小时。所得沉淀使用去离子水和乙醇洗涤到中性,70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为2℃ min-1,从室温升温到500℃,之后在恒温温度下保温5h,焙烧得到样品RuO2-Co3O4杂化催化剂前体。用体积比为1:9的氢气和氮气混合气在气氛炉中还原杂化催化剂前体,以2℃ min-1的升温速率从室温升温到300℃,并在恒温温度下保温4h,得到Co3O4纳米微球负载的Ru-Co双金属(Ru-Co/Co3O4)催化剂。其中Ru的质量百分含量为2.2%;催化剂微球的大小为2.5μm,比表面积为96m2/g,Ru-Co合金纳米粒子的平均粒径大小为3.9nm。
在100mL高压反应釜中加入0.1g催化剂、10mL1,4-二氧六环,4mmol HMF,充入0.5MPa H2,在常压下升温至200℃,进行反应,反应进行到120min时,HMF的转化率为97.9%,DMF的选择性为98.5%。其中BHMF和MFA为其他副产。
实施例2
称量2.3616g七水合硫酸钴CoSO4·7H2O,0.756g的CO(NH2)2,0.492g柠檬酸钠Na3C6H5O7·2H2O,称取0.76mmol H2PdCl4溶解在80mL去离子水中超声溶解形成溶液。将上面所得到的溶液转移到聚四氟乙烯水热釜,放入烘箱中160℃水热晶化54小时。所得沉淀使用去离子水和乙醇洗涤到中性,70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为2℃ min-1,从室温升温到300℃,之后在恒温温度下保温6h,焙烧得到样品PdO-Co3O4杂化催化剂前体。用体积比为1:9的氢气和氮气混合气在气氛炉中还原杂化催化剂前体,以2℃min-1的升温速率从室温升温到400℃,并在恒温温度下保温3h,得到Co3O4纳米微球负载的Pd-Co双金属(Pd-Co/Co3O4)催化剂。其中Pd的质量百分含量为4.1%;催化剂微球的大小为3.0μm,比表面积为105m2/g,Pd-Co合金纳米粒子的平均粒径大小为4.6nm。
在100mL高压反应釜中加入0.1g催化剂、10mL1,4-二氧六环,4mmol HMF,充入0.5MPa H2,在常压下升温至200℃,进行反应,反应进行到120min时,HMF的转化率为95.4%,DMF的选择性为93.1%。
实施例3
称量2.952g七水合硫酸钴CoSO4·7H2O,0.945g的CO(NH2)2,0.615g的柠檬酸钠Na3C6H5O7·2H2O,称取0.13mmol H2PtCl6溶解在120mL去离子水中超声溶解形成溶液。将上面所得到的溶液转移到聚四氟乙烯水热釜,放入烘箱中180℃水热晶化48小时。所得沉淀使用去离子水和乙醇洗涤到中性,70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为5℃ min-1,从室温升温到500℃,之后在恒温温度下保温5h,焙烧得到样品PtO2-Co3O4杂化催化剂前体。用体积比为1:9的氢气和氮气混合气在气氛炉中还原杂化催化剂前体,以2℃ min-1的升温速率从室温升温到400℃,并在恒温温度下保温3h,得到Co3O4纳米微球负载的Pt-Co双金属(Pt-Co/Co3O4)催化剂。其中Pt的质量百分含量为1.3%;催化剂微球的大小为3.8μm,比表面积为125m2/g,Pt-Co合金纳米粒子的平均粒径大小为2.7nm。
在100mL高压反应釜中加入0.1g催化剂、10mL1,4-二氧六环,4mmol HMF,充入0.5MPa H2,在常压下升温至200℃,进行反应,反应进行到120min时,HMF的转化率为90.5%,DMF的选择性为89.1%。
实施例4
称量3.5424g七水合硫酸钴CoSO4·7H2O,1.134g的CO(NH2)2,0.738g柠檬酸钠Na3C6H5O7·2H2O和0.3117g的Cu(NO3)2·3H2O溶解在80mL去离子水中超声溶解。将上面所得到的溶液转移到聚四氟乙烯水热釜,放入烘箱中150℃水热晶化60小时。所得沉淀使用去离子水和乙醇洗涤到中性,70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为5℃min-1,从室温升温到350℃,之后在恒温温度下保温5h,焙烧得到样品CuO-Co3O4杂化催化剂前体。用体积比为1:9的氢气和氮气混合气在气氛炉中还原杂化催化剂前体,以5℃ min-1的升温速率从室温升温到550℃,并在恒温温度下保温4h,得到Co3O4纳米微球负载的Cu-Co双金属(Cu-Co/Co3O4)催化剂。其中Cu的质量百分含量为2.8%;催化剂微球的大小为4.1μm,比表面积为130m2/g,Cu-Co合金纳米粒子的平均粒径大小为8.2nm。
在100mL高压反应釜中加入0.1g催化剂、10mL1,4-二氧六环,4mmol HMF,充入0.5MPa H2,在常压下升温至200℃,进行反应,反应进行到120min时,HMF的转化率为92.8%,DMF的选择性为92.1%。
实施例5
称量3.936g七水合硫酸钴CoSO4·7H2O,1.26g的尿素CO(NH2)2,0.82g柠檬酸钠Na3C6H5O7·2H2O和0.75g的Ni(NO3)2·3H2O溶解在160mL去离子水中超声溶解。将上面所得到的溶液转移到聚四氟乙烯水热釜,放入烘箱中120℃水热晶化72小时。所得沉淀使用去离子水和乙醇洗涤到中性,70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为5℃min-1,从室温升温到500℃,之后在恒温温度下保温3h,焙烧得到样品NiO-Co3O4杂化催化剂前体。用体积比为1:9的氢气和氮气混合气在气氛炉中还原杂化催化剂前体,以5℃min-1的升温速率从室温升温到600℃,并在恒温温度下保温3h,得到Co3O4纳米微球负载的Ni-Co双金属(Ni-Co/Co3O4)催化剂。其中Ni的质量百分含量为4.5%;催化剂微球的大小为3.1μm,比表面积为157m2/g,Ni-Co合金纳米粒子的平均粒径大小为5.4nm。
在100mL高压反应釜中加入0.1g催化剂、10mL1,4-二氧六环,4mmol HMF,充入0.5MPa H2,在常压下升温至200℃,进行反应,反应进行到120min时,HMF的转化率为91.5%,DMF的选择性为90.3%。

Claims (10)

1.一种花状Co3O4纳米微球负载双金属催化剂,其特征在于,
是高分散的具有分级花状结构Co3O4微球负载型的M-Co双金属催化剂,其中M为Cu,Ni,Pt,Ru,Pd或Rh中的任意一种。
2.根据权利要求1中所述的花状Co3O4纳米微球负载双金属催化剂,其特征在于,催化剂微球的大小为2~5μm,比表面积为80~160m2/g。
3.根据权利要求1或2中所述的花状Co3O4纳米微球负载双金属催化剂,其特征在于,其中M的质量百分含量为1~5%,M-Co合金纳米粒子的平均粒径大小为2~10nm。
4.一种花状Co3O4纳米微球负载双金属催化剂的制备方法,其特征在于,通过一步封装水热-焙烧法制备出金属M氧化物与Co3O4杂化催化剂前体,进一步通过还原得到高分散的具有分级花状结构催化剂M-Co/Co3O4,其中M为Ru,Pd,Pt,Cu或Ni中的任意一种。
5.根据权利要求4中所述的花状Co3O4纳米微球负载双金属催化剂的制备方法,其特征在于,包括以下具体步骤:
1)用去离子水配制硫酸钴、尿素、柠檬酸钠以及贵金属物种或非贵金属盐混合溶液,将配好的溶液进行水热晶化,晶化温度为120~250℃,时间为48~72h;将所得沉淀使用去离子水和乙醇洗涤到中性,干燥;
2)将所得到的固体置于马弗炉中焙烧得到金属M氧化物与Co3O4杂化催化剂前体,其中M为Ru,Pd,Pt,Cu或Ni中的任意一种;
3)用氢气和氮气的混合气在气氛炉中还原杂化催化剂前体得到花状Co3O4纳米微球负载双金属催化剂。
6.根据权利要求5中所述的花状Co3O4纳米微球负载双金属催化剂的制备方法,其特征在于,步骤1)中,硫酸钴的浓度为0.05mol/L~0.25mol/L,尿素的浓度为0.1mol/L~0.3mol/L,柠檬酸钠的浓度为0.01mol/L~0.05mol/L,贵金属的浓度为0.5~6.0mmol/L,非贵金属盐浓度为2.0~10mmol/L。
7.根据权利要求5或6中所述的花状Co3O4纳米微球负载双金属催化剂的制备方法,其特征在于,步骤1)中,贵金属物种为H2PtCl6,RuCl3或H2PdCl4中的任意一种,非贵金属为Cu或Ni中的一种,非贵金属盐为硫酸盐或硝酸盐中的一种,钴与贵金属或者非贵金属的摩尔浓度比为100~25:1。
8.根据权利要求7中所述的花状Co3O4纳米微球负载双金属催化剂的制备方法,其特征在于,步骤2)中,升温速率为2~5℃ min-1,从室温升温到350~550℃,之后在恒温温度下保温4~6h进行焙烧;
步骤3)中,还原条件为:以2~5℃ min-1的升温速率从室温升温到300~600℃,并在恒温温度下保温3~6h。
9.一种花状Co3O4纳米微球负载双金属催化剂催化HMF氢解制备DMF的应用。
10.根据权利要求9所述的应用,其特征在于,所述花状Co3O4纳米微球负载双金属催化剂催化HMF氢解制备DMF的方法为:将HMF溶于1,4-二氧六环,加入权利要求3所述的催化剂于反应釜中,反应温度设为150-250℃,氢气气氛中反应1-3h。
CN201810412906.2A 2018-05-03 2018-05-03 一种花状四氧化三钴纳米微球负载双金属催化剂及其用于hmf氢解制备dmf反应的方法 Pending CN108671939A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810412906.2A CN108671939A (zh) 2018-05-03 2018-05-03 一种花状四氧化三钴纳米微球负载双金属催化剂及其用于hmf氢解制备dmf反应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810412906.2A CN108671939A (zh) 2018-05-03 2018-05-03 一种花状四氧化三钴纳米微球负载双金属催化剂及其用于hmf氢解制备dmf反应的方法

Publications (1)

Publication Number Publication Date
CN108671939A true CN108671939A (zh) 2018-10-19

Family

ID=63802319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810412906.2A Pending CN108671939A (zh) 2018-05-03 2018-05-03 一种花状四氧化三钴纳米微球负载双金属催化剂及其用于hmf氢解制备dmf反应的方法

Country Status (1)

Country Link
CN (1) CN108671939A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514700A (zh) * 2019-09-27 2019-11-29 西安电子科技大学 一种氧化铜和四氧化三钴异质结构纳米线复合敏感材料、乙二醇传感器及制备方法
CN111334818A (zh) * 2020-02-28 2020-06-26 浙江糖能科技有限公司 电解催化氧化的装置以及制备2,5呋喃二甲酸的方法
CN112337480A (zh) * 2019-08-09 2021-02-09 同济大学 一种PtCo纳米合金修饰的Co3O4-SiO2花状多级复合材料及其制备方法
CN113275019A (zh) * 2021-06-04 2021-08-20 云南大学 磁性镍钴氧化物负载金催化剂及其制备方法和应用、2,5-呋喃二甲酸的制备方法
CN113292519A (zh) * 2021-06-04 2021-08-24 云南大学 磁性金钴复合物催化剂及其制备方法和应用
CN113289633A (zh) * 2021-06-23 2021-08-24 兰州交通大学 一种MnCo2双金属非半导体光催化纳米复合材料的合成方法
CN115090292A (zh) * 2022-05-06 2022-09-23 北京化工大学 一种钴锌双金属合金催化剂的制备方法及其催化脂肪酸甲酯和脂肪酸加氢脱氧反应的应用
CN115282968A (zh) * 2022-09-02 2022-11-04 宁夏大学 一种金属掺杂自组装催化剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043589A1 (en) * 2014-09-19 2016-03-24 Rijksuniversiteit Groningen Method for reducing hydroxymethylfurfural (hmf)
CN107162066A (zh) * 2017-05-26 2017-09-15 上海纳米技术及应用国家工程研究中心有限公司 一种镍掺杂四氧化三钴纳米花复合材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043589A1 (en) * 2014-09-19 2016-03-24 Rijksuniversiteit Groningen Method for reducing hydroxymethylfurfural (hmf)
CN107162066A (zh) * 2017-05-26 2017-09-15 上海纳米技术及应用国家工程研究中心有限公司 一种镍掺杂四氧化三钴纳米花复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINGJUAN WANG ET AL.: "Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation", 《JOURNAL OF CATALYSIS》 *
YANHONG ZU ET AL.: "Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst", 《APPLIED CATALYSIS B:ENVIRONMENTAL》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112337480A (zh) * 2019-08-09 2021-02-09 同济大学 一种PtCo纳米合金修饰的Co3O4-SiO2花状多级复合材料及其制备方法
CN112337480B (zh) * 2019-08-09 2023-11-17 同济大学 一种PtCo纳米合金修饰的Co3O4-SiO2花状多级复合材料及其制备方法
CN110514700A (zh) * 2019-09-27 2019-11-29 西安电子科技大学 一种氧化铜和四氧化三钴异质结构纳米线复合敏感材料、乙二醇传感器及制备方法
CN111334818A (zh) * 2020-02-28 2020-06-26 浙江糖能科技有限公司 电解催化氧化的装置以及制备2,5呋喃二甲酸的方法
CN113275019A (zh) * 2021-06-04 2021-08-20 云南大学 磁性镍钴氧化物负载金催化剂及其制备方法和应用、2,5-呋喃二甲酸的制备方法
CN113292519A (zh) * 2021-06-04 2021-08-24 云南大学 磁性金钴复合物催化剂及其制备方法和应用
CN113292519B (zh) * 2021-06-04 2023-03-14 云南大学 磁性金钴复合物催化剂及其制备方法和应用
CN113289633A (zh) * 2021-06-23 2021-08-24 兰州交通大学 一种MnCo2双金属非半导体光催化纳米复合材料的合成方法
CN115090292A (zh) * 2022-05-06 2022-09-23 北京化工大学 一种钴锌双金属合金催化剂的制备方法及其催化脂肪酸甲酯和脂肪酸加氢脱氧反应的应用
CN115090292B (zh) * 2022-05-06 2024-03-26 北京化工大学 一种钴锌双金属合金催化剂的制备方法及其催化脂肪酸甲酯和脂肪酸加氢脱氧反应的应用
CN115282968A (zh) * 2022-09-02 2022-11-04 宁夏大学 一种金属掺杂自组装催化剂
CN115282968B (zh) * 2022-09-02 2023-11-14 宁夏大学 一种金属掺杂自组装催化剂

Similar Documents

Publication Publication Date Title
CN108671939A (zh) 一种花状四氧化三钴纳米微球负载双金属催化剂及其用于hmf氢解制备dmf反应的方法
WO2021020377A1 (ja) 合金ナノ粒子、合金ナノ粒子の集合体、触媒および合金ナノ粒子の製造方法
JP6724253B2 (ja) 金属酸化物支持体を用いた乾式改質触媒及びこれを用いた合成ガスの製造方法
CN109304201A (zh) 碳包覆过渡金属纳米复合材料及其制备方法和应用
Zhou et al. Hierarchical nanoporous platinum–copper alloy nanoflowers as highly active catalysts for the hydrolytic dehydrogenation of ammonia borane
Ma et al. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction
Li et al. Bimetallic NiPd/SBA-15 alloy as an effective catalyst for selective hydrogenation of CO2 to methane
Yousefpour Synthesis and characterization of Zr-promoted Ni-Co bimetallic catalyst supported OMC and investigation of its catalytic performance in steam reforming of ethanol
Yang et al. Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts
CN112044434A (zh) 一种单原子贵金属/过渡金属氧化物复合材料及其制备方法和用途
KR101864602B1 (ko) 역수성 가스전환 반응용 합금촉매의 제조방법
Osazuwa et al. An insight into the effects of synthesis methods on catalysts properties for methane reforming
KR20190072582A (ko) 금속간 화합물을 포함하는 촉매의 제조 방법 및 상기 방법에 의해 제조된 촉매
Wei et al. Synergistic effect of Co alloying and surface oxidation on oxygen reduction reaction performance for the Pd electrocatalysts
CN109731579A (zh) 一种镍负载的介孔氧化镧催化剂及其制备方法
EP3932545A1 (en) Hydrogenation catalyst used in amide compound hydrogenation and method for producing amine compound using same
Nguyen et al. High-performance Pd-coated Ni nanowire electrocatalysts for alkaline direct ethanol fuel cells
Wu et al. CoaSmbOx catalyst with excellent catalytic performance for NH3 decomposition
CN113457722B (zh) 一种甲烷二氧化碳干重整催化剂及其制备方法和应用
Rajpurohit et al. Aqueous phase hydrogenation of furfural on Ni/TiO 2 catalysts: nature of the support phase steers the product selectivity
CN108607562A (zh) 用于己二酸二烷基酯制己二醇的催化剂及制备方法和应用
CN113198483A (zh) 一种co氧化用过渡金属复合二氧化铈纳米催化剂及其制备方法和应用
US8129304B2 (en) Intermetallic compound Ni3Al catalyst for reforming methanol and methanol reforming method using same
CN109718763B (zh) 载体和负载型催化剂及其制备方法和应用及甲烷干重整制合成气的方法
JP5105709B2 (ja) 水性ガスシフト反応触媒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181019

WD01 Invention patent application deemed withdrawn after publication