CN108666381A - 一种异质结光电传感器及其制备方法 - Google Patents

一种异质结光电传感器及其制备方法 Download PDF

Info

Publication number
CN108666381A
CN108666381A CN201810436741.2A CN201810436741A CN108666381A CN 108666381 A CN108666381 A CN 108666381A CN 201810436741 A CN201810436741 A CN 201810436741A CN 108666381 A CN108666381 A CN 108666381A
Authority
CN
China
Prior art keywords
film
molybdenum disulfide
vertical
carbon film
growth graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810436741.2A
Other languages
English (en)
Other versions
CN108666381B (zh
Inventor
张希
陈泽宇
陈文聪
刁东风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201810436741.2A priority Critical patent/CN108666381B/zh
Publication of CN108666381A publication Critical patent/CN108666381A/zh
Application granted granted Critical
Publication of CN108666381B publication Critical patent/CN108666381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种异质结光电传感器及其制备方法,其中,所述光电传感器包括衬底、固定设置在衬底上的两个金属电极、以及堆叠在所述衬底上的二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜之间设置有部分重叠区域,所述部分重叠区域通过范德华相互作用形成光电异质结,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜不重叠的两端分别堆叠在所述两个金属电极表面。所述由二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜堆叠形成的光电异质结能够有效提升光电传感器的响应灵敏度,其探测范围更广、探测能力更强。

Description

一种异质结光电传感器及其制备方法
技术领域
本发明涉及光电传感器领域,尤其涉及一种异质结光电传感器及其制备方法。
背景技术
光电探测器是一种能将实时光信号转变为实时电信号的器件,它在光电系统中占有重要地位。光电探测器在科技、商业等方面和各个领域都得到了广泛的应用。现如今的光电探测器分为光子探测器和热探测器,其中以光子探测器为主流,并且以类石墨烯结构的二维材料(硅、锗、过渡金属硫族化物等)为主的光电探测器发展已经进入主流。
自石墨烯被发现以来,以石墨烯结构以及类石墨烯结构的二维材料(黑鳞,二硫化钼等)已经成为现如今光电器件制作的主流。二硫化钼因其层状结构也成为光电探测器的研究热点,单层二硫化钼具有类石墨烯的结构,具有良好的光学和电子的特性,是直接禁带宽度为1.8eV的半导体,层内是通过强的共价键结合,层之间是通过弱的范德华耳斯力结合,层状的二硫化钼具有紫外光谱吸收峰,电子的跃迁方式为导带到价带的竖直跃迁。二硫化钼能用CVD(化学气相沉积法)合成,二硫化钼(MoS2)从块状到纳米层状,它从间接带隙转变到直接带隙。以石墨烯二硫化钼为主的掺杂异质结半导体研究越来越受到关注,人们一直致力于得到更高响应度和更好性能的光电探测。
因此,现有技术仍有不足之处,还需要进一步的改进和发展,在原有的技术水平需要大幅的提高。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种异质结光电传感器及其制备方法,旨在解决现有光电传感器响应灵敏度差的问题。
本发明的技术方案如下:
一种异质结光电传感器,其中,包括衬底、固定设置在衬底上的两个金属电极、以及堆叠在所述衬底上的二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜之间设置有部分重叠区域,所述部分重叠区域通过范德华相互作用形成光电异质结,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜不重叠的两端分别堆叠在所述两个金属电极表面。
所述的异质结光电传感器,其中,所述垂直生长石墨烯嵌入式碳膜的厚度为70-200nm。
所述的异质结光电传感器,其中,所述二硫化钼薄膜为单层二硫化钼、双层二硫化钼或三层二硫化钼中的一种。
所述的异质结光电传感器,其中,所述衬底材料为二氧化硅或聚二甲基硅氧烷。
所述的异质结光电传感器,其中,所述金属电极的材料为金。
一种异质结光电传感器的制备方法,其中,包括步骤:
预先在二氧化硅衬底上制作两个金属电极;
将预先制备好的二硫化钼薄膜转移至所述二氧化硅衬底上,所述二硫化钼薄膜一端堆叠在上述两个金属电极中的一个表面;
将预先制备好的垂直生长石墨烯嵌入式碳膜转移至所述二硫化钼薄膜上,所述二硫化钼薄膜与所述垂直生长石墨烯嵌入式碳膜之间的重叠区域形成光电异质结,所述垂直生长石墨烯嵌入式碳膜的一端堆叠在上述两个金属电极中的另一个表面。
所述的异质结光电传感器的制备方法,其中,所述二硫化钼薄膜的制备,包括步骤:
将三硫化钼粉与硫粉置于石英管中,所述石英管中位于三硫化钼粉的上方固定设置有石英片衬底,对所述石英管进行加热,当温度升至850°C时,以200sccm的流量给石英管通惰性气体20-30min;
将惰性气体的气流量减小到100ccm, 然后在20-30min内将石英管升温至550°C,然后以5°C/min 的升温速率石英管升温至850°C,保温10-30min,在所述石英片衬底上生成二硫化钼薄膜。
所述的异质结光电传感器的制备方法,其中,所述将预先制备好的二硫化钼薄膜转移至所述二氧化硅衬底上的步骤,具体包括:
在生长在石英片衬底上的二硫化钼薄膜上旋涂聚甲基丙烯酸甲酯,烘干冷却形成表面覆盖有聚甲基丙烯酸甲酯的复合样品;
将所述复合样品放入NaOH溶液中,混合使得二硫化钼与聚甲基丙烯酸甲酯结合的复合薄膜与石英片衬底发生分离;
将所述二硫化钼与聚甲基丙烯酸甲酯结合的复合薄膜捞出,采用丙酮刻蚀聚甲基丙烯酸甲酯,将剩下的二硫化钼薄膜转移至所述二氧化硅衬底上。
所述的异质结光电传感器的制备方法,其中,所述垂直生长石墨烯嵌入式碳膜的制备,包括步骤:
以氩气等离子体作为照射电子源,通过直流溅射碳靶在二氧化硅基底表面生长碳纳米薄膜;
改变等离子体中氩气气压在0.01Pa-0.1Pa 之间,基片偏压在30V-300 V之间,在二氧化硅表面进行石墨烯嵌层诱导生长,生成垂直生长石墨烯嵌入式碳膜。
所述的异质结光电传感器的制备方法,其中,所述将预先制备好的垂直生长石墨烯嵌入式碳膜转移至所述二硫化钼薄膜上的步骤,具体包括:
将所述生长在二氧化硅上的垂直生长石墨烯嵌入式碳膜放置在氢氟酸中浸泡20-40min,使垂直生长石墨烯嵌入式碳膜与二氧化硅分离;
捞起漂浮状的垂直生长石墨烯嵌入式碳膜,通过定点转移的方法转移至所述二氧化钼薄膜上。
有益效果:本发明提供的异质结光电传感器包括堆叠在衬底上的二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜之间设置有部分重叠区域,所述部分重叠区域通过范德华相互作用形成光电异质结,通过二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜堆叠形成的光电异质结能够有效提升光电传感器的响应灵敏度,其探测范围更广、探测能力更强。
附图说明
图1为本发明一种异质结光电传感器较佳实施例的结构示意图。
图2为本发明一种异质结光电传感器的制备方法较佳实施例的流程图。
图3为本发明二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜组成的异质结能带示意图。
图4为本发明异质结光电传感器在光强从1mW变化到5nW下的光响应率示意图。
具体实施方式
本发明提供了一种异质结光电传感器及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为本发明一种异质结光电传感器较佳实施例的结构示意图,如图所示,所述异质结光电传感器包括衬底10、固定设置在衬底10上的两个金属电极20、以及堆叠在所述衬底10上的二硫化钼薄膜30和垂直生长石墨烯嵌入式碳膜40,所述二硫化钼薄膜30和垂直生长石墨烯嵌入式碳膜40之间设置有部分重叠区域,所述部分重叠区域通过范德华相互作用形成光电异质结50,所述二硫化钼薄膜30和垂直生长石墨烯嵌入式碳膜40不重叠的两端分别堆叠在所述两个金属电极20表面。
具体来讲,本发明提供的光电传感器包括了由二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜组成的光电异质结,其中,二硫化钼薄膜对光敏感,在微弱光源下,所述二硫化钼薄膜价带电子可吸收光子激发跃迁到导带,形成电子空穴对,光电流响应可达到1000A/W,可实现微弱光电流探测;在所述光电异质结接触面上,由于存在载流子浓度的不同,二硫化钼中的多子空穴会向垂直生长石墨烯嵌入式碳膜方向做扩散运动,所述垂直生长石墨烯嵌入式碳膜中的电子则会向二硫化钼薄膜方向运动,这样就形成了内建电场,电场方向由碳膜指向二硫化钼薄膜,所述内建电场的形成阻止了多子的继续扩散并促使少子的继续漂移,从而加快光电异质结的光电响应速率,从而提高光电传感器的响应灵敏度及其性能。
二硫化钼因其独特的层状结构而成为光电器件材料的研究热点,所述二硫化钼层内是通过较强的共价键结合,而相邻层之间则是通过较弱的范德华力结合,层状的二硫化钼对光极为敏感,不同层数的二硫化钼具有不同的禁带宽度,从而决定了其吸收光的范围不同,单层二硫化钼薄膜和双层二硫化钼光晶体管均能够有效检测绿光,而三层二流化钼制作的光晶体管则适合检测红光。本发明可针对检测不同波长范围的光,选择相应层数的二硫化钼制备相应的光电传感器。
进一步地,本发明优选所述垂直生长石墨烯嵌入式碳膜的厚度为70-200nm,若所述垂直生长石墨烯嵌入式碳膜的厚度大于200nm,则影响透光性能,若所述垂直生长石墨烯嵌入式碳膜的厚度低于70nm,则不太利于石墨烯纳晶的生长。当垂直生长石墨烯嵌入式碳膜的厚度为70-200nm时,既可保证其透光性能,同时还能够保证石墨烯嵌入式碳膜具有大量的边界量子势阱,从而极大地提高其俘获电子的能力,进而提升光电传感器的光电反应速度。
基于上述光电异质结传感器,本发明还提供了一种光电异质结传感器的制备方法,其中,如图2所示,包括步骤:
S10、预先在二氧化硅衬底上制作两个金属电极;
S20、将预先制备好的二硫化钼薄膜转移至所述二氧化硅衬底上,所述二硫化钼薄膜一端堆叠在上述两个金属电极中的一个表面;
S30、将预先制备好的垂直生长石墨烯嵌入式碳膜转移至所述二硫化钼薄膜上,所述二硫化钼薄膜与所述垂直生长石墨烯嵌入式碳膜之间的重叠区域形成光电异质结,所述垂直生长石墨烯嵌入式碳膜的一端堆叠在上述两个金属电极中的另一个表面。
作为其中一实施方式,所述二硫化钼薄膜的制作步骤具体为:
将三硫化钼粉和硫粉放置在石英管中,其中,将装有三硫化钼粉末的陶瓷舟放置在石英管中心恒温区域,将装有硫粉的陶瓷舟放置在石英管的端口处,在所述装有三硫化钼粉末的陶瓷舟上方固定设置一石英片衬底;
设置石英管的加热温度为850°C, 当温度升至550°C时,减慢升温速率,当石英管中心温度上升到 850°C时,则以200sccm的流量给石英管通氮气20min,以排除石英管中的空气;
将氮气气流量减小到100ccm, 然后在20min内将退火炉中心升温至550°C, 然后以5°C/min 的升温速率将退火炉中心升温至 850°C, 保温 15 min, 自然冷却至室温; 随着石英管内温度继续上升到550°C时,三硫化钼开始蒸发, 并与硫蒸汽发生反应生成挥发性亚氧化物,这些亚氧化物扩散到石英衬底上形成纳米薄膜, 然后进一步与硫蒸汽反应, 生成二硫化钼薄膜。
进一步地,所述将二硫化钼薄膜转移至所述二氧化硅衬底上的步骤,具体包括:
预先配置浓度为2mol/L的NaOH水溶液与浓度为30mg/ml的溶于氯仿中的聚甲基丙烯酸甲酯(PMMA)溶液;
将生长在石英片衬底上的二硫化钼薄膜放在匀胶机上旋涂聚甲基丙烯酸甲酯并开始匀胶,先500rpm转3s,再3000rpm转30s,烘干冷却形成表面覆盖有聚甲基丙烯酸甲酯的复合样品;
将所述复合样品放入NaOH溶液中,混合使得二硫化钼与聚甲基丙烯酸甲酯结合的复合薄膜(PMMA/二硫化钼薄膜)与石英片衬底发生分离,将PMMA/二硫化钼薄膜放入去水离子中漂洗三次,用干净新的二氧化硅衬底将PMMA/二氧化钼薄膜从去离子水中捞出,避免出现气泡,并烘干,冷却至室温,然后利用丙酮刻蚀PMMA,最后将二硫化钼薄膜捞起转移至设置有金属电极的二氧化硅衬底上。
作为其中一实施方式,所述垂直生长石墨烯嵌入式碳膜的制备,包括步骤:
以电子回旋共振(ECR)氩气等离子体为照射电子源,通过直流溅射碳源在单晶硅基体表面生长碳纳米薄膜;
改变等离子体中氩气气压在0.01Pa-0.1Pa 之间(电子密度109~1010cm-3),基片偏压在30V-300之间,在二氧化硅表面进行石墨烯嵌层诱导生长石墨烯纳晶,通过调节氩气气压和基片偏压改变电子照射密度和动能,改变石墨烯纳晶的尺寸和边缘密度,利用透射电镜和拉曼光谱研究分析石墨烯纳晶键合方式平均层内尺寸和堆叠层数等形态。
进一步地,所述将预先制备好的垂直生长石墨烯嵌入式碳膜转移至所述二硫化钼薄膜上的步骤,具体包括:
将所述生长在二氧化硅上的垂直生长石墨烯嵌入式碳膜放置在氢氟酸中浸泡30min,使垂直生长石墨烯嵌入式碳膜与二氧化硅分离;
捞起漂浮状的垂直生长石墨烯嵌入式碳膜,通过定点转移的方法转移至所述二氧化钼薄膜上。
优选地,在本发明中,所述衬底的材料为二氧化硅或聚二甲基硅氧烷。
优选地,所述金属电极的材料为金。
下面通过对本发明提供的一种异质结光电传感器的光电相应性能进行测试,图3为二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜组成的异质结能带示意图,如图所示,E为内建电场,V为平衡时空间电荷区的电势差碳膜的导带和价带为上下对称的锥形,费米能级在导带和价带的交点处,为狄拉克点。在异质结的接触面上,由于存在载流子浓度的不同,二硫化钼薄膜中的多子空穴会向碳膜方向做扩散运动,碳膜中的电子会向二硫化钼薄膜运动,这样就形成了内建电场,方向由碳膜指向二硫化钼薄膜。电子在空间电荷区中各点有附加电势能,使势垒区的空间电荷区能带发生了弯曲,根据内建电场方向,在二硫化钼薄膜一边的能带向下弯曲 , 能带弯曲形成电势差,内建电场的形成阻止多子的继续扩散,促使少子的继续漂移,内建电场加快异质结的光电响应率,从而提高光电传感器性能。
图4为本发明提供的异质结光电传感器在光强从1mW变化到5nW下的光响应率示意图,如图所示,即使在光强为5nW的微弱光线下,所述光电传感器的光电流响应可达到1000A/W,实现微弱光电流探测。
综上所述,本发明提供的异质结光电传感器包括堆叠在衬底上的二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜之间设置有部分重叠区域,所述部分重叠区域通过范德华相互作用形成光电异质结,通过二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜堆叠形成的光电异质结能够有效提升光电传感器的响应灵敏度,其探测范围更广、探测能力更强。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种异质结光电传感器,其特征在于,包括衬底、固定设置在衬底上的两个金属电极、以及堆叠在所述衬底上的二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜之间设置有部分重叠区域,所述部分重叠区域通过范德华相互作用形成光电异质结,所述二硫化钼薄膜和垂直生长石墨烯嵌入式碳膜不重叠的两端分别堆叠在所述两个金属电极表面。
2.根据权利要求1所述的异质结光电传感器,其特征在于,所述垂直生长石墨烯嵌入式碳膜的厚度为70-200nm。
3.根据权利要求1所述的异质结光电传感器,其特征在于,所述二硫化钼薄膜为单层二硫化钼、双层二硫化钼或三层二硫化钼中的一种。
4.根据权利要求1所述的异质结光电传感器,其特征在于,所述衬底材料为二氧化硅或聚二甲基硅氧烷。
5.根据权利要求1所述的异质结光电传感器,其特征在于,所述金属电极的材料为金。
6.一种异质结光电传感器的制备方法,其特征在于,包括步骤:
预先在二氧化硅衬底上制作两个金属电极;
将预先制备好的二硫化钼薄膜转移至所述二氧化硅衬底上,所述二硫化钼薄膜一端堆叠在上述两个金属电极中的一个表面;
将预先制备好的垂直生长石墨烯嵌入式碳膜转移至所述二硫化钼薄膜上,所述二硫化钼薄膜与所述垂直生长石墨烯嵌入式碳膜之间的重叠区域形成光电异质结,所述垂直生长石墨烯嵌入式碳膜的一端堆叠在上述两个金属电极中的另一个表面。
7.根据权利要求6所述的异质结光电传感器的制备方法,其特征在于,所述二硫化钼薄膜的制备,包括步骤:
将三硫化钼粉与硫粉置于石英管中,所述石英管中位于三硫化钼粉的上方固定设置有石英片衬底,对所述石英管进行加热,当温度升至850°C时,以200sccm的流量给石英管通惰性气体20-30min;
将惰性气体的气流量减小到100ccm, 然后在20-30min内将石英管升温至550°C,然后以5°C/min 的升温速率石英管升温至850°C,保温10-30min,在所述石英片衬底上生成二硫化钼薄膜。
8.根据权利要求7所述的异质结光电传感器的制备方法,其特征在于,所述将预先制备好的二硫化钼薄膜转移至所述二氧化硅衬底上的步骤,具体包括:
在生长在石英片衬底上的二硫化钼薄膜上旋涂聚甲基丙烯酸甲酯,烘干冷却形成表面覆盖有聚甲基丙烯酸甲酯的复合样品;
将所述复合样品放入NaOH溶液中,混合使得二硫化钼与聚甲基丙烯酸甲酯结合的复合薄膜与石英片衬底发生分离;
将所述二硫化钼与聚甲基丙烯酸甲酯结合的复合薄膜捞出,采用丙酮刻蚀聚甲基丙烯酸甲酯,将剩下的二硫化钼薄膜转移至所述二氧化硅衬底上。
9.根据权利要求6所述的异质结光电传感器的制备方法,其特征在于,所述垂直生长石墨烯嵌入式碳膜的制备,包括步骤:
以氩气等离子体作为照射电子源,通过直流溅射碳靶在二氧化硅基底表面生长碳纳米薄膜;
改变等离子体中氩气气压在0.01Pa-0.1Pa 之间,基片偏压在30V-300 V之间,在二氧化硅表面进行石墨烯嵌层诱导生长,生成垂直生长石墨烯嵌入式碳膜。
10.根据权利要求9所述的异质结光电传感器的制备方法,其特征在于,所述将预先制备好的垂直生长石墨烯嵌入式碳膜转移至所述二硫化钼薄膜上的步骤,具体包括:
将所述生长在二氧化硅上的垂直生长石墨烯嵌入式碳膜放置在氢氟酸中浸泡20-40min,使垂直生长石墨烯嵌入式碳膜与二氧化硅分离;
捞起漂浮状的垂直生长石墨烯嵌入式碳膜,通过定点转移的方法转移至所述二氧化钼薄膜上。
CN201810436741.2A 2018-05-09 2018-05-09 一种异质结光电传感器及其制备方法 Active CN108666381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810436741.2A CN108666381B (zh) 2018-05-09 2018-05-09 一种异质结光电传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810436741.2A CN108666381B (zh) 2018-05-09 2018-05-09 一种异质结光电传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN108666381A true CN108666381A (zh) 2018-10-16
CN108666381B CN108666381B (zh) 2020-08-25

Family

ID=63778788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810436741.2A Active CN108666381B (zh) 2018-05-09 2018-05-09 一种异质结光电传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN108666381B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616541A (zh) * 2018-10-29 2019-04-12 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN110002427A (zh) * 2019-05-05 2019-07-12 深圳第三代半导体研究院 一种高导热碳膜及其制备方法
CN111554780A (zh) * 2020-05-14 2020-08-18 南方科技大学 一种具有异质结的中红外发光二极管及其制备方法
CN112216751A (zh) * 2019-07-11 2021-01-12 哈尔滨工业大学 GaSe/MoS2异质结的制备方法
WO2021077837A1 (zh) * 2019-10-25 2021-04-29 深圳大学 基于石墨烯/黑磷/二硫化钼/石墨烯异质结的快速光电探测器及其制备方法
CN112768566A (zh) * 2021-02-01 2021-05-07 上海理工大学 一种基于二硫化钼为载体的光电池制备方法
CN114000103A (zh) * 2021-09-02 2022-02-01 西安交通大学 一种二硫化钼/石墨烯复合异质结及其制备方法
CN116190497A (zh) * 2023-04-27 2023-05-30 长春理工大学 一种基于强耦合MoS2/MoO3异质结光电探测器的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN103531655A (zh) * 2013-10-28 2014-01-22 鲍桥梁 一种与硅光波导集成的石墨烯异质结光探测器
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
CN106966384A (zh) * 2017-03-28 2017-07-21 天津大学 一种二硫化钼/石墨烯层状组装体的制备方法
CN107226486A (zh) * 2016-03-25 2017-10-03 北京大学 一种二硫化钼的基底转移方法
CN107316915A (zh) * 2017-07-04 2017-11-03 中山大学 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN107334464A (zh) * 2016-12-05 2017-11-10 深圳大学 一种基于石墨烯边缘嵌入式纳米薄膜光电传感器的脉搏仪
CN107749433A (zh) * 2017-08-30 2018-03-02 中国科学院上海技术物理研究所 一种二维范德华异质结光电探测器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN103531655A (zh) * 2013-10-28 2014-01-22 鲍桥梁 一种与硅光波导集成的石墨烯异质结光探测器
CN107226486A (zh) * 2016-03-25 2017-10-03 北京大学 一种二硫化钼的基底转移方法
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
CN107334464A (zh) * 2016-12-05 2017-11-10 深圳大学 一种基于石墨烯边缘嵌入式纳米薄膜光电传感器的脉搏仪
CN106966384A (zh) * 2017-03-28 2017-07-21 天津大学 一种二硫化钼/石墨烯层状组装体的制备方法
CN107316915A (zh) * 2017-07-04 2017-11-03 中山大学 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN107749433A (zh) * 2017-08-30 2018-03-02 中国科学院上海技术物理研究所 一种二维范德华异质结光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈彩云: "石墨烯、二硫化钼和石墨烯/二硫化钼异质结:制备、表征和应用", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616541A (zh) * 2018-10-29 2019-04-12 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN109616541B (zh) * 2018-10-29 2020-07-10 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN110002427A (zh) * 2019-05-05 2019-07-12 深圳第三代半导体研究院 一种高导热碳膜及其制备方法
CN112216751A (zh) * 2019-07-11 2021-01-12 哈尔滨工业大学 GaSe/MoS2异质结的制备方法
WO2021077837A1 (zh) * 2019-10-25 2021-04-29 深圳大学 基于石墨烯/黑磷/二硫化钼/石墨烯异质结的快速光电探测器及其制备方法
CN111554780A (zh) * 2020-05-14 2020-08-18 南方科技大学 一种具有异质结的中红外发光二极管及其制备方法
CN112768566A (zh) * 2021-02-01 2021-05-07 上海理工大学 一种基于二硫化钼为载体的光电池制备方法
CN114000103A (zh) * 2021-09-02 2022-02-01 西安交通大学 一种二硫化钼/石墨烯复合异质结及其制备方法
CN116190497A (zh) * 2023-04-27 2023-05-30 长春理工大学 一种基于强耦合MoS2/MoO3异质结光电探测器的制备方法

Also Published As

Publication number Publication date
CN108666381B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN108666381A (zh) 一种异质结光电传感器及其制备方法
Sun et al. Plasmonic-enhanced perovskite–graphene hybrid photodetectors
CN107482072B (zh) 具有亚带隙探测能力的石墨烯基波长选择光探测器
Liu et al. Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction
Peng et al. Low‐dimensional nanostructure ultraviolet photodetectors
Liu et al. High-performance ultraviolet photodetector based on graphene quantum dots decorated ZnO nanorods/GaN film isotype heterojunctions
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
Fang et al. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p− n homojunction LED fabricated by hydrothermal method
CN103117317B (zh) 一种硅面SiC衬底上的石墨烯光电器件及其制备方法
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
Saghaei et al. Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods
Liu et al. A highly sensitive and fast graphene nanoribbon/CsPbBr 3 quantum dot phototransistor with enhanced vertical metal oxide heterostructures
CN105895729B (zh) 石墨烯光电探测器
Algadi et al. Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure
Liu et al. Ge/Si quantum dots thin film solar cells
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
Wang et al. Photogating-controlled ZnO photodetector response for visible to near-infrared light
Fan et al. UV photodetectors based on 3D periodic Au-decorated nanocone ZnO films
CN113410317A (zh) 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
Jin et al. Positive and negative photoconductivity characteristics in CsPbBr3/graphene heterojunction
Wang et al. Temperature-dependence studies of organolead halide perovskite-based metal/semiconductor/metal photodetectors
Zheng et al. Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response
Zhu et al. An enhanced solar-blind ultraviolet photodetector based on polyvinyl alcohol/carbon nanodots film
CN104332514A (zh) 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法
CN103367477A (zh) 太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant