CN108630750A - 具有二维侧边异质结构的半导体装置的制造方法 - Google Patents

具有二维侧边异质结构的半导体装置的制造方法 Download PDF

Info

Publication number
CN108630750A
CN108630750A CN201810218982.XA CN201810218982A CN108630750A CN 108630750 A CN108630750 A CN 108630750A CN 201810218982 A CN201810218982 A CN 201810218982A CN 108630750 A CN108630750 A CN 108630750A
Authority
CN
China
Prior art keywords
metal
film
compound film
metal dithionite
category compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810218982.XA
Other languages
English (en)
Other versions
CN108630750B (zh
Inventor
林时彦
李嗣涔
潘正圣
陈冠超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN108630750A publication Critical patent/CN108630750A/zh
Application granted granted Critical
Publication of CN108630750B publication Critical patent/CN108630750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/158Structures without potential periodicity in a direction perpendicular to a major surface of the substrate, i.e. vertical direction, e.g. lateral superlattices, lateral surface superlattices [LSS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Memories (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种具有二维侧边异质结构的半导体装置的制造方法包含形成第一金属二硫属化物膜及第二金属二硫属化物膜的交错区域,其中第一金属二硫属化物膜及第二金属二硫属化物膜是沿着第一基材的表面延伸。第一金属二硫属化物膜及第二金属二硫属化物膜为不同的金属二硫属化物。每一个第二金属二硫属化物膜区域是相邻于第一金属二硫属化物膜的区域的相对侧边。

Description

具有二维侧边异质结构的半导体装置的制造方法
技术领域
本揭露是关于一种半导体装置的二维材料,特别是关于一种二维结晶异质结构及其制造方法。
背景技术
二维半导体(亦称为2D半导体)是厚度为原子尺度的一种天然半导体的型式。2D单层半导体是重要的,因为相较于已知使用的主体型式(bulk form),2D单层半导体具有较强的压电耦合,可使2D材料用以感测及启动新的电子元件。过渡金属二硫属化物已被用于2D装置中。单一2D过渡金属二硫属化物材料在装置应用的表现已达到上限。增加2D材料的漏极电流是所追求的。
发明内容
本揭露的一态样为一种具有二维侧边异质结构的半导体装置的制造方法。方法包含沿着第一基材的表面形成第一金属二硫属化物膜及第二金属二硫属化物膜的交错区域。第一金属二硫属化物膜及第二金属二硫属化物膜为不同的金属二硫属化物。每一个第二金属二硫属化物膜区域是相邻于第一金属二硫属化物膜的区域的相对侧边。
附图说明
根据以下详细说明并配合附图阅读,使本揭露的态样获致较佳的理解。需注意的是,如同业界的标准作法,许多特征并不是按照比例绘示的。事实上,为了进行清楚讨论,许多特征的尺寸可以经过任意缩放。
图1是显示具有不同厚度的MoS2膜的拉曼光谱(Raman spectra);
图2是显示具有不同厚度的MoS2膜的光致发光光谱(photoluminescencespectra);
图3是显示MoS2膜及WS2膜的能带排列;
图4A、图4B、图4C、图4D、图4E、图4F是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的剖面视图;
图5是绘示根据本揭露实施例的装置的栅极电压相对于漏极电流的关系图;
图6是显示在不同基材上的MoS2膜的光致发光光谱;
图7A及图7B是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的平面视图;图7C是绘示根据本揭露一实施例的半导体装置的制造方法的一阶段的图7B沿着A-A线的剖面视图;
图8A、图8B、图8C、图8D、图8E、图8F、图8G、图8H、图8I及图8J是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的剖面视图;
图9A、图9B及图9C是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的平面视图;图9D是绘示根据本揭露一实施例的半导体装置的制造方法的一阶段的图9C沿着B-B线的剖面视图;
图10A、图10B及图10C是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的平面视图;图10D是绘示根据本揭露一实施例的半导体装置的制造方法的一阶段的图10C沿着C-C线的剖面视图;
图11A、图11B、图11D及图11E是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的剖面视图;图11C是图11B的平面视图;
图12A、图12B、图12C及图12D是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的平面视图;图12E是绘示根据本揭露一实施例的半导体装置的制造方法的一阶段的图12D沿着D-D线的剖面视图;
图13A、图13B、图13C及图13D是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的平面视图;图13E是绘示根据本揭露一实施例的半导体装置的制造方法的一阶段的图13D沿着E-E线的剖面视图。
具体实施方式
须理解的是,以下揭露提供许多不同实施例或例示,以实施发明的不同特征。以下叙述的成份和排列方式的特定例示是为了简化本揭露。这些当然仅是做为例示,其目的不在构成限制。举例而言,元件的尺寸不限于所揭露的范围或数值,而是取决于制程条件及/或所要的装置性质。再者,第一特征形成在第二特征之上或上方的描述包含第一特征和第二特征有直接接触的实施例,也包含有其他特征形成在第一特征和第二特征之间,以致第一特征和第二特征没有直接接触的实施例。许多特征的尺寸可以不同比例绘示,以使其简化且清晰。
再者,空间相对性用语,例如“下方(beneath)”、“在…之下(below)”、“低于(lower)”、“在…之上(above)”、“高于(upper)”等,是为了易于描述附图中所绘示的元素或特征和其他元素或特征的关系。空间相对性用语除了附图中所描绘的方向外,还包含元件在使用或操作时的不同方向。装置可以其他方式定向(旋转90度或在其他方向),而本文所用的空间相对性描述也可以如此解读。除此之外,用语“由…制成(made of)”的意义可为“包含(comprising)”或“由…组成(consisting of)”。
最近关于增进2D装置表现的研究是在2D晶体异质结构的领域。2D晶体异质结构可提供优于单一材料2D结构的装置表现。2D晶体异质结构可通过化学气相沉积成长或硫化预沉积的过渡金属而被垂直地建立。举例而言,相较于MoS2晶体管,WS2/MoS2异质结构装置是被观察到具有显著的漏极电流增加。具有MoS2及WS2/MoS2异质结构做为通道的二个装置的场效载子迁移率(field-effect mobility)分别为0.27及0.69cm2/V-s。此结果显示第II型能带排列,电子由WS2注入MoS2,且此现象的原因可为在热平衡下形成较高电子浓度通道。第I型结构为产生强烈光致发光的单一单层,而第II型结构由于较低的光学重组(opticalrecombination)机率,故第II型结构产生较不显著的光致发光,其中较低的光学重组机率可能是第II型异质结构所造成。
在本揭露的一些实施例中,2D材料为金属二硫属化物(metal dichalcogenide),其厚度为约0.5nm至约10nm。在一些实施例中,金属二硫属化物为过渡金属二硫属化物。在一些实施例中,过渡金属二硫属化物是选自于包含MoS2、WS2、MoSe2、WSe2、MoTe2及WTe2的一族群。
在本揭露的一些实施例中,具有不同厚度的金属膜是利用射频溅镀系统(RFsputtering system)而沉积在基材上。接着,金属膜被转化为金属二硫属化物膜。举例而言,在一些实施例中,金属(例如钼)是利用溅镀而沉积在基材(例如蓝宝石),其中溅镀是在能量范围为约10W至约100W,背景压力为约5×10-2torr至约5×10-4torr,且氩气流速为约10sccm至约100sccm下进行。在金属沉积后,放置样品于用于硫族化(chalcogenization;例如:硫化)的加热炉的中心。在硫化过程中,用以做为载流气体的氩气的流速为约40sccm至约200sccm,且加热炉的压力范围为约0.1torr至约10torr。样品的成长温度为约400℃至约1200℃。约0.5g至约2g的硫粉是在加热炉上游,于气体流动下被加热至其汽化温度为约120℃至约200℃。
在特定实施例中,钼是通过溅镀而被沉积在蓝宝石基材上,溅镀的能量为约40W,是在背景压力为约5×10-3torr,且氩气流速为约40sccm下进行。硫化操作是在氩气流速为约130sccm,且加热炉压力为约0.7torr且温度为约800℃的条件下进行。硫粉(约1.5g)是放置于加热炉的气流上游,并被加热至其汽化温度为约120℃。具有不同钼膜厚度(0.5nm及1.0nm)的两种样品是利用相同的硫化步骤所制备。通过此成长技术,可获得大面积的MoS2膜在蓝宝石基材上。如图1的拉曼光谱所示,随着MoS2厚度的增加,二支拉曼峰之间的频率差值△k增加。被硫化而具有0.5nm及1.0nm厚的钼的两个样品的拉曼峰的频率差值△k分别为20.8cm-1及24.6cm-1。增加的△k值表示相较于被硫化而具有0.5nm厚的钼的样品,被硫化而具有1.0nm厚的钼的样品可获得较多的MoS2层。
在一些实施例中,取代以硫化制程而形成硫基材料(MoS2、WS2等),可进行硒化以形成硒基材料(例如:MoSe2及WSe2),或进行碲化以形成碲基材料(例如:MoTe2及WTe2)。
光致发光(photoluminescence,PL)光谱是另外可用以支持两个样品获得不同MoS2层数目的证据。单层MoS2是具有能阶值为约1.9eV的直接能带材料(direct bandgapmaterial)。随着层数的增加,MoS2膜的光致发光峰的能量及强度逐渐减少。图2所示为两样品的光致发光光谱。如图2所示,可观察到0.5nm厚的钼的硫化样品是具有较强的冷发光。对于1.0nm厚的钼的硫化样品,光致发光强度减少,且光致发光峰的能量位移1.82eV。此结果代表具有较厚的钼膜,可获得增加的MoS2层数目。剥层的MoS2具有相似的光致发光峰能量1.87eV及明亮的冷发光表示0.5nm厚的钼的硫化样品是获得单层MoS2膜。高解析度穿透式电子显微镜(high resolution transmission electron microscopy,HRTEM)证明1层的MoS2是形成在0.5nm的样品,而3层的MoS2是形成在1.0nm的样品。因此,较厚的硫化样品可获得较多的MoS2层。在一些实施例中,MoS2层的数目与钼膜厚度有近似于线性的关系,其可使此成长技术对于单层MoS2有好的层数控制能力。此数据显示相较于多层的MoS2,单层MoS2提供较大的光致发光强度。
金属二硫属化物是形成在基材上。在一些实施例中,基材包含氧化硅或氧化铝基材。在一些实施例中,氧化硅基材包含硅上覆二氧化硅。在特定实施例中,硅基材为导电基材,例如p掺杂硅。在其他实施例中,合适的氧化铝基材包含蓝宝石。
在本揭露中,制备包含第一金属二硫属化物膜及第二过渡金属二硫属化物膜的异质结构。在一些实施例中,制备WS2/MoS2的异质结构。进行MoS2及WS2样品的紫外光光电子能谱(ultraviolet photoelectron spectroscopy,UPS)及吸收光谱测量。图3所示为MoS2及WS2的能带排列。MoS2及WS2样品的能阶值分别为1.72eV及1.85eV。MoS2及WS2的截止束缚能(cutoff binding energy,Ecutoff)分别为1.17eV及0.97eV。截止束缚能是费米能阶(Fermilevel,EF)及价带最大值(valence band maximum,VBM)之间的差值。功函数(Φ)值为入射光子能量与截止束缚能的差值(Φ=hν-Ecutoff),其中入射光子能量(hν)为21.2eV。根据已知的价带最大值的位置,导带最小值(conduction band minimum,CBM)的位置可由两样品的能阶值而获得。当两样品结合形成异质结构时,可获得具有较低导带边缘的第II型能带排列的MoS2。由于WS2的功函数小于MoS2,WS2中的电子会在热平衡下注入MoS2。因此,可获得具有较高电子浓度的通道,其是可增加制作在具有MoS2通道的WS2/MoS2上的晶体管的场效载子迁移率。
在本揭露一实施例中,如图4A-4F所示,形成具有底部栅极电极的半导体装置。在一些实施例中,如图4A所示,第一金属膜95是形成在第一基材10上。在特定实施例中,第一金属膜为通过溅镀所形成的约1nm厚的钼膜,且基材10为蓝宝石基材。
如图4B所示,第一金属膜95是通过将金属与硫族元素反应而转化成第一金属二硫属化物膜15,其中硫族元素是选自于包含S、Se及Te的族群。在特定实施例中,第一金属二硫属化物为MoS2,其是通过将钼膜在加热炉内与汽化的硫反应而形成。在其他实施例中,第一金属二硫属化物是利用物理气相沉积(physical vapor deposition,PVD)法或化学气相沉积(chemical vapor deposition,CVD)法直接沉积在基材上。
在一些实施例中,如图4C所示,不同于第一金属膜95的第二金属膜90是形成在第一金属二硫属化物膜15上。在特定实施例中,第二金属膜是通过溅镀而形成的约1nm厚的钨膜。
接着,如图4D所示,第二金属膜90是通过将金属与硫族元素反应而转化成第二金属二硫属化物膜25,其中硫族元素是选自于包含S、Se及Te的族群。在特定实施例中,第二金属二硫属化物为WS2,其是通过将钨膜在加热炉内与汽化的硫反应而形成。
接着,如图4E所示,第一金属二硫属化物膜15及第二金属二硫属化物膜25是被转移至第二基材70上,借以形成垂直异质结构。转移操作可如说明书中所揭露的方式进行。在特定实施例中,第二基材70为具有介电层70B形成在上方的导电基材70A。导电基材70A在一些实施例中为p型掺杂多晶硅,而在另一些实施例中,则为导电金属。在一些实施例中,源极/漏极电极100是形成在介电层70B上。如图4E的剖面视图及图4F的平面视图所示,被转移的第一金属二硫属化物膜15及第二金属二硫属化物膜25是共形地覆盖源极/漏极电极100的部分及第二基材70。以下参考图8A-8J说明转移金属二硫属化物膜的方法。
在一些实施例中,以金属二硫属化物膜是形成在导电层上,来取代转移金属二硫属化物膜至导电基材。举例而言,导电层可形成在基材上,然后第一金属膜及第二金属膜是形成在导电层上。接着,第一金属膜及第二金属膜是经过硫族化,以形成第一金属二硫属化物膜及第二金属二硫属化物膜。导电层材料是选择为可耐硫族化操作温度。在一些实施例中,在硫族化后,第一金属二硫属化物膜及第二金属二硫属化物膜是被蚀刻以形成所要的形状或图案。
在金属二硫属化物膜是形成为直接在导电层之上的其他实施例中,第一金属膜是形成在导电层上,且第一金属膜经过硫族化,以形成第一金属二硫属化物膜。在一些实施例中,第一金属二硫属化物膜是被图案化(例如通过蚀刻),以形成所要的形状或图案。第二金属膜是形成在第一金属二硫属化物膜上,且第一金属膜经过硫族化,以形成第一金属二硫属化物膜。在一些实施例中,第二金属二硫属化物膜是被图案化(例如通过蚀刻),以形成所要的形状或图案。这些形成金属二硫属化物膜直接在导电层上的技术可被用以形成半导体装置,包含背栅极(back gate)晶体管。
在一些实施例中,导电基材70A为栅极电极,且介电层70B为栅极介电层。在特定实施例中,介电层70B为二氧化硅,在其他实施例中,介电层70B为高介电常数(高k)介电质。第一金属二硫属化物膜15及第二金属二硫属化物膜25形成晶体管的通道区域。换言之,图4F的结构包含设置在第一导电层70A上的介电层70B、设置在介电层70B的第一区域上的第二导电层100、设置在介电层70B的第二区域上并与第二导电层100分开的第三导电层100,以及设置在第二导电层100、第三导电层100及介电层70B上的双层金属二硫属化物15及25。
在一些实施例中,根据在此所揭露的方法制备具有5层MoS2及4层WS2/5层MoS2做为通道的底栅极(bottom-gate)晶体管。5层MoS2通道及4层WS2/5层MoS2异质结构通道晶体管在VDS为10V的ID-VGS比较曲线是显示于图5。相较于MoS2晶体管,异质结构装置可观察到显著的漏极电流增加。由曲线中可看出具有MoS2及WS2/MoS2异质结构做为通道的两个装置的场效载子迁移率分别为0.27cm2/V-s及0.69cm2/V-s。
二维金属硫属化物晶体膜可被转移至不同基材上,以获得不同材料之间的能带排列。举例而言,在一些实施例中,1层MoS2是分别被转移至10层WS2/蓝宝石及300nm SiO2/Si基材。因为1层MoS2是具有强发光,如图1及图2所示,在SiO2/Si基材上的1层MoS2是具有强的光致发光强度,如图6所示。然而,对于在10层WS2/蓝宝石上的1层MoS2,则观察到弱发光。结果表示由于MoS2/WS2异质结构的第II型能带排列,1层MoS2的原始的强烈第I型发光是显著地减少,因为第II型异质结构较低的光学重组机率。
因为单层金属二硫属化物排列提供优于垂直金属二硫属化物异质结构的发光强度,且金属二硫属化物异质结构提供优于单一结构的漏极电流增加,如上所述,侧边二维金属二硫属化物异质结构是本揭露一些实施例中所要的。
在本揭露一些实施例中,制备侧边二维晶体异质结构是通过形成第一金属二硫属化物膜15在基材10上,并图案化第一金属二硫属化物膜15以在第一金属二硫属化物膜15内形成纳米尺度的沟渠20,暴露出下方的基材10,如图7A的平面图所示。1层第二金属二硫属化物膜25是被转移至被图案化的第一金属二硫属化物膜15,如图7B所示。在一些实施例中,所获得的结构为具有周期性第I型材料及第II型材料的侧边二维晶体异质结构。第I型材料30包含填充沟渠20的单层第二金属二硫属化物膜25,且第II型材料35包含在第一金属二硫属化物膜15上的第二金属二硫属化物膜25,如图7B及图7C所示,其中图7C为沿图7B的A-A线的剖面视图。
在一些实施例中,第一金属二硫属化物膜及第二金属二硫属化物膜的厚度范围为约0.5nm至约10nm。在一些实施例中,第一金属二硫属化物膜及第二金属二硫属化物膜为彼此不同的过渡金属二硫属化物膜,且是选自于包含MoS2、WS2、MoSe2、WSe2、MoTe2及WTe2的一族群。在一些实施例中,金属二硫属化物膜是通过化学气相沉积(CVD)所形成。在其他实施例中,金属膜是形成在基材上,然后金属膜是与硫族反应,以形成金属二硫属化物膜。在一些实施例中,基材10包含氧化硅或氧化铝基材。在一些实施例中,合适的氧化硅基材包含形成在硅晶圆上的二氧化硅。在其他实施例中,合适的氧化铝基材包含蓝宝石。在一些实施例中,第一过渡金属二硫属化物膜15是通过合适的微影技术(包含电子束微影及反应性离子蚀刻)而被图案化,以形成沟渠20。在一些实施例中,沟渠20具有约1nm至约10nm的宽度及约15nm至约30nm的长度,且第一沟渠是与相邻的第二沟渠分开约5nm至约30nm的距离。
在如图7A所示的一些实施例中,沟渠20具有宽度WT、长度LT,且第一沟渠是与相邻的第二沟渠分开距离DT,其中距离DT的范围为约0.5WT至约30WT,且长度LT的范围为约3WT至约30WT
在本揭露的一些实施例中,制备侧边二维晶体异质结构是利用电子束微影图案化WS2膜,接着通过反应性离子蚀刻法蚀刻以在WS2膜内形成纳米尺度的沟渠。在一些实施例中,在转移1层MoS2至被图案化的WS2膜之后,可获得具有周期性第I型材料及第II型材料的侧边二维晶体异质结构。
由于WS2/MoS2异质结构的第II型能带排列,电子可由WS2注入MoS2。制得具有较高电子浓度的通道,可增加以MoS2作为通道的在MoS2/WS2异质结构上的晶体管的场效载子迁移率。
根据本揭露一些实施例的金属二硫属化物膜自一个基材转移至另一基材及其制作方法是绘示于图8A至图8J。如图8A所示,具有约0.5nm至约10nm的第一金属二硫属化物膜15是被形成在第一基材10上。在一些实施例中,第一金属二硫属化物膜15是通过化学气相沉积所形成。在其他实施例中,第一金属膜是通过溅镀或原子层沉积(atomic layerdeposition,ALD)所形成,然后金属膜是通过将金属膜与硫族反应以转化成金属二硫属化物。具有约100nm至约5μm的厚度的高分子膜45是形成在第一金属二硫属化物膜15,如图8B所示。在一些实施例中,高分子膜45为聚甲基丙烯酸甲酯[poly(methyl methacrylate),PMMA]。在形成高分子膜45之后,加热样品,例如通过将样品放置于加热板50上,如图8C所示。样品可在约70℃至约200℃的温度下被加热约30秒至约20分钟。在加热之后,将第一金属二硫属化物膜15的角落55自基材10撕离(例如利用镊子),且样品是被浸泡在包含溶液65的容器60中,如图8D所示,以助于第一金属二硫属化物膜15与第一基材10的分离,如图8E所示。在一些实施例中,溶液65为碱性水溶液。
如图8F所示,第一金属二硫属化物膜15及高分子膜45是转移至第二基材70。在施加第一金属二硫属化物膜15至第二基材70之后,在一些实施例中,样品可静置(stand)30分钟至24小时。在一些实施例中,第二基材70包含氧化硅或氧化铝基材。在一些实施例中,合适的氧化硅基材包含形成在硅晶圆上的二氧化硅。在其他实施例中,合适的氧化铝基材包含蓝宝石。高分子膜45是利用合适的溶剂自第一金属二硫属化物膜15被移除。在一些实施例中,第二基材70/第一金属二硫属化物膜15/高分子膜45结构是浸泡在容器75内合适的溶剂80中,如图8G所示,直至高分子膜45被溶解,如图8H所示。可使用任何适合溶解高分子膜45的溶剂80。举例而言,在一些实施例中,当高分子膜45为PMMA膜,丙酮可做为溶剂80。
如图8I所示,在一些实施例中,对第一金属二硫属化物膜15及第二基材70进行退火,其是通过在温度为约200℃至约500℃的加热炉85中加热约30分钟至5小时,以从其他基材转移至装置,使其具有0.5nm至10nm厚的金属二硫属化物膜,如图8J所示。
在一实施例中,二维金属硫化物晶体膜的膜转移操作是以以下步骤进行:(1)旋转涂布1.5μm厚的甲基丙烯酸甲酯(PMMA)层在二维金属硫化物晶体膜上;(2)加热板以120℃加热样品5分钟;(3)利用镊子将PMMA/二维晶体膜的角落的一部分自蓝宝石基材上撕离;(4)浸泡样品在KOH溶液中,且完全撕离PMMA/二维晶体膜;(5)放置PMMA/二维晶体膜在具有源极/漏极电极在其上的300nm SiO2/Si基材上;(6)将样品置于大气条件下8小时;(7)浸泡样品在丙酮内以移除PMMA;以及(8)将样品在350℃的加热炉内退火2小时,以保留二维金属硫化物晶体膜在SiO2/Si基材的表面上。
在其他实施例中,以沉积第二金属膜在第一金属硫属化物膜上及沟渠内,并硫族化的操作取代第二金属硫属化物膜的转移操作,如图9A至图9D所示。
如图9A所示,第一金属二硫属化物膜15是形成在基材10上,且第一金属二硫属化物膜15是被图案化以形成纳米尺度的沟渠20在第一金属二硫属化物膜15内,并暴露出下方的基材10。在一些实施例中,沟渠20具有约1nm至约10nm的宽度及约15nm至约30nm的长度,且第一沟渠是与相邻的第二沟渠相隔约5nm至约30nm的距离。约0.5nm至约10nm厚的第二金属膜90是形成在第一金属二硫属化物膜15上且在沟渠20内,如图9B所示。在一些实施例中,第二金属膜90是通过溅镀所形成,且第二金属是与第一金属二硫属化物膜15的金属不同。接着,第二金属膜90是与硫族反应,以形成具有周期性第I型材料及第II型材料的侧边二维晶体异质结构,如图9C所示。在一些实施例中,第I型材料30包含填充沟渠20的单层第二金属二硫属化物膜25,且第II型材料35包含在第一金属二硫属化物膜15上的第二金属二硫属化物膜25,如图9C及图9D所示,其中图9D为沿图9C的B-B线的剖面视图。因此,与图7C所示的相同的具有周期性第I型材料及第II型材料的侧边二维晶体异质结构也可在不进行膜转移操作下获得,如图9A至图9D所示。在一些实施例中,第一金属二硫属化物膜15的厚度及第二金属二硫属化物膜25的厚度是大于单层。
在图9A所示的一些实施例中,沟渠20具有宽度WT、长度LT,且第一沟渠是与相邻的第二沟渠分开距离DT,其中距离DT的范围为约0.5WT至约30WT,且长度LT的范围为约3WT至约30WT
在其他实施例中,沉积第一金属膜及第二金属膜,接着通过将金属膜与硫族反应转化成硫属化物,如图10A至图10D所示。在一些实施例中,约0.5nm至约10nm厚的第一金属膜是沉积在基材10上,如图10A所示。沉积第一金属膜95可通过溅镀或原子层沉积。基材10可被遮蔽或整个基材10可被第一金属膜95覆盖,然后被图案化以形成沟渠20。在一些实施例中,沟渠20具有约1nm至约10nm的宽度及约15nm至约30nm的长度,且第一沟渠是与相邻的第二沟渠相隔约5nm至约30nm的距离。约0.5nm至约10nm厚的第二金属膜90是形成在第一金属膜95上且在沟渠20内,如图10B所示。在一些实施例中,第二金属膜90是通过溅镀所形成,且第二金属是与第一金属不同。接着,第一金属膜95及第二金属膜90是通过与硫族反应,以转换为硫属化物膜,进而形成具有周期性第I型材料及第II型材料的侧边二维晶体异质结构,如图10C所示。在一些实施例中,第I型材料30包含填充沟渠20的单层第二金属二硫属化物膜25,且第II型材料35包含在第一金属二硫属化物膜15上的第二金属二硫属化物膜25,如图10C及图10D所示,其中图10D为沿图10C的C-C线的剖面视图。因此,与图7C所示的相同的具有周期性第I型材料及第II型材料的侧边二维晶体异质结构也可在不进行膜转移操作下获得,如图10A至图10D所示。本揭露不限于第I型材料及第II型材料的单层。在一些实施例中,第I型材料层及第II型材料层厚度是比单层厚。
图11A至图11E是绘示根据本揭露一实施例的半导体装置的制造方法的各连续阶段的视图。在本揭露一些实施例中,如图11A的剖面视图所示,侧边二维晶体异质结构是通过形成第一金属二硫属化物膜15在基材10上所制作。如图11B的剖面视图所示,第一金属二硫属化物膜15是接着被图案化,以形成多个由第一金属二硫属化物膜15所组成的纳米尺度的线120。下方的基材10是围着线120被暴露出。在一些实施例中,多个第一金属二硫属化物线120是实质为平行的配置。图11C是图11B的平面视图。
接着,如图11D的剖面视图所示,第二金属二硫属化物膜25是形成在第一金属二硫属化物线120上。在一些实施例中,第二金属二硫属化物膜25是利用回蚀操作而被平坦化。然后,如图11E的剖面视图所示,多个沟渠125是形成在第一金属二硫属化物线120之间的第二金属二硫属化物膜25的部分内,其是利用合适的微影技术,包含电子束微影及反应性离子蚀刻。
在一些实施例中,第一金属二硫属化物膜120及第二金属二硫属化物膜25的厚度范围为约0.5nm至约10nm。在一些实施例中,第一金属二硫属化物膜120为单层。在一些实施例中,第一金属二硫属化物膜120及第二金属二硫属化物膜25为彼此不同的过渡金属二硫属化物膜,且是选自于包含MoS2、WS2、MoSe2、WSe2、MoTe2及WTe2的一族群。在一些实施例中,金属二硫属化物膜是通过化学气相沉积(CVD)所形成。在一些实施例中,基材10包含氧化硅或氧化铝基材。在一些实施例中,合适的氧化硅基材包含形成在硅晶圆上的二氧化硅。在其他实施例中,合适的氧化铝基材包含蓝宝石。在一些实施例中,第二金属二硫属化物膜25是通过合适的微影技术(包含电子束微影及反应性离子蚀刻)而被图案化,以形成沟渠125。在一些实施例中,线120及沟渠125具有约1nm至约10nm的宽度及约15nm至约30nm的长度,第一线是与相邻的第二线分开约5nm至约30nm的距离,且第一沟渠是与相邻的第二沟渠分开约6nm至约31nm的距离。
在一些实施例中,如图11B及图11C所示,线120具有宽度WL、长度LL,且第一线是与相邻的第二线分开距离DL,其中距离DL的范围为约0.5WL至约30WL,且长度LL的范围为约3WL至约30WL
根据本揭露,侧边异质结构的应用为多通道晶体管。举例而言,在WS2膜的沟渠内的MoS2区域内有较高的电子浓度,而WS2的导电性较MoS2差,其结果是与多通道高电子迁移率晶体管(high-electron-mobility transistor,HEMT)相似。主要差异为以侧边异质结构的配置取代直立异质结构。
一种具有侧边二维晶体异质结构的多通道上栅极晶体管的制造方法是如图12A至图12E所示。第一过渡金属二硫属化物膜15是形成在基材10上,如图12A的平面视图所示。侧边多量子井(multi-quantum walls,QWs)是利用本揭露的二维晶体异质结构所制作。如图12A所示,沟渠20是通过电子束微影及反应性离子蚀刻以形成为具有约1nm至约10nm的宽度a,且分开距离b为约20nm至约30nm。在一些实施例中,沟渠长度l是小于30nm。沟渠20为半导体装置的通道区域,且沟渠20包含通道区域的第一中心部分,而通道区域的第二末端部分是在第一中心部分的两相对末端。
本揭露的二维晶体异质结构除了载子注入现象,侧边量子井结构更可增加晶体管的装置迁移率。除此之外,在一些实施例中,量子井数是用以控制装置的漏极电流水平。
不同于第一金属二硫属化物膜15的第二金属二硫属化物膜25是形成在第一金属二硫属化物膜15上及在沟渠20内,如图12B所示,借以形成具有周期性第I型材及第II型材料的侧边二维晶体异质结构,如图12C所示。接着,栅极介电层105是形成在通道区域30及35的第一中心部分上,栅极电极110是形成在栅极介电层105上,而源极/漏极电极100是形成在通道区域30及35的第二末端部分上,如图12D及图12E所示,其中图12E为沿图12D的D-D线的剖面视图。栅极介电层105可由任意合适的介电材料所形成,且可利用合适的沉积、光微影及蚀刻操作来制作。栅极电极110及源极/漏极电极100可通过合适的金属沉积及图案化操作来形成。任何合适的金属可用以做为电极。
通过减少通道分开距离b至小于10nm,侧边量子井可成为侧边超晶格(superlattice,SL)结构。超晶格结构与量子井的主要差异是超晶格的载子传递是透过迷你能量(mini-bands)而非单一能阶。在一些实施例中,通过超晶格结构的帮助,二维晶体异质结构晶体管的迁移率可进一步的增加。与量子井相似的,漏极电流水平是通过通道数来控制。由于超晶格结构的单位面积的通道密度是高于量子井,利用侧边二维晶体超晶格结构做为晶体管的通道预期可获得较高的漏极电流。
侧边二维晶体异质结构的其他应用是用以热成像的量子井红外线光侦测器(quantum-well infrared photodetectors,QWIPs)。典型地,QWIPs是利用垂直多层GaAs/(AlGa)As量子井所制作。由于能带内转移的选择规则的限制,垂直装置无法吸收垂直入射光。因此,以20μm至30μm的节距尺寸的其他光耦合系统(例如光栅)是难以用于制作装置。
图13A至图13E是绘示根据本揭露一实施例的半导体装置(例如量子井红外线光侦测器)的制造方法。如图13A的平面视图所示,第一金属二硫属化物膜15是形成在基材10上。侧边多量子井是利用本揭露的二维侧边异质结构所制作。如图13A所示,后续会有通道形成于内的沟渠20是通过电子束微影及反应性离子蚀刻以形成为具有约1nm至约10nm的宽度a,且分开距离b为约20nm至约30nm。在一些实施例中,沟渠长度l是小于30nm。
不同于第一金属二硫属化物膜15的第二金属二硫属化物膜25是形成在第一金属二硫属化物膜15上及在沟渠20内,如图13B所示,借以形成具有周期性第I型材及第II型材料的侧边二维晶体异质结构,如图13C所示。移除结构的外围区域以形成被基材10包围的台面。在一些实施例中,外围区域是通过掩蔽及蚀刻来移除。导电接触115是形成在二维晶体异质结构的相对末端区域上。在一些实施例中,导电接触115是由合适的导电金属(例如铝、金、银、钴、铜、镍、钽、钛、钨及其组合)所组成。导电接触115可通过溅镀、CVD、ALD、电镀或其他合适的方法来形成。
图13E为沿图13D的E-E线的剖面视图。具有周期性第I型材及第II型材料的侧边二维晶体异质结构是如图13D所示。第I型材料30包含在基材10上的第二金属二硫属化物膜25,而第II型材料35包含在第一金属二硫属化物膜15上方的第二金属二硫属化物膜25。
在本揭露的特定实施例中,具有二维晶体异质结构的侧边量子井结构是提供为具有填充于沟渠的WS2,其中沟渠的宽度a为约1nm至约10nm。在此例示中,通道分开距离b为约20nm至约30nm,且通道长度l为约30nm。制作成具有此配置的QWIPs对垂直入射光相当灵敏。类似于在此所揭露的用以形成晶体管的超晶格结构的纳米范围的通道分开距离b,相同的态样亦可应用于红外线光侦测器。当通道分开距离b为约5nm至约10nm,超晶格结构可形成,且单一能阶会成为能带。在此例示中,超晶格红外线光侦测器(superlattice infraredphotodetectors,SLIPs)亦可用以吸收垂直入射红外光。SLIPs的主要优点为其较低的操作电压。
当通道分开距离b为约20nm至约30nm时,所制作的装置可为QWIP。当通道分开距离b减少至小于10nm,所制作的装置可为SLIP。在一些实施例中,QWIPs或SLIPs的通道数可为约30至约100。
本揭露提供利用1次电子束微影然后反应性离子束蚀刻制作具有二维侧边异质结构的半导体装置的优势。在此所述的操作可应用至大面积二维晶体膜。再者,本揭露提供的具有侧边异质结构的多通道晶体管有显著增加的装置表现。除此之外,本揭露提供的侧边量子井结构是对红外线光侦测器的应用有助益。
本揭露的一实施例为一种具有二维侧边异质结构的半导体装置的制造方法。方法包含形成第一金属二硫属化物膜及第二金属二硫属化物膜的交错区域,其中第一金属二硫属化物膜及第二金属二硫属化物膜是沿着第一基材的表面延伸。第一金属二硫属化物膜及第二金属二硫属化物膜为不同的金属二硫属化物。每一个第二金属二硫属化物膜区域是相邻于第一金属二硫属化物膜的区域的相对侧边。在一实施例中,形成第一金属二硫属化物膜及第二金属二硫属化物膜的交错区域的操作包含形成第一金属二硫属化物膜在第一基材的表面上,图案化在第一基材的表面上的第一金属二硫属化物膜,以形成一或多个沟渠在第一金属二硫属化物膜内,且形成第二金属二硫属化物膜在第一金属二硫属化物膜上及在一或多个沟渠内。在一实施例中,利用微影操作及蚀刻操作以形成一或多个沟渠。在一实施例中,微影操作为电子束微影法,而蚀刻操作为反应性离子蚀刻法。在一实施例中,形成第一金属二硫属化物膜在第一基材上的操作包含:形成第一金属膜在第一基材上,以及硫化、硒化或碲化第一金属膜,以形成第一金属二硫属化物膜。在一实施例中,形成第二金属二硫属化物膜的操作更包含:形成第二金属膜在第一金属二硫属化物膜之上,且在一或多个沟渠内,以及硫化、硒化或碲化第二金属膜,以形成第二金属二硫属化物膜。在一实施例中,此一或多个沟渠是具有约1纳米至约10纳米的宽度,以及约15纳米至约30纳米的长度。在一实施例中,第一沟渠是与相邻的第二沟渠分开约5纳米至约30纳米的距离。在一实施例中,方法包含形成介电层在第二金属二硫属化物膜的第一中心部分上方,形成栅极电极在介电层上,以及形成源极/漏极电极在第二末端部分上,其中第二末端部分是在第二金属二硫属化物膜的第一中心部分的相对末端。在一实施例中,形成第一金属二硫属化物膜及第二金属二硫属化物膜的交错区域的操作包含:形成第一金属膜在基材的表面上,图案化该第一金属膜,以在第一金属膜内形成一或多个沟渠,形成第二金属膜在一或多个沟渠内,以及硫化、硒化或碲化第一金属膜及第二金属膜,以形成第一金属二硫属化物膜及第二金属二硫属化物膜,其中第一金属膜与第二金属膜为不同金属。在一实施例中,第一金属二硫属化物膜具有约0.5纳米至约10纳米的厚度。在一实施例中,方法包含形成第二金属二硫属化物膜在第二基材上,以及自第二基材转移第二金属二硫属化物膜至第一金属二硫属化物膜。在一实施例中,第二基材为蓝宝石。在一实施例中,第一金属二硫属化物膜及第二金属二硫属化物膜包含过渡金属二硫属化物。在一实施例中,过渡金属二硫属化物是选自于由WS2、MoS2、WSe2、MoSe2、WTe2、MoTe2以及上述的任意组合所组成的一族群。在一实施例中,第二金属二硫属化物膜为单层膜。在一实施例中,方法包含自第一基材的周围区域移除第一金属二硫属化物膜的一部分,以暴露出周围区域内的第一基材,以及形成导电接触在第一金属二硫属化物膜的相对末端区域。
本揭露的另一实施例为具有二维侧边异质结构的半导体装置的制造方法。方法包含形成第一金属二硫属化物膜在基材的表面上。在基材的表面上的第一金属二硫属化物膜是被图案化,以形成多个沟渠在第一金属二硫属化物膜内。沟渠具有宽度WT及长度LT,且第一沟渠是与相邻的第二沟渠分开距离DT,距离DT为0.5WT至30WT,长度LT为3WT至30WT。第一金属二硫属化物膜与该第二金属二硫属化物膜为不同金属二硫属化物,且第二金属二硫属化物膜为单层膜。
在本揭露的另一实施例中,一种半导体装置包含设置在基材上的第一金属二硫属化物膜。第一金属二硫属化物膜内具有一或多个沟渠。第二金属二硫属化物膜是设置在一或多个沟渠内。第一金属二硫属化物膜与第二金属二硫属化物膜为不同金属二硫属化物。栅极介电层是设置在第二金属二硫属化物膜的中心部分上。栅极电极层是设置在栅极介电层上,且源极/漏极电极是设置在第二金属二硫属化物膜的相对末端部分上。在一实施例中,第二金属二硫属化物膜为单层膜。
上述摘要许多实施例的特征,因此本领域具有通常知识者可更了解本揭露的态样。本领域具有通常知识者应理解利用本揭露为基础可以设计或修饰其他制程和结构以实现和所述实施例相同的目的及/或达成相同优势。本领域具有通常知识者也应了解与此同等的架构并没有偏离本揭露的精神和范围,且可以在不偏离本揭露的精神和范围下做出各种变化、交换和取代。

Claims (1)

1.一种半导体装置的制造方法,其中该半导体装置具有二维侧边异质结构,其特征在于,该制造方法包含:
形成一第一金属二硫属化物(dichalcogenide)膜及一第二金属二硫属化物膜的多个交错区域,其中该第一金属二硫属化物膜与该第二金属二硫属化物膜沿着一第一基材的一表面延伸,
其中该第一金属二硫属化物膜及该第二金属二硫属化物膜为不同的金属二硫属化物,且
每一该第二金属二硫属化物膜区域是邻接该第一金属二硫属化物膜的一区域的相反侧上。
CN201810218982.XA 2017-03-17 2018-03-16 具有二维侧边异质结构的半导体装置及其制造方法 Active CN108630750B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762472673P 2017-03-17 2017-03-17
US62/472,673 2017-03-17
US15/868,282 2018-01-11
US15/868,282 US10784351B2 (en) 2017-03-17 2018-01-11 2D crystal hetero-structures and manufacturing methods thereof

Publications (2)

Publication Number Publication Date
CN108630750A true CN108630750A (zh) 2018-10-09
CN108630750B CN108630750B (zh) 2023-12-15

Family

ID=63520235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810218982.XA Active CN108630750B (zh) 2017-03-17 2018-03-16 具有二维侧边异质结构的半导体装置及其制造方法

Country Status (3)

Country Link
US (2) US10784351B2 (zh)
CN (1) CN108630750B (zh)
TW (1) TWI789380B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114429988A (zh) * 2022-01-28 2022-05-03 北京科技大学 一种基于二维半金属电极的金属半导体接触结构

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148424A1 (en) * 2017-02-08 2018-08-16 Northwestern University Electronically abrupt borophene/organic lateral heterostructures and preparation thereof
US11447862B2 (en) 2018-03-07 2022-09-20 Uchicago Argonne, Llc Methods to deposit controlled thin layers of transition metal dichalcogenides
US11393681B2 (en) * 2018-03-07 2022-07-19 Uchicago Argonne, Llc Methods to deposit and etch controlled thin layers of transition metal dichalcogenides
US11239353B2 (en) * 2018-11-01 2022-02-01 Electronics And Telecommunications Research Institute Semiconductor device and method of manufacturing the same
KR102665745B1 (ko) * 2018-11-01 2024-05-14 한국전자통신연구원 반도체 소자 및 이의 제조 방법
US11276644B2 (en) * 2018-12-17 2022-03-15 Intel Corporation Integrated circuits and methods for forming thin film crystal layers
TWI698932B (zh) * 2019-03-29 2020-07-11 國立清華大學 二維半導體元件、光電單元與二維半導體元件的製造方法
US11142824B2 (en) 2019-04-23 2021-10-12 Uchicago Argonne, Llc Method of producing thin layer of large area transition metal dichalcogenides MoS2 and others
CN112736161B (zh) * 2020-12-30 2022-04-26 中山大学 一种具有循环类量子阱结构的铜锌锡硫基薄膜前驱体及其制备方法
CN115295676B (zh) * 2022-08-18 2023-02-03 之江实验室 一种高光响应Te/MoS2异质结光探测器及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468438A (zh) * 2010-11-11 2012-05-23 美光科技公司 具有硫属化物梯度的含硫属化物半导体
KR101689471B1 (ko) * 2015-06-15 2016-12-26 한양대학교 산학협력단 금속 칼코겐 화합물 박막 및 그 제조 방법
US20160379822A1 (en) * 2015-06-23 2016-12-29 The Trustees Of The Stevens Institute Of Technology Direct and pre-patterned synthesis of two-dimensional heterostructures
US20170025505A1 (en) * 2015-07-21 2017-01-26 Ut-Battelle, Llc Two-dimensional heterostructure materials
US20170062414A1 (en) * 2015-08-31 2017-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contacts to transition metal dichalcogenide and manufacturing methods thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242041B2 (en) * 2003-09-22 2007-07-10 Lucent Technologies Inc. Field-effect transistors with weakly coupled layered inorganic semiconductors
US9608101B2 (en) * 2011-01-04 2017-03-28 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor device
WO2013063399A1 (en) * 2011-10-28 2013-05-02 Georgetown University Method and system for generating a photo-response from mos2 schottky junctions
KR102144999B1 (ko) * 2013-11-05 2020-08-14 삼성전자주식회사 이차원 물질과 그 형성방법 및 이차원 물질을 포함하는 소자
KR102156320B1 (ko) * 2013-11-21 2020-09-15 삼성전자주식회사 이차원 물질을 포함하는 인버터와 그 제조방법 및 인버터를 포함하는 논리소자
US9859513B2 (en) * 2014-11-25 2018-01-02 University Of Kentucky Research Foundation Integrated multi-terminal devices consisting of carbon nanotube, few-layer graphene nanogaps and few-layer graphene nanoribbons having crystallographically controlled interfaces
US10269791B2 (en) * 2015-03-16 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Field-effect transistors having transition metal dichalcogenide channels and methods of manufacture
US10403744B2 (en) * 2015-06-29 2019-09-03 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices comprising 2D-materials and methods of manufacture thereof
KR102465353B1 (ko) * 2015-12-02 2022-11-10 삼성전자주식회사 전계 효과 트랜지스터 및 이를 포함하는 반도체 소자
US9899537B2 (en) * 2016-05-31 2018-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with transition metal dichalocogenide hetero-structure
US10141412B2 (en) * 2016-10-25 2018-11-27 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor using transition metal dichalcogenide and a method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468438A (zh) * 2010-11-11 2012-05-23 美光科技公司 具有硫属化物梯度的含硫属化物半导体
KR101689471B1 (ko) * 2015-06-15 2016-12-26 한양대학교 산학협력단 금속 칼코겐 화합물 박막 및 그 제조 방법
US20160379822A1 (en) * 2015-06-23 2016-12-29 The Trustees Of The Stevens Institute Of Technology Direct and pre-patterned synthesis of two-dimensional heterostructures
US20170025505A1 (en) * 2015-07-21 2017-01-26 Ut-Battelle, Llc Two-dimensional heterostructure materials
US20170062414A1 (en) * 2015-08-31 2017-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contacts to transition metal dichalcogenide and manufacturing methods thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114429988A (zh) * 2022-01-28 2022-05-03 北京科技大学 一种基于二维半金属电极的金属半导体接触结构
CN114429988B (zh) * 2022-01-28 2022-08-23 北京科技大学 一种基于二维半金属电极的金属半导体接触结构
US11652147B1 (en) 2022-01-28 2023-05-16 University Of Science And Technology Beijing Metal-semiconductor contact structure based on two-dimensional semimetal electrodes

Also Published As

Publication number Publication date
TW201835970A (zh) 2018-10-01
CN108630750B (zh) 2023-12-15
TWI789380B (zh) 2023-01-11
US11211460B2 (en) 2021-12-28
US10784351B2 (en) 2020-09-22
US20180269291A1 (en) 2018-09-20
US20210005719A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN108630750A (zh) 具有二维侧边异质结构的半导体装置的制造方法
Castellanos-Gomez et al. Van der Waals heterostructures
Kang et al. 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge
Duong et al. van der Waals layered materials: opportunities and challenges
CN108064420B (zh) 异质结及由其衍生的电子器件
Dong et al. Progress in fabrication of transition metal dichalcogenides heterostructure systems
Molina-Mendoza et al. Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy
Lu et al. Synthesis and applications of wide bandgap 2D layered semiconductors reaching the green and blue wavelengths
Liu et al. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions
Wang et al. Selective direct growth of atomic layered HfS2 on hexagonal boron nitride for high performance photodetectors
Keller et al. Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕ GaN multi-quantum wells
Huang et al. Scalable high-mobility MoS 2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature
Vu et al. One-step synthesis of NbSe2/Nb-doped-WSe2 metal/doped-semiconductor van der Waals heterostructures for doping controlled ohmic contact
US20190172960A1 (en) Solar cells and methods of making solar cells
Hussain et al. Layer-modulated, wafer scale and continuous ultra-thin WS 2 films grown by RF sputtering via post-deposition annealing
Li et al. Controllable preparation of 2D vertical van der waals heterostructures and superlattices for functional applications
Jeong et al. Physisorbed-precursor-assisted atomic layer deposition of reliable ultrathin dielectric films on inert graphene surfaces for low-power electronics
Lim et al. Nucleation promoted synthesis of large-area ReS2 film for high-speed photodetectors
Lim et al. Synthesis of a Tellurium Semiconductor with an Organic–Inorganic Hybrid Passivation Layer for High-Performance p-Type Thin Film Transistors
Lee et al. Cu2O quantum dots emitting visible light grown by atomic layer deposition
KR102196693B1 (ko) 전이금속-칼코젠 화합물 패턴 구조체, 그의 제조 방법, 및 그를 포함한 2차원 평면형 소자용 전극
Lei et al. Synthesis of vertically-aligned large-area MoS2 nanofilm and its application in MoS2/Si heterostructure photodetector
San Yip et al. Transistors and tunnel diodes enabled by large-scale MoS2 nanosheets grown on GaN
Zhao et al. Salt-promoted growth of monolayer tungsten disulfide on hexagonal boron nitride using all chemical vapor deposition approach
Deng et al. Two-dimensional silicon nanomaterials for optoelectronics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant