CN110082413A - 一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器 - Google Patents

一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器 Download PDF

Info

Publication number
CN110082413A
CN110082413A CN201910446311.3A CN201910446311A CN110082413A CN 110082413 A CN110082413 A CN 110082413A CN 201910446311 A CN201910446311 A CN 201910446311A CN 110082413 A CN110082413 A CN 110082413A
Authority
CN
China
Prior art keywords
cus
mwcnts
electrode
tyrosine
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910446311.3A
Other languages
English (en)
Other versions
CN110082413B (zh
Inventor
曹忠
朱钦
刘楚
丰赛飞
何军意
肖忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201910446311.3A priority Critical patent/CN110082413B/zh
Publication of CN110082413A publication Critical patent/CN110082413A/zh
Application granted granted Critical
Publication of CN110082413B publication Critical patent/CN110082413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于复合膜修饰电极的L‑酪氨酸(L‑Tyr)检测方法,所述方法包括制备CuS NS‑CS/F‑MWCNTs复合材料、制备CuS NS‑CS/F‑MWCNTs/GCE复合膜修饰电极和L‑酪氨酸检测等步骤。本发明制备了CuS纳米片(CuS NS)负载到酸化碳纳米管并采用壳聚糖(CS)作分散剂,将其修饰在玻碳电极上制得了CuS NS‑CS/F‑MWCNTs/GCE复合膜修饰电极。结果表明该修饰电极对L‑Tyr具有良好的电催化氧化特性,可用于猪血清样品中L‑Tyr的测定,检测下限达到4.9×10‑9mol/L,说明该修饰电极在生物分析检测领域有潜在的应用价值。

Description

一种基于复合膜修饰电极的L-酪氨酸检测方法及传感器
技术领域
本发明属于化学/生物传感技术领域,具体涉及一种基于复合膜修饰电极的L-酪氨酸检测方法及传感器。
背景技术
L-酪氨酸(L-Tyr)作为人和动物的生理必需氨基酸,对其新陈代谢、生长发育起着重要的作用。同时它是蛋白质的组成部分,也是黑色素和神经递质的关键前体。它存在于大豆、鱼、鸡蛋、牛奶和香蕉等食物中。然而,人体中酪氨酸过量将会引起酪氨酸血症,这是一种罕见的因L-Tyr代谢异常所导致的常染色体隐性疾病,这种疾病对人体有不可逆转的损害,特别是新生儿的肝衰竭、神经痛、佝偻病等疾病;酪氨酸含量过低将会引起白化病和褐黄病。而酪氨酸的含量也将影响动物的营养及毛色,例如猪和羊。因此,快速灵敏地测定L-Tyr对研究相关疾病的病理和临床诊断具有重要意义。
目前国内外用于检测L-Tyr的方法主要有分光光度法、离子交换色谱法、高效液相色谱法、液相色谱-质谱联用、毛细管电泳、荧光光谱法等。但是这些方法因仪器设备笨重,价格昂贵,操作繁琐,而电化学传感器检测L-Tyr具有操作简单、成本低廉、选择性好、灵敏度高等优点,因此引起了研究者们的广泛关注,其中包括通过电化学检测含氮小分子的研究,特别是结合纳米材料检测酪氨酸的电化学传感器。例如,Karimi-Maleh等制备了氧化镍/碳纳米管/2-(3,4-二羟基苯乙基)异二氢吲哚-1,3-二酮修饰的碳糊电极,可同时检测甲巯丙脯酸、对乙酰氨基酚、酪氨酸和氢氯噻嗪,其中酪氨酸的检测下限为1.0μM。Shumyantseva等采用碳纳米管或碳纳米管/二氧化钛纳米复合材料修饰丝网印刷电极(SPE/CNT or SPE/CNT/TiO2),该电极对L-酪氨酸的检测具有很好的电催化性。Wang等通过使用壳聚糖(CS)作为固定剂,构建了用(GO)-ε-MnO2微球修饰活化玻碳电极的电化学传感器,用于灵敏检测牛奶和干血斑样品中的酪氨酸,检测下限为8.3nM。因此,在生命科学领域有必要研发一种简便、快速、高灵敏检测L-Tyr的方法。
在电化学传感界面构建中,多壁碳纳米管具有高达100nm的可变直径、杂乱的卷曲分布、较差的溶解性。经酸化后的碳纳米管表面引入了大量的羧基、羟基官能团,增加了更多的反应活性位点,从而改善碳纳米管的分散性和溶解性能。而壳聚糖是一种无毒的多糖,具有生物相容性、生物降解性、成膜性和溶解性。值得注意的是,硫化铜(CuS)纳米材料是一种性质优越的半导体材料,广泛应用于光催化及光电转化领域,如太阳能电池和锂电池。目前,国内外学者已开发多种不同的合成方法,制备出了尺寸不同、形貌各异的CuS纳米材料,如纳米线、纳米花、纳米棱柱、介孔纳米球和空心纳米球等。近期,已经发现CuS具有类金属导电性的性质,这在电化学传感器中具有潜在的应用价值。其中,通过自组装,Wu等开发了一种CuS溶胶-凝胶薄膜修饰电容免疫传感器,用于直接检测人体的IgA。Zhang等制备了检测亚硝酸的CuS-MWCNT纳米复合材料传感器,该传感器具有很好的再现性和抗干扰能力。Qin等运用CuS纳米管制备了检测葡萄糖的非酶传感器,实验结果表明该电极具有很高的电导率和电催化性能。迄今为止,基于CuS纳米片(CuS NS)复合膜的电化学传感器用于L-Tyr的检测尚无报道。
发明内容
本发明旨在克服现有技术的不足,提供一种基于复合膜修饰电极的L-酪氨酸检测方法及传感器。
为了达到上述目的,本发明提供的技术方案为:
所述基于复合膜修饰电极的L-酪氨酸检测方法包括如下步骤:
(1)制备CuS NS-CS/F-MWCNTs复合材料:
a)采用共混酸化法来制备表面羧基化的F-MWCNTs;
b)制备CuS NS;
c)将步骤a)制备的F-MWCNTs溶于无水乙醇中配置成浓度为0.8mg/mL~1.2mg/mL,优选为1mg/mL的F-MWCNTs溶液;将步骤b)制得的CuS NS与0.8%~1.2%,优选为1mg/mL CS溶液按质量体积比(4.5~5.5)mg:(0.15~0.25)mL,优选为5mg:0.2mL,混合后再溶于无水乙醇中,配置成CuS浓度为4.5mg/mL~5.5mg/mL,优选为5mg/mL的CuS NS-CS溶液;
(2)制备CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极:对玻碳电极表面进行抛光,超声洗净后晾干,将F-MWCNTs溶液进行超声分散后得到的F-MWCNTs分散液滴涂于玻碳电极表面并晾干,得到表面被F-MWCNTs修饰的玻碳电极,将CuS NS-CS溶液进行超声分散后得到的CuS NS-CS匀相溶液滴涂于表面被F-MWCNTs修饰的玻碳电极上,晾干,即得CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极;
(3)以CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极为工作电极,以银/氯化银电极作为参比电极(所述银/氯化银电极内含饱和氯化钾溶液),以铂丝电极作为对电极,构成三电极体系;然后采用示差脉冲伏安法考察L-酪氨酸在不同修饰电极上的电化学行为,并对不同浓度的L-酪氨酸进行测试,绘制工作标准曲线,再采用标准加入法对待测样品中的L-酪氨酸进行检测。
优选地,步骤a)中采用共混酸化法来制备表面羧基化的F-MWCNTs具体步骤是:首先将F-MWCNTs与H2SO4和HNO3的混酸混合,其中,所述F-MWCNTs与H2SO4和HNO3的混酸的质量体积比为(0.25~0.35)g:(25~35)mL,优选为0.3g:30mL,所述H2SO4和HNO3的混酸中H2SO4和HNO3的体积比为(2.5~3.5):1,优选为3:1;然后超声分散后放入115℃~125℃,优选为120℃,油浴下搅拌回流1.5h~2.5h,优选为2h,得混合液;再用超纯水稀释混合液,待冷却后用高速离心机进行离心;最后用乙醇清洗三次并离心后将产物置于电热鼓风干燥箱中于55℃~65℃,优选为60℃干燥成粉末,即得表面羧基化的F-MWCNTs,保存备用。
优选地,步骤b)中制备CuS纳米片的具体步骤是:首先将CuCl加入装有油胺和正辛胺混合液的容器中,其中,所述CuCl与油胺和正辛胺混合液的质量体积比为(0.25~0.35)g:(15~25)mL,优选为0.3g:20mL,所述油胺和正辛胺混合液中油胺和正辛胺的体积比为1:1,油浴加热至100℃,同时真空条件下磁力搅拌20min~60min,优选为30min,除去水和氧气;然后升高温度至130℃并保持在该温度,伴随磁力搅拌3.5h~4.5h,优选为4h;同时备好超声均匀的硫粉与油胺和正辛胺混合液的溶液,所述硫粉与油胺和正辛胺混合液的质量体积比为(0.25~0.35)g:(8~12)mL,优选为0.29g:10mL,所述油胺和正辛胺混合液中油胺和正辛胺的体积比为1:1;当加热3.5h~4.5h,优选为4h后溶液变得透明时,再将备好的硫粉与油胺和正辛胺混合液的溶液快速注入到容器中的溶液中,得混合溶液,温度降为95℃,加热混合溶液15h~24h,优选为18h;最后冷却至室温,加入过量乙醇洗涤并离心,后将沉淀置于电热鼓风干燥箱中于55℃~65℃,优选为60℃干燥成粉末,即得CuS NS,于冰箱中保存备用。
优选地,所述CuS NS形状为边长13.33±0.67nm、厚度4.50±0.58nm的六边形。
优选地,步骤(2)中对玻碳电极表面进行抛光是依次用0.3μm和0.05μm的氧化铝粉对玻碳电极表面进行抛光。步骤(2)中所述玻碳电极直径为3mm,将4μL F-MWCNTs分散液滴涂于玻碳电极表面并晾干,将4μL CuS NS-CS匀相溶液滴涂于表面已涂有F-MWCNTs且晾干的玻碳电极上。步骤(3)中是采用示差脉冲伏安法考察L-酪氨酸在不同修饰电极上的电化学行为,设置示差脉冲伏安法参数为:振幅0.05 V、脉冲宽度为0.2s、抽样宽度为0.02、脉冲周期为0.5s,对不同浓度的L-酪氨酸进行测试,绘制工作标准曲线,再采用标准加入法对待测样品中的L-酪氨酸进行检测。
所述基于复合膜修饰电极的L-酪氨酸检测传感器包括作为工作电极的复合膜修饰电极;所述复合膜修饰电极包括玻碳基质(5),所述玻碳基质(5)表面修饰有酸化F-MWCNTs层(6),所述酸化F-MWCNTs层(6)上负载有CuS NS-CS层(7)。所述酸化F-MWCNTs层即酸化碳纳米管膜层,所述CuS NS-CS层即硫化铜纳米片和壳聚糖膜层。
优选地,所述传感器包括玻碳基质(5)的厚度为1.0~5.0mm,所述酸化F-MWCNTs层(6)的厚度为20~200nm,所述CuS NS-CS层(7)的厚度为4.0~200nm;所述CuS NS-CS层(7)中的CuS NS形状为边长13.33±0.67nm、厚度4.50±0.58nm的六边形。
优选地,所述传感器对L-酪氨酸的浓度存在良好的线性关系,检测的线性范围为8.0×10-8mol/L~1.0×10-6mol/L,检测下限为4.9×10-9mol/L。
下面对本发明作进一步说明:
纳米级硫化铜具有其显著的类金属性质,如好的导电性和电催化活性。在本项工作中,我们合成了超薄硫化铜纳米片(CuS NS),并结合壳聚糖(CS)和酸化碳纳米管(F-MWCNTs)制得复合膜修饰玻碳(GCE)电极(CuS NS-CS/F-MWCNTs/GCE)。利用扫描电子显微镜和透射电子显微镜对纳米复合材料的形貌进行表征,结果显示CuS NS的形状是边长为13.33±0.67nm、厚度为4.50±0.58nm的六边形纳米片。采用循环伏安法(CV)及示差脉冲伏安法(DPV)对L-酪氨酸(L-Tyr)的电化学行为进行研究,结果表明CuS NS-CS/F-MWCNTs/GCE对L-酪氨酸具有较好的电催化氧化特性。在0.10mol/L的PBS缓冲溶液(pH=7.0)中,该修饰电极的响应峰电流与L-Tyr的浓度存在良好的线性关系,检测的线性范围为8.0×10-8mol/L~1.0×10-6mol/L,检测下限为4.9×10-9mol/L。并且,共存两倍浓度的L-色氨酸和50倍浓度的其它氨基酸对L-酪氨酸的测定没有明显的干扰,表明该复合膜修饰电极具有良好的选择性。该电极还具有良好的重复性、重现性和稳定性。与高效液相色谱法相比,运用该修饰电极检测猪血清中的L-Tyr浓度,二者测定结果一致,且电极的回收率为95.7%~102.6%,说明该修饰电极在生物分析检测领域有潜在的应用价值。
总之,本发明制备了CuS纳米片负载到酸化碳纳米管并采用CS作分散剂,将其修饰在玻碳电极上制得了CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极。结果表明该修饰电极对L-Tyr具有较好的电催化氧化特性,可用于猪血清样品中L-Tyr的测定,检测下限达到4.9×10-9mol/L,说明该修饰电极在生物分析检测领域有潜在的应用价值。
附图说明
图1为基于复合膜修饰电极的L-酪氨酸检测传感器的工作结构示意图;
图2为CuS NS-CS/F-MWCNTs/GCE修饰电极的构建示意图;
图3为电镜表征图,具体分为:①SEM表征图:F-MWCNTs(A),CuS NS-CS(B),CuS NS-CS/F-MWCNTs/GCE(C);②TEM表征图:MWCNTs(D),F-MWCNTs(E),CuS NS(F),CuS NS形貌图(G),CuS NS厚度图(H);③EDS能谱图:CuS NS(I);
图4:图4A和图4B分别为不同修饰电极在1.0×10-3mol/L铁氰化钾溶液中的循环伏安曲线图(A)和在L-Tyr(4.0×10-5mol/L)中的示差脉冲伏安曲线图(B);图4A和图4B中,a.裸GCE,b.F-MWCNTs/GCE,c.CuS NS-CS/GCE,d.CuS NS-CS/F-MWCNTs/GCE;
图5:pH值与氧化峰电流的关系(A);pH值与氧化峰电位的关系(B);
图6:不同扫描速率下的L-Tyr在CuS NS-CS/F-MWCNTs/GCE修饰电极上循环伏安曲线(A);氧化峰电流随扫描速率变化的关系图(B);氧化峰电位与lgv变化关系(C);
图7为L-Tyr在CuS NS-CS/F-MWCNTs/GCE上的氧化机理;
图8:CuS NS-CS/F-MWCNTs/GCE响应不同浓度L-Tyr的DPV曲线(A);氧化峰电流与L-Tyr浓度的线性关系曲线,a→h:0,0.08,0.1,0.2,0.4,0.6,0.8,1.0μM(B);
图9为干扰物质对CuS-CS/F-MWCNTs/GCE修饰电极检测L-Tyr(0.5μM)的影响图:L-精氨酸(L-Arg),L-异亮氨酸(L-Ile),L-天冬氨酸(L-Asp),L-苯丙氨酸(L-Phe),L-组氨酸(L-His),L-蛋氨酸(L-Met),L-赖氨酸(L-Lys),L-丙氨酸(L-Ala),L-脯氨酸(L-Pro),L-甘氨酸(L-Gly),L-谷氨酸(L-Glu),L-缬氨酸(L-Val),L-苏氨酸(L-Thr)和L-亮氨酸(L-Leu)均为50倍的浓度(25μM);
图10为不同浓度L-色氨酸对CuS-CS/F-MWCNTs/GCE修饰电极检测L-Tyr的影响。
图1中:1、银/氯化银电极;2、铂丝电极;3、玻碳电极;4、待测溶液;5、玻碳基质;6、酸化F-MWCNTs层;7、CuS NS-CS层;8、L-Tyr。
具体实施方式
实施例中所用试剂均为分析纯(AR),实验用水均为超纯水(电阻率≥18.3 MΩ·cm)。以下描述中,氨基酸的描述均采用英文缩写。
一、实验过程
1、CuS NS-CS/F-MWCNTs复合材料的制备
采用共混酸化法来制备酸化多壁碳纳米管(F-MWCNTs),使其表面羧基化。具体步骤为:(1)称取0.3000g多壁碳纳米管与30mL H2SO4/HNO3混酸(体积比为3:1混合;(2)室温下超声分散4h后放入120℃油浴下搅拌回流2h;(4)用超纯水稀释混合液,待冷却后用高速离心机进行离心;(5)用乙醇清洗三次并离心,后将产物置于电热鼓风干燥箱中(60℃)干燥成粉末,于室温中保存备用。
制备CuS NS:首先将0.3g的CuCl加入装有10mL油胺(OM)和10mL正辛胺(OTA)混合液的三颈烧瓶中,油浴加热至100℃,同时真空条件下磁力搅拌30min,达到除去水和氧气的目的;然后升高温度至130℃并保持在该温度,伴随着磁力搅拌4h;与此同时准备好超声均匀的0.29g硫粉和5mL OM、5mL OTA的混合液;当加热4h后溶液变得透明时,再将上述准备好的硫粉溶液快速注入到三颈烧瓶中溶液中,温度降为95℃,加热该混合溶液18h;最后冷却至室温,加入过量乙醇洗涤三次并离心,后将沉淀置于电热鼓风干燥箱中(60℃)干燥成粉末,于冰箱中保存备用。
将上述制备的F-MWCNTs溶于无水乙醇中配置成1mg/mL的溶液。将上述制得的CuS纳米片称取5mg,加入0.2mL1%CS溶液混合溶于0.8mL的无水乙醇中,使CuS的浓度为5mg/mL。两种溶液均超声振荡,使其混合均匀,于冰箱中保存备用。
2、CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极的制备
依次用0.3μm和0.05μm的氧化铝粉对玻碳电极(直径3mm)表面进行抛光,分别在超纯水、无水乙醇、超纯水中超声10min清洗干净,室温下自然晾干。取4μL超声分散后的F-MWCNTs分散液滴涂于玻碳电极表面,室温下自然晾干;晾干后滴涂4μL超声分散后CuS NS-CS均相溶液,晾干后于4℃下保存备用(如图2所示)。
3、L-Tyr的电化学检测
参见图1,以表面修饰的玻碳电极3作为工作电极,银/氯化银(内含饱和氯化钾溶液)电极1作为参比电极,铂丝电极2作为对电极的三电极体系,使用电化学工作站对待测溶液4中的L-Tyr8进行电化学检测,背景溶液为0.10mol/L的PBS缓冲溶液。
其中,所述表面修饰的玻碳电极3即为本发明所述基于复合膜修饰电极的L-酪氨酸检测传感器中的复合膜修饰电极;所述复合膜修饰电极包括玻碳基质5,所述玻碳基质5表面修饰有酸化F-MWCNTs层6,所述酸化F-MWCNTs层6上负载有CuS NS-CS层7。
设置示差脉冲伏安法(DPV)参数:振幅为0.05V,脉冲宽度为0.2s,抽样宽度为0.02,脉冲周期为0.5s。采用DPV法考察L-Tyr在不同修饰电极上的电化学行为,并对不同浓度的L-Tyr进行测试,绘制工作曲线。采用标准加入法对猪血清样品中L-Tyr进行检测。猪血清样品(来源于5头活体三元杂小猪,体重为7~15kg)由中国科学院亚热带农业生态研究所(长沙)提供。分别将5种不同的猪血清样品50.00μL加入pH=7.0的PBS缓冲溶液(4.950mL)中稀释100倍,再向猪血清溶液中加入不同浓度的L-Trp,采用DPV法进行测定。
二、实验结果与分析
1、材料的表征
采用扫描电子显微镜(SEM,图3A-C)和透射电子显微镜(TEM,图3D-H)分别对F-MWCNTs、CuS NS和CuS NS-CS/F-MWCNTs的结构和表面形貌进行了表征。如图3A所示,酸化碳纳米管可以很好地分散并粘附在玻碳电极的表面上。通过与MWCNT和F-MWCNT的高分辨率TEM图进行比较,碳纳米管(图3D)经过酸化处理后(图3E),碳管已经被打开,因此改善了分散性和相容性,这样有利于电子的传导,对电流信号放大起到重要作用。图3B是CuS与CS的混合物,可观察到CuS很好地混合在CS中且均匀地分散在GCE表面,且CuS纳米颗粒呈片状堆叠在一起。从EDS能图谱(图3I)中可直接得出已成功制备得到了CuS纳米材料(能谱图中铝峰高的原因是实验时采用的铝片做基底)。图3C为CuS NS-CS/F-MWCNTs的SEM电镜表征图,可以观察到F-MWCNTs和CuS NS很好地结合在一起并形成了一种纳米复合材料,因为在酸化碳纳米管的开口边缘上产生了很多羧基,CuS的硫原子与这些功能化的羧基之间可能形成了一些氢键。因此,这在电化学反应过程中对电流信号的放大起着重要作用。
从透射电子显微镜的图像(图3F-H)中可以很好地观察到CuS NS的超微结构,这已经直接地证明了片状的CuS纳米颗粒是逐层堆叠的。图3G、H可直观地证明CuS形成纳米片状且其形貌是边长为13.33±0.67nm的六边形纳米片,从H图中可得到纳米片的厚度为4.50±0.58nm,而且,相邻纳米片之间的距离可以确定约为0.2~0.5nm(图3H)。因此,所合成的CuSNS是一种具有超微结构的纳米晶体。
2、电化学性能测试
考察了裸GCE,CuS NS-CS/GCE,F-MWCNTs/GCE,CuS NS-CS/F-MWCNTs/GCE复合电极在含有1.0×10-3mol/L铁氰化钾溶液中的循环伏安行为(如图4所示)。由图4A可知,裸电极上有一个很弱的氧化还原峰。CuS NS-CS/GCE电极与F-MWCNTs/GCE电极的氧化还原峰相对裸电极增大,可见F-MWCNTs有大的表面积,能显著增加电极的导电性,而CuS NS-CS/F-MWCNTs/GCE复合电极有一个显著的增大氧化还原峰,CuS NS能明显地增强电极的导电能力。此外其氧化还原峰的电位差也明显增大(ΔE≈0.030V),这是因为CuS NS-CS分布在F-MWCNTs表面提供了更多的活跃部位,所以导电性能更好,电催化效率更高。此外,图4B为不同修饰电极对相同浓度的L-Tyr的检测,结果表明该复合电极在L-Tyr的检测中具有放大电化学信号的作用,能实现对L-Tyr的灵敏检测,氧化峰电位的移动进一步说明了L-Tyr在该修饰电极表面有电催化反应的产生。
3、pH值对L-Tyr电化学行为的影响
缓冲溶液的pH值是影响L-Tyr在电极表面发生氧化反应的一个重要因素。采用DPV考察了CuS NS-CS/F-MWCNTs/GCE修饰电极在pH值在4.0~8.0的范围内PBS缓冲溶液(0.10mol/L)对L-Tyr(4.0×10-5mol/L)的峰电流、峰电位的关系影响。L-Tyr的氧化峰电流随pH值变化如图5A所示。由此图可知:当pH小于7.0时,峰电流随pH变大而逐渐增大;当pH等于7.0时,峰电流达到最大值;当pH大于7.0时,峰电流随pH变大而逐渐减小。因此pH=7.0为检测L-Tyr的最佳pH。由峰电位曲线图5B可以看出L-Tyr的峰电位与pH值成线性关系,说明L-Tyr在其电极反应中存在质子和电子的转移过程。其线性拟合方程为Epa=1.04054-0.05781pH,线性相关系数R=0.9835。根据能斯特方程:Ep=E0+0.05916(m/n)pH(m为反应转移的质子数,n为转移的电子数),可推算出m=0.9772n,即m≈n,说明L-Tyr在该修饰电极界面上是等电子等质子转移。
4、L-Tyr在修饰电极上氧化机理的探讨
采用CV考察了扫速与L-Tyr的峰电流、峰电位的关系。在选定了最佳pH值的条件下,考察了扫速为25~130mV/s范围内对L-酪氨酸在该电极上的氧化峰电流的影响。结果如图6A所示,氧化峰电流随着扫速的增大而增大,L-Tyr在电极上的电化学行为是一个不可逆的氧化过程。L-Tyr的氧化峰电流与扫速呈线性关系(图6B),拟合线性方程为Ip=1.0014v+1.00734,线性相关系数R=0.9987。这说明L-Tyr在修饰电极上的氧化过程是吸附控制过程。
由图6C可得,L-Tyr的氧化峰电位与扫速的自然对数呈线性关系,拟合线性方程为Ip=0.06166lgv+0.60323,线性相关系数R=0.9918。根据Laviron公式:
式中:Epa为氧化峰电位;E0’为式量电位;α为电子传递系数;n为传递电子数;T为温度;R为摩尔气体常数;F为法拉第常数;k0为标准异相电子传递速率常数;v为扫描速率。而EPa=0.06166lgv+0.60323对比上式,可得到α·n=0.9591,由于常温下不可逆电极反应的α=0.4~0.6,可计算出n≈2,因此得出,L-Tyr在CuS NS-CS/F-MWCNTs/GCE修饰电极上氧化过程转移的电子数n约为2,则转移的质子数m=2。L-Tyr在电极表面的反应机理如图7所示。从分子结构上看,L-Tyr(1)的苯环上含有酚羟基,容易被氧化失去一个电子得到一个带正电荷的自由基(2),经过去质子化形成中间体(3),再经过分子内重排形成4-自由基-2-氨基-3-(4-氧代环己烷-2,5-二烯基)丙酸(4)。通过进一步氧化作用,失去一个电子而产生一个正离子(5),去质子化后生成最后的苯醌(6)。
5、线性范围和检出限
配置了一系列不同浓度的L-Tyr标准溶液,在选定最优缓冲溶液pH值下,使用CuSNS-CS/F-MWCNTs/GCE复合膜修饰电极,采用示差脉冲伏安法(DPV)对不同浓度的L-Tyr进行检测(图8A)。
如图8B可知,L-Tyr的氧化峰电流与其浓度有一定的线性关系,浓度范围在8.0×10-8mol/L~1.0×10-6mol/L,线性拟合方程是Ipa=-1.64962C+0.09255,线性相关系数R=0.9961;检测下限达到4.9×10-9mol/L(S/N=3)。此外,将制备的修饰电极与有关文献报道的修饰电极进行比较(见表1),发现该修饰电极对L-Tyr的检测有较好的的线性范围和检出限。
表1不同电极同时对L-Tyr进行检测的结果
Table1 Comparison of performances of proposal sensor for thedetection of L-Tyr with those of sensors based on different matrices.
Note:AuNPs:gold nanoparticles;AgNPs:silver nanoparticles;AGCE:anodized glassy carbon electrode;Activated GCE:activated glassy carbonelectrodes;CNT:carbon nanotube;COOH-MWCNTs:Carboxylic acid functionalizedMWCNTs;GO:graphene oxide;MIP:molecularly imprinted polymer;MCPE:modifiedcarbon paste electrode;OECT:organic electrochemical transistors;PABSA:polymersulfanilic acid;PDDA:poly-(diallyldimethylammonium chloride);PHCS:Phthaloylchitosan;PTH:poly(thionine);RGO:reduced graphene oxide;SWCNH:single-walled carbon nanohorns;UT-g-C3N4:ultrathin g-C3N4.
表1中提到的有关文献(Reference)如下:
[23]O.J.D’Souza,R.J.Mascarenhas,A.K.Satpati,L.V.Aiman,Z.Mekhalif,Electrocatalytic oxidation of L-tyrosine at carboxylic acid functionalizedmulti-walled carbon nanotubes modified carbon paste electrode,Ionics22(2016)405-414.
[24]T.Madrakian,E.Haghshenas,A.Afkhami,Simultaneous determination oftyrosine,acetaminophen and ascorbic acid using gold nanoparticles/multiwalledcarbon nanotube/glassy carbon electrode by differential pulse voltammetricmethod,Sens.Actuators B 193(2014)451-460.
[25]Y.Wang,C.Xiong,H.Qu,W.Chen,A.Ma,L.Zheng,Highly sensitive real-time detection of tyrosine based on organic electrochemical transistors withpoly-(diallyldimethylammonium chloride),gold nanoparticles and multi-walledcarbon nanotubes,J.Electroanal.Chem.799(2017)321-326.
[26]Z.Wei,Y.Yang,X.Xiao,W.Zhang,J.Wang,Fabrication of conductingpolymer/noble metal nanocomposite modified electrodes for glucose,ascorbicacid and tyrosine detection and its application to identify the marked agesof rice wines,Sens.Actuators B 255(2018)895-906.
[29]S.Wang,H.Zhai,Z.Chen,H.Wang,X.Tan,G.Sun,Q.Zhou,Constructing aSensitive Electrochemical Sensor for Tyrosine Based on Graphene Oxide-ε-MnO2Microspheres/Chitosan Modified Activated Glassy Carbon Electrode,J.Electrochem.Soc.164(2017)B758-B766.
[53]F.Chekin,S.Bagheri,Tyrosine sensing on phthalic anhydridefunctionalized chitosan and carbon nanotube film coated glassy carbonelectrode,Russ.J.Electrochem.52(2016)174-180.
[54]W.Zheng,M.Zhao,W.Liu,S.Yu,L.Niu,G.Li,H.Li,W.Liu,Electrochemicalsensor based on
molecularly imprinted polymer/reduced graphene oxide composite forsimultaneous determination of uric acid and tyrosine,J.Electroanal.Chem.813(2018)75-82.
[55]J.Zou,D.Mao,A.T.S.Wee,J.Jiang,Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine,Appl.Surf.Sci.467(2019)608-618.
[56]M.M.Rahman,N.S.Lopa,K.Kim,J.Lee,Selective detection of L-tyrosinein the presence of ascorbic acid,dopamine,and uric acid at poly(thionine)-modified glassy carbon electrode,J.Electroanal.Chem.754(2015)87-93.
[57]S.Zhu,J.Zhang,X.Zhao,H.Wang,G.Xu,J.You,Electrochemical behaviorand voltammetric determination of L-tryptophan and L-tyrosine using a glassycarbon electrode modified with single-walled carbon nanohorns,Microchim.Acta181(2014)445-451.
6、电极的重现性、重复性与稳定性
采用同一批次相同条件下制备6根修饰电极分别检测5.0×10-7moL/L的L-Tyr溶液,测得电流的相对标准偏差为2.75%,说明该修饰电极重现性较好。采用同一根CuS NS-CS/F-MWCNTs修饰电极检测5.0×10-7moL/L的L-Tyr溶液,连续测定6次,测得电流的相对标准偏差为3.50%,说明该修饰电极具有较好的重复性。此外,考察了电极的稳定性,同一根修饰电极间隔48h对L-Tyr在最佳pH条件下检测一次,不用时在4℃条件下保存,结果表明经30d后,修饰电极对L-Tyr的响应信号是最初时的90%,从而判断此该电极对L-Tyr的测定具有较好的稳定性。
7、抗干扰性测试
本实验考察了其他氨基酸对CuS NS-CS/F-MWCNTs修饰电极的影响,采用以pH为7.0的PBS溶液做底液的三电极体系中,在其它氨基酸共存的情况下对L-Tyr(5.0×10-7mol/L)进行检测,结果如图9所示,加入50倍的L-精氨酸(L-Arg),L-异亮氨酸(L-Ile),L-天冬氨酸(L-Asp),L-苯丙氨酸(L-Phe),L-组氨酸(L-His),L-蛋氨酸(L-Met),L-赖氨酸(L-Lys),L-丙氨酸(L-Ala),L-脯氨酸(L-Pro),L-甘氨酸(L-Gly),L-谷氨酸(L-Glu),L-缬氨酸(L-Val),L-苏氨酸(L-Thr)和L-亮氨酸(L-Leu)后峰电流没有发生明显变化。另外,还考察了电极对L-色氨酸(L-Trp)抗干扰测试,由图10可知,在共存混合的L-Trp与L-Tyr溶液中,当L-Trp的浓度不超过L-Tyr浓度的两倍,即1.0×10-6mol/L时,该复合电极能不受L-Trp的影响,能有效地检测L-Tyr的浓度,表明CuS/CS/F-MWCNTs/GCE修饰电极对L-Tyr有很好的选择性。
8、实际样品检测及回收率测定
实验考察了CuS NS-CS/F-MWCNTs/GCE修饰电极对实际样品(血清)中L-Tyr的检测应用。检测时将血清样品用采用0.10mol/LPBS稀释100倍,在最优实验条件下,5次重复实验检测结果见表2。在没有加入标准浓度的L-Tyr时,运用该修饰电极检测的血清中的L-Tyr浓度与高效液相色谱法相比,其平均标准偏差在0.44%~2.97%的范围里。采用标准加入法进行测定时,即向加有血清的缓冲溶液中加入不同浓度的L-Tyr,用该修饰电极进行检测并计算回收率,测得的回收率为95.7%~102.6%,表明该修饰电极具有较高的准确性和精确度,可用于实际样品中L-Tyr的检测。
表2实际样品中L-Tyr的测定及回收率
Table2 Determination of L-Tyr in reality samples and correspondingrecovery.(n=5)
本发明在合成了一种新型厚度为4.50±0.58nm的超薄六边形硫化铜纳米片的基础上,结合酸化多壁碳纳米管和壳聚糖成功制备了一种新型复合膜电极。该复合膜电极因其具有独特的小尺寸的纳米结构,显示出了很好的电子传导性能和对营养必需氨基酸L-Tyr的电催化性能。值得注意的是,该复合膜修饰电极对L-Tyr具有良好的选择性,不受两倍浓度的共存L-Trp的干扰。而且,该电极具有良好的重复性、重现性、稳定性和4.9nM的低检出限。因此,本发明在未来动物营养和生命科学领域的L-Tyr检测方面具有重要的应用前景。

Claims (10)

1.一种基于复合膜修饰电极的L-酪氨酸检测方法,其特征在于,所述方法包括如下步骤:
(1)制备CuS NS-CS/F-MWCNTs复合材料:
a)采用共混酸化法来制备表面羧基化的F-MWCNTs;
b)制备CuS NS;
c)将步骤a)制备的F-MWCNTs溶于无水乙醇中配置成浓度为0.8mg/mL~1.2mg/mL的F-MWCNTs溶液;将步骤b)制得的CuS NS与0.8%~1.2%CS溶液按质量体积比(4.5~5.5)mg:(0.15~0.25)mL混合后再溶于无水乙醇中,配置成CuS浓度为4.5mg/mL~5.5mg/mL的CuSNS-CS溶液;
(2)制备CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极:对玻碳电极表面进行抛光,超声洗净后晾干,将F-MWCNTs溶液进行超声分散后得到的F-MWCNTs分散液滴涂于玻碳电极表面并晾干,得到表面被F-MWCNTs修饰的玻碳电极,将CuS NS-CS溶液进行超声分散后得到的CuSNS-CS匀相溶液滴涂于表面被F-MWCNTs修饰的玻碳电极上,晾干,即得CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极;
(3)以CuS NS-CS/F-MWCNTs/GCE复合膜修饰电极为工作电极,以银/氯化银电极作为参比电极,以铂丝电极作为对电极,构成三电极体系;然后采用示差脉冲伏安法考察L-酪氨酸在不同修饰电极上的电化学行为,并对不同浓度的L-酪氨酸进行测试,绘制工作标准曲线,再采用标准加入法对待测样品中的L-酪氨酸进行检测。
2.如权利要求1所述的方法,其特征在于,步骤a)中采用共混酸化法来制备表面羧基化的F-MWCNTs具体步骤是:首先将F-MWCNTs与H2SO4和HNO3的混酸混合,其中,所述F-MWCNTs与H2SO4和HNO3的混酸的质量体积比为(0.25~0.35)g:(25~35)mL,所述H2SO4和HNO3的混酸中H2SO4和HNO3的体积比为(2.5~3.5):1;然后超声分散后放入115℃~125℃油浴下搅拌回流1.5h~2.5h得混合液;再用超纯水稀释混合液,待冷却后用高速离心机进行离心;最后用乙醇清洗三次并离心后将产物置于电热鼓风干燥箱中于55℃~65℃干燥成粉末,即得表面羧基化的F-MWCNTs,保存备用。
3.如权利要求1所述的方法,其特征在于,步骤b)中制备CuS NS的具体步骤是:
首先将CuCl加入装有油胺和正辛胺混合液的容器中,其中,所述CuCl与油胺和正辛胺混合液的质量体积比为(0.25~0.35)g:(15~25)mL,所述油胺和正辛胺混合液中油胺和正辛胺的体积比为1:1,油浴加热至100℃,同时真空条件下磁力搅拌20min~60min,除去水和氧气;然后升高温度至130℃并保持在该温度,伴随磁力搅拌3.5h~4.5h;同时备好超声均匀的硫粉与油胺和正辛胺混合液的溶液,所述硫粉与油胺和正辛胺混合液的质量体积比为(0.25~0.35)g:(8~12)mL,所述油胺和正辛胺混合液中油胺和正辛胺的体积比为1:1;当加热3.5h~4.5h后溶液变得透明时,再将备好的硫粉与油胺和正辛胺混合液的溶液快速注入到容器中的溶液中,得混合溶液,温度降为95℃,加热混合溶液15h~24h;最后冷却至室温,加入过量乙醇洗涤并离心,后将沉淀置于电热鼓风干燥箱中于55℃~65℃干燥成粉末,即得CuS NS,于冰箱中保存备用。
4.如权利要求1所述的方法,其特征在于,所述CuS NS形状为边长13.33±0.67nm、厚度4.50±0.58nm的六边形。
5.如权利要求1所述的方法,其特征在于,步骤(2)中对玻碳电极表面进行抛光是依次用0.3μm和0.05μm的氧化铝粉对玻碳电极表面进行抛光。
6.如权利要求1所述的方法,其特征在于,步骤(2)中所述玻碳电极直径为3mm,将4μLF-MWCNTs分散液滴涂于玻碳电极表面并晾干,将4μL CuS NS-CS匀相溶液滴涂于表面已涂有F-MWCNTs且晾干的玻碳电极上。
7.如权利要求1所述的方法,其特征在于,步骤(3)中是采用示差脉冲伏安法考察L-酪氨酸在不同修饰电极上的电化学行为,设置示差脉冲伏安法参数为:振幅0.05 V、脉冲宽度为0.2s、抽样宽度为0.02、脉冲周期为0.5s,对不同浓度的L-酪氨酸进行测试,绘制工作标准曲线,再采用标准加入法对待测样品中的L-酪氨酸进行检测。
8.一种基于复合膜修饰电极的L-酪氨酸检测传感器,特征在于,所述传感器包括作为工作电极的复合膜修饰电极;所述复合膜修饰电极包括玻碳基质(5),所述玻碳基质(5)表面修饰有酸化F-MWCNTs层(6),所述酸化F-MWCNTs层(6)上负载有CuS NS-CS层(7)。
9.如权利要求8所述的传感器,其特征在于,所述传感器包括玻碳基质(5)的厚度为1.0~5.0mm,所述酸化F-MWCNTs层(6)的厚度为20~200nm,所述CuS NS-CS层(7)的厚度为4.0~200nm;所述CuS NS-CS层(7)中的CuS NS形状为边长13.33±0.67nm、厚度4.50±0.58nm的六边形。
10.如权利要求8或9所述的传感器,其特征在于,所述传感器对L-酪氨酸的浓度存在良好的线性关系,检测的线性范围为8.0×10-8mol/L~1.0×10-6mol/L,检测下限为4.9×10- 9mol/L。
CN201910446311.3A 2019-05-27 2019-05-27 一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器 Active CN110082413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910446311.3A CN110082413B (zh) 2019-05-27 2019-05-27 一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910446311.3A CN110082413B (zh) 2019-05-27 2019-05-27 一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器

Publications (2)

Publication Number Publication Date
CN110082413A true CN110082413A (zh) 2019-08-02
CN110082413B CN110082413B (zh) 2024-07-19

Family

ID=67422009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910446311.3A Active CN110082413B (zh) 2019-05-27 2019-05-27 一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器

Country Status (1)

Country Link
CN (1) CN110082413B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887881A (zh) * 2019-11-25 2020-03-17 长沙理工大学 一种基于甲醛媒介作用选择性检测l-色氨酸的方法
CN110887880A (zh) * 2019-11-25 2020-03-17 长沙理工大学 一种基于甲醛媒介作用选择性检测l-酪氨酸的方法
CN111060566A (zh) * 2019-12-16 2020-04-24 太原理工大学 利用n掺杂纳米碳球同时检测食品中酪氨酸和色氨酸的方法
CN115356386A (zh) * 2022-08-01 2022-11-18 河南科技学院 一种Fe-N-C/AuNPs/GCE传感器的制备方法及其在检测没食子酸中的应用
CN115078497B (zh) * 2022-05-30 2023-07-14 宁德师范学院 一种氨基碳纳米管碳糊电极、制备方法及应用
US11948284B2 (en) 2020-07-03 2024-04-02 Dalian University Of Technology 3D modeling method for pore-filling hydrate sediment based on CT image
RU2820023C1 (ru) * 2024-01-15 2024-05-28 Общество с ограниченной ответственностью (ООО) "Кайралити" Вольтамперометрический сенсор для распознавания и определения энантиомеров тирозина

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110099661A (ko) * 2010-03-02 2011-09-08 주식회사 과학기술분석센타 미생물 고정화를 이용한 생물학적 산소요구량 측정센서용 작용전극 촉매 및 그 제조방법
CN105510419A (zh) * 2015-12-10 2016-04-20 济南大学 一种检测肾上腺素复合敏感膜电化学传感器的制备方法
CN106872543A (zh) * 2017-01-20 2017-06-20 长沙理工大学 基于聚电解质复合膜电极检测亚硝酸根离子的方法及应用
CN107478695A (zh) * 2017-07-13 2017-12-15 信阳师范学院 基于纳米硫化铜‑多壁碳纳米管复合物修饰的电极及其制备方法和应用
CN210071734U (zh) * 2019-05-27 2020-02-14 长沙理工大学 一种基于复合膜修饰电极的l-酪氨酸检测传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110099661A (ko) * 2010-03-02 2011-09-08 주식회사 과학기술분석센타 미생물 고정화를 이용한 생물학적 산소요구량 측정센서용 작용전극 촉매 및 그 제조방법
CN105510419A (zh) * 2015-12-10 2016-04-20 济南大学 一种检测肾上腺素复合敏感膜电化学传感器的制备方法
CN106872543A (zh) * 2017-01-20 2017-06-20 长沙理工大学 基于聚电解质复合膜电极检测亚硝酸根离子的方法及应用
CN107478695A (zh) * 2017-07-13 2017-12-15 信阳师范学院 基于纳米硫化铜‑多壁碳纳米管复合物修饰的电极及其制备方法和应用
CN210071734U (zh) * 2019-05-27 2020-02-14 长沙理工大学 一种基于复合膜修饰电极的l-酪氨酸检测传感器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887881A (zh) * 2019-11-25 2020-03-17 长沙理工大学 一种基于甲醛媒介作用选择性检测l-色氨酸的方法
CN110887880A (zh) * 2019-11-25 2020-03-17 长沙理工大学 一种基于甲醛媒介作用选择性检测l-酪氨酸的方法
CN110887880B (zh) * 2019-11-25 2021-05-11 长沙理工大学 一种基于甲醛媒介作用选择性检测l-酪氨酸的方法
WO2021103682A1 (zh) * 2019-11-25 2021-06-03 长沙理工大学 一种基于甲醛媒介作用选择性检测l-色氨酸的方法
WO2021103683A1 (zh) * 2019-11-25 2021-06-03 长沙理工大学 一种基于甲醛媒介作用选择性检测l-酪氨酸的方法
CN111060566A (zh) * 2019-12-16 2020-04-24 太原理工大学 利用n掺杂纳米碳球同时检测食品中酪氨酸和色氨酸的方法
CN111060566B (zh) * 2019-12-16 2022-10-04 太原理工大学 N掺杂纳米碳球同时检测食品中酪氨酸和色氨酸的方法
US11948284B2 (en) 2020-07-03 2024-04-02 Dalian University Of Technology 3D modeling method for pore-filling hydrate sediment based on CT image
CN115078497B (zh) * 2022-05-30 2023-07-14 宁德师范学院 一种氨基碳纳米管碳糊电极、制备方法及应用
CN115356386A (zh) * 2022-08-01 2022-11-18 河南科技学院 一种Fe-N-C/AuNPs/GCE传感器的制备方法及其在检测没食子酸中的应用
CN115356386B (zh) * 2022-08-01 2024-08-13 河南科技学院 一种Fe-N-C/AuNPs/GCE传感器的制备方法及其在检测没食子酸中的应用
RU2820023C1 (ru) * 2024-01-15 2024-05-28 Общество с ограниченной ответственностью (ООО) "Кайралити" Вольтамперометрический сенсор для распознавания и определения энантиомеров тирозина

Also Published As

Publication number Publication date
CN110082413B (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
CN110082413A (zh) 一种基于复合膜修饰电极的l-酪氨酸检测方法及传感器
Liu et al. Design and facile synthesis of mesoporous cobalt nitride nanosheets modified by pyrolytic carbon for the nonenzymatic glucose detection
Govindasamy et al. Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk
Zeng et al. A highly sensitive glucose sensor based on a gold nanoparticles/polyaniline/multi-walled carbon nanotubes composite modified glassy carbon electrode
Zhang et al. A highly sensitive electrochemical sensor containing nitrogen-doped ordered mesoporous carbon (NOMC) for voltammetric determination of L-tryptophan
Zhang et al. Novel nanostructured MIL-101 (Cr)/XC-72 modified electrode sensor: A highly sensitive and selective determination of chloramphenicol
Ning et al. Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles
Wang et al. Ultrathin two-dimension metal-organic framework nanosheets/multi-walled carbon nanotube composite films for the electrochemical detection of H2O2
Gao et al. Polydopamine/graphene/MnO2 composite-based electrochemical sensor for in situ determination of free tryptophan in plants
Zhao et al. Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide
Yang et al. One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing
Chen et al. MXene/CNTs/Cu-MOF electrochemical probe for detecting tyrosine
Zhao et al. Sensitive and selective dopamine determination in human serum with inkjet printed Nafion/MWCNT chips
CN109187679B (zh) 一种电化学传感器及其制备方法和应用
Tian et al. Amperometric detection of glucose based on immobilizing glucose oxidase on g-C3N4 nanosheets
CN110082416A (zh) 一种基于复合膜修饰电极的l-酪氨酸和多巴胺同时检测方法及传感器
He et al. A high performance sensor based on bimetallic NiCu nanoparticles for the simultaneous determination of five species of biomolecules
Liu et al. A dual-recognition molecularly imprinted electrochemiluminescence sensor based on g-C3N4 nanosheets sensitized by electrodeposited rGO-COOH for sensitive and selective detection of tyramine
Han et al. Determination of chloropropanol with an imprinted electrochemical sensor based on multi-walled carbon nanotubes/metal–organic framework composites
CN109490390B (zh) 氧化石墨烯-多壁碳纳米管-Au@Pt NPs无酶葡萄糖电化学传感器的制备方法
CN110133077B (zh) 一种基于复合膜修饰电极的苯乙醇胺a检测方法及传感器
Zou et al. The sensitive monitoring of living cell-secreted dopamine based on the electrochemical biosensor modified with nitrogen-doped graphene aerogel/Co3O4 nanoparticles
Liu et al. Electrochemical determination of tyrosine using graphene and gold nanoparticle composite modified glassy carbon electrode
Ouyang et al. ZIFs derived polyhedron with cobalt oxide nanoparticles as novel nanozyme for the biomimetic catalytic oxidation of glucose and non-enzymatic sensor
Yasri et al. Azo dye functionalized graphene nanoplatelets for selective detection of bisphenol A and hydrogen peroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant