CN108636426A - 三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法 - Google Patents

三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法 Download PDF

Info

Publication number
CN108636426A
CN108636426A CN201810237422.9A CN201810237422A CN108636426A CN 108636426 A CN108636426 A CN 108636426A CN 201810237422 A CN201810237422 A CN 201810237422A CN 108636426 A CN108636426 A CN 108636426A
Authority
CN
China
Prior art keywords
molybdenum disulfide
graphene
dimensional
dimensional order
orientated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810237422.9A
Other languages
English (en)
Other versions
CN108636426B (zh
Inventor
李炫华
郭绍晖
宋亚茹
杨琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810237422.9A priority Critical patent/CN108636426B/zh
Publication of CN108636426A publication Critical patent/CN108636426A/zh
Application granted granted Critical
Publication of CN108636426B publication Critical patent/CN108636426B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法,复合材料为二硫化钼/石墨烯。其结构为层状二硫化钼垂直均匀分布在齿状石墨烯纳米片表面,形成三维有序取向材料。这种新颖的结构能够促进光生电子的转移,而且具有较大的表面积,同时三维有序朝向阵列二硫化钼暴露较多的活性位点,增强光子的吸收并且优化电荷传输,另外制备过程简单,成本低,可以直接生长在普通透明玻璃上,直接作为光催化电极材料,能够进一步推进光催化制备氢气技术的应用。

Description

三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材 料及制备方法
技术领域
本发明属于催化领域,涉及一种三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法。
背景技术
氢能源作为一种可再生清洁能源,能够缓解能源短缺的压力以及环境污染问题,具有巨大的应用潜力。光催化制备氢气技术也因此备受关注。目前二硫化钼/石墨烯复合材料在光催化制备氢气领域中受到了广泛的研究。例如,二硫化钼纳米花/石墨烯复合材料,超薄二硫化钼/石墨烯纳米片复合材料(Ma C B,Qi X,Chen B,et al.MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogenevolution reaction.[J].Nanoscale,2014,6(11):5624.Deng Z H,Li L,Ding W,etal.Synthesized ultrathin MoS2nanosheets perpendicular to graphene forcatalysis of hydrogen evolution reaction.[J].Chemical Communications,2015,51(10):1893-6)首先,制备石墨烯纳米片的方法多种多样,例如还原氧化石墨烯、液相剥离、CVD等。在这些技术中,CVD技术具有独特的优势,能够有效的控制石墨烯纳米片在金属基片上均匀生长,但是此过程需要昂贵的金属基板,额外的传输也可能阻碍石墨烯器件的性能,因此寻找一种合适的廉价的基板也成为了一个研究关注点。另外随着纳米技术的不断发展,研制出了不同形貌的纳米二硫化钼,其中较为典型的纳米二硫化钼形貌为纳米球和纳米片,相对于二硫化钼纳米球,二硫化钼纳米片具有较大尺寸的表面,能够提供更多的活性位点,更具有催化优势。然而由于二硫化钼/石墨烯结构设计的不合理性导致电子传输受限,光生载流子复合严重,而且暴露的产氢催化活性位点较少,产氢催化效率不高。(BeheraS K,Deb P,Ghosh A.Mechanistic Study on Electrocatalytic Hydrogen Evolution byHigh Efficiency Graphene/MoS2Heterostructure[J].Chemistryselect,2017,2(13):3657-3667.Chen K,Wan X,Jingxiu W,et al.Electrical Properties of MoS2-WS2Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy[J].AcsNano,2015,9(10):9868.)。因此,杂化结构设计的不合理,也制约了二硫化钼/石墨烯复合材料的在光催化领域的发展和应用;设计优化的合理的二硫化钼/石墨烯复合材料杂化结构成为了一个研究热点。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法。该材料主要由二硫化钼和石墨烯复合形成,其结构为层状二硫化钼垂直均匀分布在齿状石墨烯纳米片表面,形成三维有序取向材料。这种材料结构新颖,比表面积大,产氢活性位点多,能够高效光催化分解水产氢。
技术方案
一种三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料,其特征在于:结构为层状二硫化钼垂直均匀分布在齿状石墨烯纳米片表面,形成三维有序取向材料。
一种制备所述三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料的方法,其特征在于步骤如下:
步骤1、三维石墨烯的制备:经超声波清洗以及紫外线清洗后的玻璃装入等离子体增强化学气相沉积装置,取体积比为1-2的水和乙醇混合液为前驱体溶液,以0.8-1.0毫升/分钟的速度且压力控制在50-100Pa将前驱体溶液注入PECVD系统,1100-1200℃、50-100Pa环境下生长2-6h,自然冷却至室温,即得到三维石墨烯;
步骤2、三维有序朝向二硫化钼/石墨烯复合材料的制备:通过热蒸发仪蒸发速度控制在在三维石墨烯基片上沉积15-25nm厚的三氧化钼薄膜;然后放在管式炉加热中心区域,将硫粉置于管式炉的上游;管式炉的压力设置为200-400Pa,通入氩气保持管内气氛,氩气流速控制在100-120s.c.c.m;在20-30min内将加热中心加热至550-650℃,硫粉保持在220℃以上,反应10-15min,自然冷却,即得三维有序取向二硫化钼/石墨烯复合材料。
表征:取质量50mg的三维有序朝向二硫化钼/石墨烯材料复合材料,分散在50ml去离子水中。用光催化设备进行光催化制备氢气的测试。光催化制备氢气的测试条件是:光源为氙灯,用电流控制氙灯光源强度,电流为15A。每隔30min进行取样检测。一共取样8次。
有益效果
本发明提出的一种三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法,复合材料为二硫化钼/石墨烯。其结构为层状二硫化钼垂直均匀分布在齿状石墨烯纳米片表面,形成三维有序取向材料。这种新颖的结构能够促进光生电子的转移,而且具有较大的表面积,同时三维有序朝向阵列二硫化钼暴露较多的活性位点,增强光子的吸收并且优化电荷传输,另外制备过程简单,成本低,可以直接生长在普通透明玻璃上,直接作为光催化电极材料,能够进一步推进光催化制备氢气技术的应用。
与二硫化钼/石墨烯简单杂化的复合材料制氢催化剂相比,本发明提供的三维有序朝向二硫化钼/石墨烯复合材料具有新颖的结构,这种三维有序取向结构能够有效地促进光生电子的转移,而且具有较大的表面积,同时三维阵列二硫化钼暴露较多的催化产氢活性位点,增强光子的吸收并且优化电荷传输,另外制备过程简便,成本低,可以直接生长在普通透明玻璃上,做光催化分解水的电极,能够进一步推进光催化制备氢气技术的应用。
附图说明
图1是三维有序取向二硫化钼/石墨烯材料的扫描电镜图。其中500nm是尺寸标尺。
图2是三维有序取向二硫化钼/石墨烯材料的透射电镜图。其中20nm以及2nm是尺寸标尺。
图3是三维有序取向二硫化钼/石墨烯材料光催化产氢测试图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例一:
经超声波清洗以及紫外线清洗后的玻璃装入等离子体增强化学气相沉积装置,取体积比例1:1.5的水和乙醇混合液为前驱体溶液,以0.8毫升/分钟的速度且压力控制在50Pa将前驱体溶液注入PECVD系统,1100℃、50Pa环境下,生长4h,自然冷却至室温,即可得到三维石墨烯。通过热蒸发仪蒸发速度控制在在上述得到的三维石墨烯基片上沉积15nm厚的氧化钼薄膜。然后将基片放在管式炉加热中心区域,将硫粉置于管式炉的上游。管式炉的压力设置为200Pa,通入氩气保持管内气氛,氩气流速控制在100s.c.c.m。在20min内将加热中心迅速加热至650℃,硫粉前驱体保持在220℃以上,反应15min,自然冷却,可得的三维有序取向二硫化钼/石墨烯复合材料。
表征:取质量50mg的三维有序取向二硫化钼/石墨烯纳米材料,分散在50ml去离子水中。用光催化设备进行光催化制备氢气的测试。光催化制备氢气的测试条件是:光源为氙灯,用电流控制氙灯光源强度,电流为15A。每隔30min进行取样检测。一共取样8次,经过3次循环。结果显示该材料最大产氢量为4324.1微摩尔/克。
实施例二:
经超声波清洗以及紫外线清洗后的玻璃装入等离子体增强化学气相沉积装置,取体积比例1:1的水和乙醇混合液为前驱体溶液,以0.8毫升/分钟的速度且压力控制在60Pa将前驱体溶液注入PECVD系统,1140℃、60Pa环境下,生长2h,自然冷却至室温,即可得到三维石墨烯。通过热蒸发仪蒸发速度控制在在上述得到的三维石墨烯基片上沉积15nm厚的氧化钼薄膜。然后将基片放在管式炉加热中心区域,将硫粉置于管式炉的上游。管式炉的压力设置为200Pa,通入氩气保持管内气氛,氩气流速控制在100s.c.c.m。在25min内将加热中心迅速加热至550℃,硫粉前驱体保持在220℃以上,反应12min,自然冷却,可得的三维有序取向二硫化钼/石墨烯复合材料。
表征:取质量50mg的三维有序取向二硫化钼/石墨烯纳米材料,分散在50ml去离子水中。用光催化设备进行光催化制备氢气的测试。光催化制备氢气的测试条件是:光源为氙灯,用电流控制氙灯光源强度,电流为15A。每隔30min进行取样检测。一共取样8次,经过3次循环。结果显示该材料最大产氢量为4465.4微摩尔/克。
实施例三:
经超声波清洗以及紫外线清洗后的玻璃装入等离子体增强化学气相沉积装置,取体积比例1:2的水和乙醇混合液为前驱体溶液,以0.9毫升/分钟的速度且压力控制在80Pa将前驱体溶液注入PECVD系统,1180℃、70Pa环境下,生长6h,自然冷却至室温,即可得到三维石墨烯。通过热蒸发仪蒸发速度控制在在上述得到的三维石墨烯基片上沉积20nm厚的氧化钼薄膜。然后将基片放在管式炉加热中心区域,将硫粉置于管式炉的上游。管式炉的压力设置为200Pa,通入氩气保持管内气氛,氩气流速控制在100s.c.c.m。在30min内将加热中心迅速加热至600℃,硫粉前驱体保持在220℃以上,反应10min,自然冷却,可得的三维有序取向二硫化钼/石墨烯复合材料。
表征:取质量50mg的三维有序取向二硫化钼/石墨烯纳米材料,分散在50ml去离子水中。用光催化设备进行光催化制备氢气的测试。光催化制备氢气的测试条件是:光源为氙灯,用电流控制氙灯光源强度,电流为15A。每隔30min进行取样检测。一共取样8次,经过3次循环。结果显示该材料最大产氢量为4032.5微摩尔/克。
实施例四:
经超声波清洗以及紫外线清洗后的玻璃装入等离子体增强化学气相沉积装置,取体积比例1:1的水和乙醇混合液为前驱体溶液,以1.0毫升/分钟的速度且压力控制在100Pa将前驱体溶液注入PECVD系统,1200℃、100Pa环境下,生长3h,自然冷却至室温,即可得到三维石墨烯。通过热蒸发仪蒸发速度控制在在上述得到的三维石墨烯基片上沉积25nm厚的氧化钼薄膜。然后将基片放在管式炉加热中心区域,将硫粉置于管式炉的上游。管式炉的压力设置为200Pa,通入氩气保持管内气氛,氩气流速控制在100s.c.c.m。在30min内将加热中心迅速加热至650℃,硫粉前驱体保持在220℃以上,反应10min,自然冷却,可得的三维有序取向二硫化钼/石墨烯复合材料。
表征:取质量50mg的三维有序取向二硫化钼/石墨烯纳米材料,分散在50ml去离子水中。用光催化设备进行光催化制备氢气的测试。光催化制备氢气的测试条件是:光源为氙灯,用电流控制氙灯光源强度,电流为15A。每隔30min进行取样检测。一共取样8次,经过3次循环。结果显示该材料最大产氢量为3975.8微摩尔/克。

Claims (2)

1.一种三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料,其特征在于:结构为层状二硫化钼垂直均匀分布在齿状石墨烯纳米片表面,形成三维有序取向材料。
2.一种制备权利要求1所述三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料的方法,其特征在于步骤如下:
步骤1、三维石墨烯的制备:经超声波清洗以及紫外线清洗后的玻璃装入等离子体增强化学气相沉积装置,取体积比为1-2的水和乙醇混合液为前驱体溶液,以0.8-1.0毫升/分钟的速度且压力控制在50-100Pa将前驱体溶液注入PECVD系统,1100-1200℃、50-100Pa环境下生长2-6h,自然冷却至室温,即得到三维石墨烯;
步骤2、三维有序朝向二硫化钼/石墨烯复合材料的制备:通过热蒸发仪蒸发速度控制在在三维石墨烯基片上沉积15-25nm厚的三氧化钼薄膜;然后放在管式炉加热中心区域,将硫粉置于管式炉的上游;管式炉的压力设置为200-400Pa,通入氩气保持管内气氛,氩气流速控制在100-120s.c.c.m;在20-30min内将加热中心加热至550-650℃,硫粉保持在220℃以上,反应10-15min,自然冷却,即得三维有序取向二硫化钼/石墨烯复合材料。
CN201810237422.9A 2018-03-22 2018-03-22 三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法 Active CN108636426B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810237422.9A CN108636426B (zh) 2018-03-22 2018-03-22 三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810237422.9A CN108636426B (zh) 2018-03-22 2018-03-22 三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法

Publications (2)

Publication Number Publication Date
CN108636426A true CN108636426A (zh) 2018-10-12
CN108636426B CN108636426B (zh) 2020-12-08

Family

ID=63744517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810237422.9A Active CN108636426B (zh) 2018-03-22 2018-03-22 三维有序取向二硫化钼/石墨烯高效光催化制氢复合纳米材料及制备方法

Country Status (1)

Country Link
CN (1) CN108636426B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056642A (zh) * 2014-05-19 2014-09-24 浙江理工大学 一种二硫化钼/碳纳米纤维杂化材料的制备方法
CN104190443A (zh) * 2014-09-04 2014-12-10 上海交通大学 一种电解水制备氢气催化剂材料的制备方法
CN104498878A (zh) * 2014-12-12 2015-04-08 电子科技大学 一种制备二硫化钼薄膜的方法
CN105253874A (zh) * 2015-09-18 2016-01-20 复旦大学 全过程无溶液参与的制备三维微孔石墨烯的方法
US9314777B2 (en) * 2012-07-27 2016-04-19 Lawrence Livermore National Security, Llc High surface area graphene-supported metal chalcogenide assembly
CN105854901A (zh) * 2016-04-21 2016-08-17 国家纳米科学中心 一种三氧化钼和二硫化钼复合材料的制备方法
EP3152158A1 (en) * 2014-06-09 2017-04-12 University of Surrey A method for graphene and carbon nanotube growth
WO2017062736A1 (en) * 2015-10-08 2017-04-13 Board Of Trustees Of The University Of Illinois Structured molybdenum disulfide materials for electrocatalytic applications
CN106927453A (zh) * 2017-02-16 2017-07-07 北京大学 一种在pecvd中实现纵向及横向石墨烯可控制备的方法
CN106966384A (zh) * 2017-03-28 2017-07-21 天津大学 一种二硫化钼/石墨烯层状组装体的制备方法
CN106987857A (zh) * 2017-03-09 2017-07-28 陕西科技大学 单层金属结构二硫化钼/氧化还原石墨烯复合物及其制备方法
CN107681124A (zh) * 2016-08-01 2018-02-09 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
CN107747106A (zh) * 2017-09-22 2018-03-02 天津大学 氮、硫掺杂的三维碳纳米网络负载二硫化钼纳米材料及制备
CN107774282A (zh) * 2017-09-05 2018-03-09 天津大学 三维石墨烯网状结构负载二硫化钼纳米材料的制备与应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9314777B2 (en) * 2012-07-27 2016-04-19 Lawrence Livermore National Security, Llc High surface area graphene-supported metal chalcogenide assembly
CN104056642A (zh) * 2014-05-19 2014-09-24 浙江理工大学 一种二硫化钼/碳纳米纤维杂化材料的制备方法
EP3152158A1 (en) * 2014-06-09 2017-04-12 University of Surrey A method for graphene and carbon nanotube growth
CN104190443A (zh) * 2014-09-04 2014-12-10 上海交通大学 一种电解水制备氢气催化剂材料的制备方法
CN104498878A (zh) * 2014-12-12 2015-04-08 电子科技大学 一种制备二硫化钼薄膜的方法
CN105253874A (zh) * 2015-09-18 2016-01-20 复旦大学 全过程无溶液参与的制备三维微孔石墨烯的方法
WO2017062736A1 (en) * 2015-10-08 2017-04-13 Board Of Trustees Of The University Of Illinois Structured molybdenum disulfide materials for electrocatalytic applications
CN105854901A (zh) * 2016-04-21 2016-08-17 国家纳米科学中心 一种三氧化钼和二硫化钼复合材料的制备方法
CN107681124A (zh) * 2016-08-01 2018-02-09 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
CN106927453A (zh) * 2017-02-16 2017-07-07 北京大学 一种在pecvd中实现纵向及横向石墨烯可控制备的方法
CN106987857A (zh) * 2017-03-09 2017-07-28 陕西科技大学 单层金属结构二硫化钼/氧化还原石墨烯复合物及其制备方法
CN106966384A (zh) * 2017-03-28 2017-07-21 天津大学 一种二硫化钼/石墨烯层状组装体的制备方法
CN107774282A (zh) * 2017-09-05 2018-03-09 天津大学 三维石墨烯网状结构负载二硫化钼纳米材料的制备与应用
CN107747106A (zh) * 2017-09-22 2018-03-02 天津大学 氮、硫掺杂的三维碳纳米网络负载二硫化钼纳米材料及制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XU-DONG CHEN ET AL.: "Fast Growth and Broad Applications of 25-Inch Uniform Graphene Glass", 《ADVANCED SCIENCE NEWS》 *
王敏: "二硫化钼量子点-氧化石墨烯复合材料的制备及其光催化产氢性能研究", 《西北师范大学学报(自然科学版)》 *

Also Published As

Publication number Publication date
CN108636426B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Zhang et al. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity
Zhao et al. Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance
Liu et al. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation
CN103407985B (zh) 一种杂原子掺杂碳纳米管-石墨烯复合物及其制备方法
Guan et al. Synthesis of sulfur doped g-C3N4 with enhanced photocatalytic activity in molten salt
Chang et al. Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts
Zhang et al. Carbon-incorporated TiO2 microspheres: facile flame assisted hydrolysis of tetrabutyl orthotitanate and photocatalytic hydrogen production
Guo et al. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance
Zi et al. A facile route to prepare TiO2/g-C3N4 nanocomposite photocatalysts by atomic layer deposition
Xue et al. Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation
Dai et al. Magnetic ZnFe2O4@ ZnSe hollow nanospheres for photocatalytic hydrogen production application
CN104005004B (zh) 一种小直径、金属性单壁碳纳米管的生长方法和应用
Sun et al. Photocatalytic H2 evolution of porous silicon derived from magnesiothermic reduction of mesoporous SiO2
CN103663441A (zh) 一种固相裂解法制备氮杂石墨烯和纳米金属石墨烯的方法
Zhao et al. Recent progress on transition metal diselenides from formation and modification to applications
Zhang et al. Energy band matching WO3/B-doped g-C3N4 Z-scheme photocatalyst to fix nitrogen effectively
Lv et al. Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2
Yang et al. Enhanced photocatalytic performance of C3N4 via doping with π-deficient conjugated pyridine ring and BiOCl composite heterogeneous materials
Song et al. Vopor-polymerization strategy to carbon-rich holey few-layer carbon nitride nanosheets with large domain size for superior photocatalytic hydrogen evolution
Yadav et al. Recent progress on synthesis and modifications of ZnIn2S4 based novel hybrid materials for potential applications
Wang et al. Experimental preparation and optical properties of CeO2/TiO2 heterostructure
CN105731443B (zh) 无模板一步法制备高比例石墨型氮掺杂石墨烯管的方法
Wan et al. A novel approach for high-yield solid few-layer MoS2 nanosheets with effective photocatalytic hydrogen evolution
Zhang et al. Controllable preparation of crystalline red phosphorus and its photocatalytic properties
Zhang et al. Metallic rhombohedral NbS2/2D g-C3N4 composite with enhanced photogenerated carriers separation and photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant