CN108663425A - 一种肌红蛋白与铂-金-三维石墨烯复合材料修饰电极的制备方法及其应用 - Google Patents

一种肌红蛋白与铂-金-三维石墨烯复合材料修饰电极的制备方法及其应用 Download PDF

Info

Publication number
CN108663425A
CN108663425A CN201810626533.9A CN201810626533A CN108663425A CN 108663425 A CN108663425 A CN 108663425A CN 201810626533 A CN201810626533 A CN 201810626533A CN 108663425 A CN108663425 A CN 108663425A
Authority
CN
China
Prior art keywords
3dgr
cile
electrode
electrodes
nafion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810626533.9A
Other languages
English (en)
Inventor
孙伟
殷春晓
陈玮
翁文举
刘娟
李小宝
李光九
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN201810626533.9A priority Critical patent/CN108663425A/zh
Publication of CN108663425A publication Critical patent/CN108663425A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Abstract

本发明了公开一种肌红蛋白(Mb)与铂‑金‑三维石墨烯(Pt‑Au‑3DGR)复合材料修饰电极的制备方法及其电化学和电催化性能应用,所述制备方法包括以下步骤:按照质量比2:1取石墨粉与离子液体1‑己基吡啶六氟磷酸盐(HPPF6)置于研钵中研磨均匀,填入玻璃电极管中制备碳离子液体电极(CILE);取6~10μL 0.5 mg mL‑1 Pt‑Au‑3DGR分散液滴涂在CILE表面,在室温条件下避光自然晾干得Pt‑Au‑3DGR/CILE电极;再取6~10μL 10~20 mg mL‑1 Mb溶液滴涂在Pt‑Au‑3DGR/CILE电极表面,在室温条件下避光自然晾干得Mb/Pt‑Au‑3DGR/CILE电极;最后取6~8μL 0.3~0.7%Nafion乙醇溶液滴涂在Mb/Pt‑Au‑3DGR/CILE电极表面,室温下避光晾干后即得Nafion/Mb/Pt‑Au‑3DGR/CILE电极。本发明制得的修饰电极对三氯乙酸和亚硝酸钠电催化还原效果良好,线性范围宽,检测限低,灵敏度高。

Description

一种肌红蛋白与铂-金-三维石墨烯复合材料修饰电极的制备 方法及其应用
技术领域
本发明属于纳米复合材料和电化学传感分析技术领域,具体涉及一种用于检测三氯乙酸和亚硝酸钠的修饰电极的制备方法和应用。
背景技术
生物传感器主要由生物分子识别元件(其敏感元件主要为固定化生物分子活性物质如酶、蛋白质、核酸、抗原和抗体等)和信号转换器构成(主要为仪器的硬件部分如电化学修饰电极、压电石英晶体、场效应晶体管、热敏电阻等)。前者为生物信号的接收或产生,起到初始响应作用,后者为待测物质与敏感元件特异型结合后能把响应信号转换成可以输出的电信号或者光信号,以便达到精准测定的目的。因此生物传感器是一种能用适当的换能器从待测物中特异性检测相关生物分子并产生一个可测量信号的分析仪器。与生物分子识别元件组合之后,被感受器接受的生物信号都可以通过物理、化学、光学、热学或电化学作用换能成为可以被观测分析的信息。生物传感器的特点包括测定范围广、特异性强、测试过程简单、准确度和灵敏度高、体积小、能多次检测且易于化学分析、活体生物检测和成本低。生物传感器的发展有力地促进了医学研究、临床诊断、食品安全和环境监测等领域的发展。
三维石墨烯(3DGR)通常是指具有3D结构的二维石墨烯纳米片组装体,是近年来石墨烯化学领域的新型功能性材料。将石墨烯纳米片整合成具有3D结构的组装体可以有效调控石墨烯的电学、光学、机械、化学和催化特性,,因此3D石墨烯材料不仅具有石墨烯固有的理化性质,其三维多孔的微/纳米结构还使其兼具比表面积大、机械强度高、电子传导能力优越及传质快速等优良特性。这些独特的性质使3D石墨烯及其复合材料在材料科学领域备受关注。3DGR可以进一步被修饰,例如,3D石墨烯与多种纳米金属组合合金的复合材料应用在纳米电子学、能量储存和转换、化学和生物传感等研究领域均表现出优越的性能。由于石墨烯缺乏带隙,在室温下的超高电子迁移率、低电阻率、高热导率等优点,结合合金体系的高导电性优点,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高的应用价值。
三氯乙酸(TCA)是有机卤素类环境污染物之一,它也被广泛应用于农业和公共安全领域,如经常存在于用次氯酸消毒过的饮用水中。对三氯乙酸的毒理学研究表明,它能够导致生物体内的肺肿瘤,也可以造成癌症和影响人类生殖功能。因此世界卫生组织明确规定水环境中三氯乙酸的安全存在量为100μg L-1。亚硝酸钠(NaNO2 ) 是肉制品生产中最常使用的一种食品添加剂。它是一种强氧化剂,进入血液后与血红蛋白结合,导致组织缺氧。亚硝酸钠的外观与食盐极为相似,容易被误用,作为食品添加剂亚硝酸钠,有助于保持肉制品的结构和营养价值。但它也是食品添加剂中毒性较强的物质,人体极限摄入量一次最多不能超过0.3克,如果超过这一极限摄入量,就会造成人体亚硝酸钠中毒,甚至死亡。
综上,研发一种基于新型纳米复合材料的修饰电极,对三氯乙酸和亚硝酸钠这两种物质均能快速且准确检测显得尤为重要。
发明内容
有鉴于此,本发明提供了一种肌红蛋白和铂-金-三维石墨烯复合材料修饰电极的制备方法及其应用,所制得的修饰电极对三氯乙酸和亚硝酸钠电催化还原效果良好,表现出线性范围宽,检测限低,灵敏度高等优点。
本发明提供一种肌红蛋白和铂-金-三维石墨烯复合材料修饰电极(Nafion/Mb/Pt-Au-3DGR/CILE),其特征在于该电极由内向外依次包括基底电极(CILE)、铂-金-三维石墨烯(Pt-Au-3DGR)涂层、肌红蛋白(Mb)涂层、Nafion涂层。
本发明提供一种电化学生物传感器件,其特征在于以本发明上述肌红蛋白和铂-金-三维石墨烯复合材料修饰电极作为工作电极。
本发明提供上述肌红蛋白和铂-金-三维石墨烯复合材料修饰电极(优选Nafion/Mb/Pt-Au-3DGR/CILE电极)的制备方法,其特征在于包括如下步骤:
S1、取1.6 g石墨粉、0.8 g离子液体1-己基吡啶六氟磷酸盐(HPPF6)置于研钵中均匀研磨2h,得到碳糊,然后将碳糊填入玻璃电极管中压实,内插打磨好的铜丝作为导线,得到碳离子液体电极CILE;
S2、取8 μL 0.6 mg mL-1 Pt-Au-3DGR分散液滴涂在CILE表面,室温条件下避光自然晾干,得到Pt-Au-3DGR/CILE电极;
S3、再取8 μL 15 mg mL-1 Mb溶液滴涂在Pt-Au-3DGR/CILE电极表面,在室温下避光自然晾干,得到Mb/Pt-Au-3DGR/CILE电极;
S4、最后取6μL 0.5% Nafion乙醇溶液滴涂在Mb/Pt-Au-3DGR/CILE电极表面,室温下避光晾干后,即得到Nafion/Mb/Pt-Au-3DGR/CILE电极。
本发明任一项所述的肌红蛋白和铂-金-三维石墨烯复合材料修饰电极用于电催化还原三氯乙酸和亚硝酸钠。
本发明任一项所述的肌红蛋白和铂-金-三维石墨烯复合材料修饰电极用于检测三氯乙酸和亚硝酸钠。
本发明所述的肌红蛋白和铂-金-三维石墨烯复合材料修饰电极的检测环境为在pH 3.0的磷酸盐缓冲溶液中。
本发明中,HPPF6为1-己基吡啶六氟磷酸盐,CILE为碳离子液体电极,Pt为铂,Au为金,3DGR为三维石墨烯,Mb为肌红蛋白,Nafion为全氟磺酸-聚四氟乙烯共聚物,TCA为三氯乙酸,NaNO2为亚硝酸钠,PBS缓冲液为磷酸盐缓冲溶液。
一、附图说明
图1为Nafion/Mb/Pt-Au-3DGR/CILE详细制备流程图和Mb螺旋构象及铁卟啉;
图2为Pt-Au-3DGR复合材料的SEM图和TEM图;
图3为不同修饰电极在pH 3.0 的PBS缓冲溶液,扫描速度为100 mV s-1时的循环伏安图,其中曲线d为CILE的循环伏安曲线,曲线c为Nafion/CILE的循环伏安曲线,曲线b为Nafion/Mb/CILE的循环伏安曲线, 曲线a为Nafion/Mb/Pt-Au-3DGR/CILE的循环伏安曲线;
图4为不同pH缓冲溶液中Nafion/Mb/Pt-Au-3DGR/CILE的循环伏安图 (a到f分别为pH为 3.0, 4.0, 5.0, 6.0, 7.0, 8.0);
图5为Nafion/Mb/Pt-Au-3DGR/CILE在不同浓度TCA存在下的循环伏安图 (a到j分别为0.0, 1.0, 3.0, 6.0, 10.0, 14.0, 18.0, 22.0, 26.0, 30.0 mmol L-1),其中插图为还原峰电流Ipc与TCA的浓度之间的关系曲线图;
图6为Nafion/Mb/Pt-Au-3DGR/CILE在不同浓度NaNO2存在下的循环伏安图(a到k分别为0.05, 0.10, 0.15, 0.20, 0.26, 0.30, 0.36, 0.40, 0.45, 0.50, 0.55 mmol·L-1),插图为还原峰电流Ipc与NaNO2浓度的线性关系图。
二、Pt-Au-3DGR材料的形貌特征
Pt-Au-3DGR的SEM和TEM结果如图2A和2B所示,可以看到薄片状GR中均匀分散着大小均一的球状纳米颗粒形成复合材料。
三、研究了Mb在pH =3.0的PBS缓冲溶液中的直接电化学行为
研究了Mb修饰电极在pH =3.0的PBS缓冲溶液中扫描速度100 mV s-1时的直接电化学行为,结果如图3所示,从图中可以看出,Nafion/CILE(曲线d)和Nafion/Pt-Au-3DGR/CILE(曲线c)上没有氧化还原峰,由于Pt-Au-3DGR在电极上的存在使背景电流更大。Nafion/Mb/CILE(曲线b)上出现了一对近似对称的氧化还原峰但电流较小,说明了Mb中的铁卟啉和CILE表面存在着电子交流但速度较慢。Nafion/Mb/Pt-Au-3DGR/CILE (曲线a)上有一对对称且峰型尖锐的氧化还原峰峰电流明显增加,说明Pt-Au-3DGR复合材料具有多孔结构可以提高Mb的负载量,且高导电性和大的比表面积以及优异的生物相容性有利于加速Mb内部铁卟啉的电子交流。从曲线a上可以得出Epc和Epa分别为-0.275 V和-0.153 V (vs. SCE),△Ep为124 mV,E0'为 -0.214 V (vs. SCE),电流之比为1,为Mb内铁卟啉Fe(III)/Fe(II)电对的特征电化学行为。
四、研究pH对Mb电化学信号响应的影响
研究磷酸盐缓冲溶液的pH对Nafion/Mb/Pt-Au-3DGR/CILE直接电化学行为的影响,循 环伏安扫描结果如图4所示。缓冲溶液的酸碱度可影响氧化还原蛋白质的电化学行为,E0’与 pH之间线性关系的斜率可以提供相关电化学信息。如图所示E0’随着pH的升高逐渐往越负的 电位方向偏移,两者之间线性回归方程为E0’ (V)=-0.0509pH + 0.033 (n=6, γ=0.994), 斜率为-50.9 mV·s-1,略小于在291K可逆反应的-57.60 mV·s-1(理论值),说明了Mb在电 化学反应过程中于电极表面经历了单电子单质子传递过程,电化学反应方程表示为:Mb Fe (III) + H+ + eMbFe(II)。当pH =3.0时的氧化还原峰电流最大,选择其为最佳支持电 解质。
五、对TCA和NaNO2电催化行为研究
研究了本发明的Nafion/Mb/Pt-Au-3DGR/CILE电极在pH 3.0 PBS缓冲溶液中电催化还原TCA的催化效果,结果如图5所示。在pH 3.0的缓冲溶液中逐渐加入TCA后循环伏安扫描发现在-0.286 V处有一个还原峰峰电流Ipc随着C TCA 的加大而加大,氧化峰峰高随着C TCA 的增加逐渐降低到最后消失,同时在-0.518 V产生了新的还原峰,为典型的电催化反应过程。当C TCA 范围为1.0~30.0 mmol·L-1时与还原峰电流的线性回归方程为I (μA) = 4.426 C(mmol·L-1) + 21.57 (n=9, γ=0.996),检出限为0.33 mmol·L-1 (3σ),K M app 为15.97mmol·L-1
本发明还研究了该修饰电极电催化还原NaNO2的催化效果,结果如图6所示。在pH 3.0的缓冲溶液中逐渐加入NaNO2后循环伏安扫描发现在-0.665 V处有一个还原峰峰电流Ipc随着C NaNO2 的增加而增大。当线性范围为0.05~0.55 mmol·L-1,线性回归方程为I (μA) =115.56 C(mmol·L-1) + 1.03 (n=12, γ=0.996),检出限为0.01 mmol·L-1 (3σ),K M app 为9.51 mmol·L-1

Claims (8)

1.一种基于铂-金-三维石墨烯(Pt-Au-3DGR)复合材料和肌红蛋白修饰电极的制备,其特征在于:所述修饰电极包括基底电极,以及依次固定在基底电极上的铂-金-三维石墨烯复合材料,Mb分子和Nafion膜;作为优选,所述基底电极为碳离子液体修饰电极(CILE)。
2.根据权利要求1所述的修饰电极,其特征在于:配制浓度为2.426×10-2 mol L-1的HAuCl4和HPtCl6溶液各2.5 mL,超声混合后加入2.5 mL 8.0 mg mL-1的氧化石墨烯(GO)溶液,用二次蒸馏水定容到20 mL后继续超声15 min;随后将混合液转入50 mL的聚四氟乙烯反应釜中,于180℃下加热反应12 h,冷却至室温后取出沉淀物,用二次蒸馏水清洗去除未反应物,冷冻干燥12 h后即得Pt-Au-3DGR纳米复合材料。
3.根据权利要求1所述的修饰电极,其特征在于:所述Pt-Au-3DGR分散液的浓度为0.3~1.8 mg mL-1, 优选0.6 mg mL-1
4.根据权利要求1所述的修饰电极,其特征在于:所述肌红蛋白的浓度为10~20 mg mL-1,优选15 mg mL-1
5.权利要求1-4任一所述的修饰电极的制备方法,其特征在于步骤如下:
(1)取适量Pt-Au-3DGR分散液滴涂在CILE基底电极表面,室温条件下避光自然晾干,得到Pt-Au-3DGR/CILE电极;
(2)取适量Mb溶液滴涂在Pt-Au-3DGR/CILE电极表面,在室温下避光自然晾干,得到Mb/Pt-Au-3DGR/CILE电极;
(3)取适量Nafion乙醇溶液滴涂在Mb/Pt-Au-3DGR/CILE电极表面,在室温下避光晾干后,即得到Nafion/Mb/Pt-Au-3DGR/CILE电极;
步骤(1)所述CILE基底电极的制备方法包括如下步骤:将适量的石墨粉与离子液体HPPF6置于研钵中研磨均匀,得到碳糊,然后将碳糊填入玻璃管中压实,内插铜丝作为导线,得到离子液体修饰碳糊电极,即CILE基底电极;其中,石墨粉与离子液体HPPF6的质量比为1.5~2.5:1,优选2:1;研磨的时间为2.0~3.0 h;玻璃电极管内径为 4 mm;
步骤(1)中所述Pt-Au-3DGR分散液的浓度为0.6 mg mL-1,其用量以能均匀涂布CILE电极表面为宜;
步骤(2)所述Mb溶液的浓度为10~20 mg mL-1,优选15 mg mL-1,其用量以能均匀涂布Pt-Au-3DGR/CILE电极表面为宜;
步骤(3)所述Nafion乙醇溶液的体积浓度为0.3~0.7%,优选0.5%,其用量以能均匀涂布Mb/Pt-Au-3DGR/CILE电极表面为宜。
6.本发明提供上述肌红蛋白和铂-金-三维石墨烯复合材料修饰电极(优选Nafion/Mb/Pt-Au-3DGR/CILE电极)在制备电化学传感器件中的应用。
7.本发明提供上述肌红蛋白和铂-金-三维石墨烯复合材料修饰电极(优选Nafion/Mb/Pt-Au-3DGR/CILE电极)在电催化还原和检测三氯乙酸和亚硝酸钠中的应用。
8.权利要求任一所述的修饰电极用于检测三氯乙酸和亚硝酸钠;作为优选,所述检测为定量检测。
CN201810626533.9A 2018-06-19 2018-06-19 一种肌红蛋白与铂-金-三维石墨烯复合材料修饰电极的制备方法及其应用 Pending CN108663425A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810626533.9A CN108663425A (zh) 2018-06-19 2018-06-19 一种肌红蛋白与铂-金-三维石墨烯复合材料修饰电极的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810626533.9A CN108663425A (zh) 2018-06-19 2018-06-19 一种肌红蛋白与铂-金-三维石墨烯复合材料修饰电极的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN108663425A true CN108663425A (zh) 2018-10-16

Family

ID=63775774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810626533.9A Pending CN108663425A (zh) 2018-06-19 2018-06-19 一种肌红蛋白与铂-金-三维石墨烯复合材料修饰电极的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108663425A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758917A (zh) * 2016-04-07 2016-07-13 海南师范大学 一种Nafion/辣根过氧化物酶/四氧化三钴-石墨烯/离子液体碳糊电极的制备及催化应用
CN107941873A (zh) * 2017-08-04 2018-04-20 海南师范大学 一种基于纳米复合材料的血红蛋白电化学传感器的制备及应用
CN107941881A (zh) * 2017-11-24 2018-04-20 海南师范大学 基于三维石墨烯修饰电极的肌红蛋白电化学生物传感器制备及其电催化研究

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758917A (zh) * 2016-04-07 2016-07-13 海南师范大学 一种Nafion/辣根过氧化物酶/四氧化三钴-石墨烯/离子液体碳糊电极的制备及催化应用
CN107941873A (zh) * 2017-08-04 2018-04-20 海南师范大学 一种基于纳米复合材料的血红蛋白电化学传感器的制备及应用
CN107941881A (zh) * 2017-11-24 2018-04-20 海南师范大学 基于三维石墨烯修饰电极的肌红蛋白电化学生物传感器制备及其电催化研究

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZUORUI WEN等: "Electrodeposited ZnO@three-dimensional Graphene Composite Modified Electrode for Electrochemistry and Electrocatalysis of Myoglobin", 《INT. J. ELECTROCHEM. SCI.》 *
闫丽君: "石墨烯复合材料的电化学传感器的制备与应用研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Pundir et al. Determination of urea with special emphasis on biosensors: A review
Song et al. Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode
Xiang et al. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO–gold nanoparticle–Nafion nanocomposite
Amani et al. Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol
Beitollahi et al. Application of a modified graphene nanosheet paste electrode for voltammetric determination of methyldopa in urine and pharmaceutical formulation
Rebelo et al. Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction
Tashkhourian et al. A new bifunctional nanostructure based on Two-Dimensional nanolayered of Co (OH) 2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: Impedimetric and amperometric detection
Chawla et al. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles–polypyrrole film
CN106383158B (zh) 一种基于银-石墨烯纳米复合物的过氧化氢无酶传感器及其制备方法
Song et al. A hollow urchin-like α-MnO 2 as an electrochemical sensor for hydrogen peroxide and dopamine with high selectivity and sensitivity
Tian et al. Amperometric detection of glucose based on immobilizing glucose oxidase on g-C3N4 nanosheets
Deng et al. Highly sensitive electrochemical sensor for tyrosine detection using a sub-millimeter electrode
Yue et al. A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets
Liu et al. Fabrication of a novel nanocomposite electrode with ZnO-MoO3 and biochar derived from mushroom biomaterials for the detection of acetaminophen in the presence of DA
CN107941881A (zh) 基于三维石墨烯修饰电极的肌红蛋白电化学生物传感器制备及其电催化研究
CN107219281A (zh) 一种铂‑三维石墨烯气凝胶基酶传感器件的制备及应用
Luan et al. Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose
CN110082413A (zh) 一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器
Niu et al. A direct electron transfer biosensor based on a horseradish peroxidase and gold nanotriangle modified electrode and electrocatalysis
CN110220959A (zh) 一种基于聚合膜修饰电极的l-谷氨酸检测方法及传感器
Liu et al. Electrochemical determination of tyrosine using graphene and gold nanoparticle composite modified glassy carbon electrode
Gonzalez-Gallardo et al. Electrochemical creatinine detection for advanced point-of-care sensing devices: a review
Zhang et al. A facile integrated microfluidic chip based on Chitosan-Gold Nanoparticles-Anchored Three-Dimensional graphene fiber film for monitoring prostate specific antigen
Baytemir A non-enzymatic electrochemical sensor based on polyaniline/borophene nanocomposites for dopamine detection
CN108918623A (zh) 一种基于锌基金属有机骨架材料和纳米金复合材料的电化学酶传感器的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181016