CN108640160A - 一种α-三氧化二铁介孔微球、制备方法及其应用 - Google Patents

一种α-三氧化二铁介孔微球、制备方法及其应用 Download PDF

Info

Publication number
CN108640160A
CN108640160A CN201810329546.XA CN201810329546A CN108640160A CN 108640160 A CN108640160 A CN 108640160A CN 201810329546 A CN201810329546 A CN 201810329546A CN 108640160 A CN108640160 A CN 108640160A
Authority
CN
China
Prior art keywords
preparation
mesoporous microsphere
nano
reaction
iron trioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810329546.XA
Other languages
English (en)
Inventor
唐海
李强
张晨
张昊楠
秦宝雨
李洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201810329546.XA priority Critical patent/CN108640160A/zh
Publication of CN108640160A publication Critical patent/CN108640160A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种α‑三氧化二铁介孔微球、制备方法及其应用,制备方法为:将铁盐溶于去离子水中搅拌至完全溶解,加入尿素、抗坏血酸、纳米碳粉和PVP,搅拌,得混合溶液;2)将步骤1)所得混合溶液转移到聚四氟乙烯反应釜中,将反应釜密封,加热反应,然后自然冷却至室温,产物离心、洗涤,真空干燥;3)将步骤3)所得产物焙烧,得到α‑Fe2O3介孔微球。与现有技术相比,本发明,原料成本低、工艺流程短、设备简单、操作方便、产率高、反应可在较温和条件下进行,且尺寸和孔径可控的α‑Fe2O3介孔微球,具有较高的比表面积和光催化活性。

Description

一种α-三氧化二铁介孔微球、制备方法及其应用
技术领域
本发明属于新材料制备领域,具体涉及一种α-三氧化二铁介孔微球、制备方法及其应用。
背景技术
光催化氧化技术是一门新兴的有广阔应用前景的技术,特别适用于生化和物化等传统方法无法处理的难降解有机污染物的处理,近年来纳米氧化铁的许多优异性能得到了广泛的关注,其中纳米α-Fe2O3作为常温下化学稳定性最好的铁氧化物,其原料丰富廉价、环境友好、高抗腐蚀性,对紫外光和可见光均表现出较好的光电化学响应,可用于降解环境有毒有害污染物以及光解水制氢、制氧等领域,是一种非常有前途的光催化剂。
当前已陆续被报道通过不同体系的液相或气相合成方法已经制备出各种尺度、各种粒径均匀、形貌可控的α-Fe2O3材料,包括微纳米颗粒、微纳米管、立方块、棒状、盘状、针状、树枝状等特殊形貌结构。按照国际纯粹与应用化学协会(IUPAC)的定义,孔径在2-50nm的多孔材料称为介孔材料,其比表面积大,使其在表面吸附和催化等方面有了更为广泛的用,因此控制形态合成出各种性能良好的三维纳米结构的α-Fe2O3,特别是由纳米晶自组装形成的α-Fe2O3中空微球已成为现阶段研究的热点。
然而目前大多数制备方法反应过程中往往用到有毒的有机溶剂或者导向剂作为模板,这些都限制了制得的α-Fe2O3在水处理方面的实际应用。因此研究一种操作简单、重复性好、原料成本低廉、产率高且尺寸和孔径可控效果好的α-Fe2O3有着非常重要的意义。
发明内容
本发明的目的在于提供一种α-三氧化二铁介孔微球及其制备方法,原料成本低、工艺流程短、设备简单、操作方便、产率高、反应可在较温和条件下进行,且尺寸和孔径可控的α-Fe2O3介孔微球,具有较高的比表面积和光催化活性。
本发明还提供了一种α-三氧化二铁介孔微球降解偶氮染料AO7的应用。
本发明采用的技术方案如下:
本发明提供的一种α-三氧化二铁介孔微球的制备方法,包括以下步骤:
1)将铁盐溶于去离子水中搅拌至完全溶解,加入尿素CO(NH2)2、抗坏血酸C6H8O6、纳米碳粉和聚乙烯吡咯烷酮PVP,进行搅拌反应;
2)将步骤1)所得混合溶液转移到聚四氟乙烯反应釜中,将反应釜密封,加热反应,然后自然冷却至室温,产物离心、洗涤,真空干燥;
3)将步骤3)所得产物焙烧,得到α-Fe2O3介孔微球。
步骤1)中铁盐和去离子水用量比为5-10:55-80mmol/mL。
所述铁盐选自FeCl3·6H2O。
步骤1)中尿素、抗坏血酸、纳米碳粉和PVP的质量比为2-2.5:2-3.0:2:2。
步骤1)中铁盐与纳米碳粉的用量比为:5-10:2mmol/g。
进一步的,步骤1)中所述铁盐选自FeCl3·6H2O;所述纳米碳粉直径为30nm。
步骤1)中所述搅拌反应时间为40-60min,速度为150r/min。
步骤2)中所述加热反应是指160-180℃下反应6-7h。
步骤2)中所述离心是指10000rpm下离心10min;所述洗涤是指用蒸馏水和无水乙醇洗涤三次。
步骤3)中所述焙烧是指450-500℃焙烧2-3h。
本发明提供的一种α-三氧化二铁介孔微球,采用上述方法制备得到。产物为直径40nm 米粒状的Fe2O3纳米粒子组成的主要孔径为30nm的介孔微球。
本发明还提供了上述制备的α-三氧化二铁介孔微球降解酸性橙II AO7的应用。降解率达到了94-99%。
具体应用方法为:以酸性橙II AO7为目标污染物,用去离子水配置20-30mg/L的AO7 溶液,投加α-Fe2O3和过一硫酸盐PMS,置于光催化反应仪中进行反应。
本发明以铁盐(FeCl3·6H2O)为前驱体,以聚乙烯吡咯烷酮(PVP)和纳米碳粉(NC)为模板,以尿素(CO(NH2)2)为沉淀剂,以抗坏血酸(C6H8O6)为还原剂,反应生成FeCO3,再经高温焙烧后分解得到本发明产品Fe2O3,主要反应过程如下:(1)CO(NH2)2+FeCl3+ C6H8O6→NH4 ++FeCO3+C6H6O6;(2)
与现有技术相比,本发明的Fe2O3有如下有益点:(1)聚乙烯吡咯烷酮(PVP)能有效控制了FeCO3纳米粒子成核和生长形貌,主要得益于一定浓度的PVP高分子链为类圆形,PVP中C=O基团中的O原子与Fe2+较强的亲和力,纳米粒度的FeCO3将会自聚集成微球,扫描电镜(SEM)和投射电镜(TEM)显示Fe2O3微球直径为50um左右,内部由直径40nm“米粒状”α-Fe2O3组成;(2)纳米碳粉(直径30nm)在焙烧过程中生成了CO2,能有效控制该微球的介孔孔径,而且能显著增大Fe2O3微球的比表面积和孔容,BJH孔径分布曲线显示当纳米碳粉添加量为1g/L时,有显著的为30nm的介孔;BET比表面积为28.82-39.3m2/g,总孔容为0.1235-0.1653m2/g,能显著增强Fe2O3对有机污染的吸附催化能力;(3)合成Fe2O3的XRD衍射峰结果显示其与标准α-Fe2O3(JCPDS:33-0664)相对应且无其他杂质峰,证实为纯相的α-Fe2O3,同时紫外漫反射(UV-DRS)结果显示α-Fe2O3在紫外波段有较强的吸收,在紫外辐射下产生电子-空穴对(α-Fe2O3+hv→e-+h+),生成了强氧化性自由基(h+、·OH 和·O2-),若以过一硫酸盐(PMS)作为电子捕捉剂,能显著抑制了电子和e-和h+的复合,快速破坏了AO7分子结构,表现了很强的光催化活性,很短的反应时间即可获得极高的AO7 降解率。
附图说明
图1为合成机理图;
图2为本发明合成的α-Fe2O3介孔微球的扫描电镜(SEM)图片;
图3为本发明合成的α-Fe2O3介孔微球的投射电镜(TEM)图片;
图4为本发明合成的α-Fe2O3介孔微球的SBET、总孔容和孔径分布曲线;
图5为本发明合成的α-Fe2O3介孔微球的X射线衍射(XRD)图谱;
图6为本发明合成的α-Fe2O3介孔微球的紫外漫反射(UV-DRS)图谱;
图7为本发明合成的α-Fe2O3在不同活化条件下对AO7的降解效果。
具体实施方式
实施例1
一种α-三氧化二铁介孔微球的制备方法,包括以下步骤:
1)将7mmol FeCl3·6H2O溶于55mL去离子水中搅拌至完全溶解,然后加入2.25g尿素、 2.2g抗坏血酸、2g直径为30nm的纳米碳粉和2.0g PVP,以150r/min速度快速搅拌40min;得混合溶液A;
2)将步骤A所得混合溶液A转移到100mL容积的聚四氟乙烯反应釜中,将反应釜密封, 160℃下反应6h,然后自然冷却至室温,产物在10000rpm下离心10min后,分别用蒸馏水和无水乙醇洗涤三次,然后在80℃下真空干燥12h;
3)将步骤2)所得产物放入马弗炉中,按1-2℃/min等速升温至450℃焙烧3h,得到产物α-Fe2O3
产物的结构和形貌分别用日本日立S-4800扫描电子显微镜(SEM)和日本电子JEM-2100F 透射电子显微镜观察;类型及晶相用德国bruker公司D8系列X射线粉末衍射仪(XRD)确定 (采用Cu Ka辐射源,扫描范围为2θ从10o~80o,扫描步长为0.02o,扫描速度每步0.2s);比表面积及孔径分析用美国康塔仪器公司Quadrasorb SI-MP比表面及孔径分析仪分析(采用多点BET比表面积和t-plot和BJH法孔径分布模型;测量范围比表面0.005-5000m2/g,孔体积:下限为0.0001cc/g,孔径);紫外漫反射UV-DRS用日本岛津紫外可见分光光度计UV-3600测定。合成α-Fe2O3微球SEM显示表面呈米粒状结构微球,α-Fe2O3直径在 40nm左右,微球在50um左右(图2和图3);BET比表面积高(28.82-39.3m2/g),总孔容大(0.1235-0.1653m2/g),BJH孔径分布曲线显示当纳米碳粉添加量为1g/L时,有显著的为 30nm的介孔(表1、图4);XRD衍射峰与与标准α-Fe2O3(JCPDS:33-0664)相对应且无其他杂质峰,证实为纯相的α-Fe2O3(图5);紫外漫反射结果显示α-Fe2O3在紫外波段有较强的吸收(图6)。
表1 本发明合成的α-Fe2O3介孔微球孔容及比表面积相关数据
上述制备的α-Fe2O3介孔微球降解酸性橙II AO7的应用:
以酸性橙II(AO7)为目标污染物,用去离子水配置20mg/L的AO7溶液,投加上述制备的α-Fe2O3,投加量为1g/L,过一硫酸盐(PMS)1.0g/L,置于光催化反应仪(PL-02,北京普林塞斯科技)中进行反应15min,对AO7的降解率达到了95.1%。在紫外辐射下产生电子- 空穴对(α-Fe2O3+hv→e-+h+),生成了强氧化性自由基(h+、·OH和·O2-),以过一硫酸盐(PMS)作为电子捕捉剂,能显著抑制了电子和e-和h+的复合,快速破坏了AO7分子结构,表现了很强的光催化活性,反应一定时间对AO7的降解率达到了95.2%(图7)。
实施例2
一种α-三氧化二铁介孔微球的制备方法,包括以下步骤:
1)将10mmol FeCl3·6H2O溶于55mL去离子水中搅拌至完全溶解,加入2.45g尿素、2.9g抗坏血酸、2.5g直径30nm的纳米碳粉和2.8g PVP,以150r/min速度快速搅拌60min;得到混合溶液A;
2)将步骤1)所得混合溶液转移到100mL容积的聚四氟乙烯反应釜中,将反应釜密封, 180℃下反应6h,然后自然冷却至室温,产物在8000rpm下离心10min后,分别用蒸馏水和无水乙醇洗涤三次,然后在80℃下真空干燥12h;
3)将步骤2)所得产物放入马弗炉中,按1-2℃/min等速升温至500℃焙烧3h,得到产物α-Fe2O3
产物的结构和形貌、比表面积及孔径分析及紫外漫反射仪器同实施例1;结果与实施例1 类似。
上述制备的α-Fe2O3介孔微球降解酸性橙II AO7的应用:
用去离子水配置5mg/L的AO7溶液,投加上述制备的α-Fe2O3投加量为1g/L,过一硫酸盐(PMS)1g/L,置于光催化反应仪中反应5min,对AO7的降解率达到了97.2%;将催化剂重新离心洗涤后重复使用,当AO7初始浓度为18mg/L,投加α-Fe2O3投加量为1g/L,过一硫酸盐(PMS)1g/L,反应30min后AO7去除率达到98.2%。

Claims (8)

1.一种α-三氧化二铁介孔微球的制备方法,其特征在于,所述制备方法包括以下步骤:
1)将铁盐溶于去离子水中搅拌至完全溶解,加入尿素CO(NH2)2、抗坏血酸C6H8O6、纳米碳粉和聚乙烯吡咯烷酮PVP,进行搅拌反应;
2)将步骤1)所得混合溶液转移到聚四氟乙烯反应釜中,将反应釜密封,加热反应,然后自然冷却至室温,产物离心、洗涤,真空干燥;
3)将步骤3)所得产物焙烧,得到α-Fe2O3介孔微球。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)中铁盐和去离子水用量比为5-10:55-80mmol/mL。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤1)中尿素、抗坏血酸、纳米碳粉和PVP的质量比为2-2.5:2-3.0:2:2。
4.根据权利要求1或2所述的制备方法,其特征在于,步骤1)中铁盐与纳米碳粉的用量比为:5-10:2mmol/g。
5.根据权利要求1或2所述的制备方法,其特征在于,步骤2)中所述加热反应是指160-180℃下反应6-7h。
6.根据权利要求1或2所述的制备方法,其特征在于,步骤3)中所述焙烧是指450-500℃焙烧2-3h。
7.一种权利要求1-6任一项所述制备方法制备的α-三氧化二铁介孔微球。
8.一种权利要求1-6任一项所述制备方法制备的α-三氧化二铁介孔微球降解酸性橙IIAO7的应用。
CN201810329546.XA 2018-04-13 2018-04-13 一种α-三氧化二铁介孔微球、制备方法及其应用 Pending CN108640160A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810329546.XA CN108640160A (zh) 2018-04-13 2018-04-13 一种α-三氧化二铁介孔微球、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810329546.XA CN108640160A (zh) 2018-04-13 2018-04-13 一种α-三氧化二铁介孔微球、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN108640160A true CN108640160A (zh) 2018-10-12

Family

ID=63745953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810329546.XA Pending CN108640160A (zh) 2018-04-13 2018-04-13 一种α-三氧化二铁介孔微球、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108640160A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665506A (zh) * 2019-09-18 2020-01-10 宁夏大学 一种四环素光催化降解材料及其制备方法
CN113930866A (zh) * 2021-10-13 2022-01-14 广州航海学院 一种胶囊结构的超级电容器电极材料及其制备方法和应用
CN115159584A (zh) * 2022-07-07 2022-10-11 重庆邮电大学 一种镍诱导中空核桃状/球状三氧化二铁的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616861A (zh) * 2011-01-28 2012-08-01 中国科学院合肥物质科学研究院 三氧化二铁微纳米多孔球及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616861A (zh) * 2011-01-28 2012-08-01 中国科学院合肥物质科学研究院 三氧化二铁微纳米多孔球及其制备方法和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAOJIE LIU ET AL.: ""Controlled fabrication and characterization of microspherical FeCO3 and ɑ-Fe2O3"", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
姜希望: ""改性氮化碳光催化活化过硫酸盐降解酸性橙7的研究"", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *
罗民华: "《多孔陶瓷实用技术》", 31 March 2006, 中国建材工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665506A (zh) * 2019-09-18 2020-01-10 宁夏大学 一种四环素光催化降解材料及其制备方法
CN113930866A (zh) * 2021-10-13 2022-01-14 广州航海学院 一种胶囊结构的超级电容器电极材料及其制备方法和应用
CN115159584A (zh) * 2022-07-07 2022-10-11 重庆邮电大学 一种镍诱导中空核桃状/球状三氧化二铁的制备方法
CN115159584B (zh) * 2022-07-07 2023-06-06 重庆邮电大学 一种镍诱导中空核桃状/球状三氧化二铁的制备方法

Similar Documents

Publication Publication Date Title
Yuan et al. Multi-component design and in-situ synthesis of visible-light-driven SnO2/g-C3N4/diatomite composite for high-efficient photoreduction of Cr (VI) with the aid of citric acid
Kumar et al. Visible-light-driven N-TiO2@ SiO2@ Fe3O4 magnetic nanophotocatalysts: synthesis, characterization, and photocatalytic degradation of PPCPs
Chen et al. Salt-assisted synthesis of hollow Bi2WO6 microspheres with superior photocatalytic activity for NO removal
Saputra et al. Egg-shaped core/shell α-Mn2O3@ α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions
Maji et al. Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles
Wang et al. Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr
Yuan et al. Degradation of dimethyl phthalate (DMP) in aqueous solution by UV/Si–FeOOH/H2O2
Zhang et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate
Wang et al. Optimized design of BiVO4/NH2-MIL-53 (Fe) heterostructure for enhanced photocatalytic degradation of methylene blue and ciprofloxacin under visible light
CN109437338A (zh) 一种类锯齿型镍钴铁类普鲁士蓝烧结氧化物纳米材料的制备方法
CN107790160A (zh) 一种磷掺杂硫化锌镉固溶体催化剂、光催化体系及分解水制氢的方法
CN109482179A (zh) TiO2/石墨烯/纳米银复合光催化剂的制备及其对甲醛的降解
Shi et al. Heterogeneous photo-fenton degradation of norfloxacin with Fe 3 O 4-multiwalled carbon nanotubes in aqueous solution
CN108640160A (zh) 一种α-三氧化二铁介孔微球、制备方法及其应用
CN112299481B (zh) 一种Bi2S3的制备方法
Zhu et al. Flower-like bentonite-based Co3O4 with oxygen vacancies-rich as highly efficient peroxymonosulfate activator for lomefloxacin hydrochloride degradation
CN113275011B (zh) 一种花球状多级结构的氧化亚铜光催化剂的制备方法
CN107029786A (zh) 一种磁性复合光催化剂Ppy@CdS/ZnFe2O4及其制备方法和用途
CN110624594A (zh) 一种磁性Fe3O4/ZnO/g-C3N4复合光催化剂及其制备方法
CN108816235A (zh) 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用
Pei et al. A one-pot hydrothermal synthesis of Eu/BiVO4 enhanced visible-light-driven photocatalyst for degradation of tetracycline
Wang et al. Enhanced selective photocatalytic properties of a novel magnetic retrievable imprinted ZnFe 2 O 4/PPy composite with specific recognition ability
Wang et al. Synergistic effect of bimetal in three-dimensional hierarchical MnCo2O4 for high efficiency of photoinduced Fenton-like reaction
CN108079990B (zh) 一种二氧化钛包覆铜纳米复合材料及其制备方法和应用
CN108745336A (zh) 二氧化钛纳米片/还原石墨烯复合光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181012