CN114429988B - 一种基于二维半金属电极的金属半导体接触结构 - Google Patents

一种基于二维半金属电极的金属半导体接触结构 Download PDF

Info

Publication number
CN114429988B
CN114429988B CN202210107442.0A CN202210107442A CN114429988B CN 114429988 B CN114429988 B CN 114429988B CN 202210107442 A CN202210107442 A CN 202210107442A CN 114429988 B CN114429988 B CN 114429988B
Authority
CN
China
Prior art keywords
dimensional
metal
semi
metal material
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210107442.0A
Other languages
English (en)
Other versions
CN114429988A (zh
Inventor
张跃
张先坤
张铮
于慧慧
黄梦婷
汤文辉
高丽
卫孝福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210107442.0A priority Critical patent/CN114429988B/zh
Publication of CN114429988A publication Critical patent/CN114429988A/zh
Application granted granted Critical
Publication of CN114429988B publication Critical patent/CN114429988B/zh
Priority to US17/979,125 priority patent/US11652147B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/18Selenium or tellurium only, apart from doping materials or other impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7606Transistor-like structures, e.g. hot electron transistor [HET]; metal base transistor [MBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开一种基于二维半金属电极的金属半导体接触结构,所述半导体模块为二维半导体材料,所述金属电极模块为表面无悬挂键的二维半金属材料,所述二维半导体材料与二维半金属材料之间界面为表面粗糙度在0.01‑1nm且表面无悬挂键的范德华界面,所述二维半导体材料与二维半金属材料的层间距小于1nm;本发明的二维半金属材料具有合适的高功函数,以匹配半导体材料的能带边缘,并最终确保接近零的肖特基势垒,其场效应晶体管在室温下显示出创纪录高迁移率,减少肖特基势垒的全二维接触,并展示了其减少肖特基势垒的优化机制,有助于基于二维半导体的肖特基结设计和优化。

Description

一种基于二维半金属电极的金属半导体接触结构
技术领域
本发明涉及金属-半导体技术领域,尤其涉及一种基于二维半金属电极的金属半导体接触结构。
背景技术
随着晶体管特征尺寸的缩小,金属-半导体界面接触电阻的干扰越来越突出,这也阻碍了器件缩放和性能限制的实现,尤其是超薄的二维半导体,金属/二维半导体接触不良的主要原因是大肖特基势垒,这是由于来自无序界面态和金属诱导间隙态的共同导致费米能级钉扎效应,因为相比于金属和体半导体之间的接触,二维半导体的超薄特性使其金属-半导体界面更容易受到晶格缺陷、界面捕获位点和化学相互作用的不利影响;
为了避免在传统金属的热沉积过程中产生这种界面态,现有技术通过转移金属电极的范德华接触来抑制金属/二维半导体界面中的费米能级钉扎,但来自常规金属的衰减金属波函数仍然引入MIGS,导致费米能级的严重钉扎效应,因此,本发明提出一种基于二维半金属电极的金属半导体接触结构以解决现有技术中存在的问题。
发明内容
针对上述问题,本发明的目的在于提出一种基于二维半金属电极的金属半导体接触结构,该基于二维半金属电极的金属半导体接触结构利用二维半金属电极实现了金属和半导体之间的二维无势垒空穴接触,实现了接近零肖特基势垒高度和较高的碲纳米片场效应迁移率,促进基于二维半导体的电子学和光电子学以扩展摩尔定律。
为实现本发明的目的,本发明通过以下技术方案实现:一种基于二维半金属电极的金属半导体接触结构,包括半导体模块和金属电极模块,所述半导体模块为二维半导体材料,所述金属电极模块为表面无悬挂键的二维半金属材料,所述二维半导体材料与二维半金属材料之间界面为表面粗糙度在0.01-1nm且表面无悬挂键的范德华界面,所述二维半导体材料与二维半金属材料的层间距小于1nm,所述二维半导体材料为二维材料,所述二维半金属材料为MX2二维层状半金属材料。
进一步改进在于:所述二维半导体材料为BP、MoTe2、MoS2、WSe2、MoSe2和WS2中的一种。
进一步改进在于:所述二维层状半金属材料MX2中,M表示过渡金属,X表示硫族元素。
进一步改进在于:所述二维层状半金属材料为1T'-MoTe2、2H-NbS2、1T'-WTe2、1T'-TeSe2、1T'-TiS2、1T-HfTe2、1T-TiTe2、1T'-WS2、PtTe2和VSe2中的一种。
进一步改进在于:所述二维半导体材料为掺杂过的二维材料,所述掺杂过的二维材料中掺杂元素包含金属掺杂元素Mo、W、Nb、Cu、Al、Au和Fe及硫族掺杂元素O、S、Se、Te、N和P。
进一步改进在于:所述二维半导体材料厚度为0.1-20nm,所述二维半金属材料厚度为1-100nm。
进一步改进在于:所述二维半金属材料的功函数范围为4.0-6.0eV,所述二维半金属材料电极创建的空穴型肖特基势垒高度为0-30meV。
进一步改进在于:所述二维半金属材料电极创建的肖特基势垒包括电子型和空穴型。
进一步改进在于:所述二维半导体材料和二维半金属材料均是通过化学气相沉积法、物理气相沉积法、化学气相传输法、机械剥离法和有机物辅助法中的一种制备得到的。
本发明的有益效果为:本发明的二维半金属材料具有合适的高功函数,以匹配半导体材料的能带边缘,并最终确保接近零的肖特基空穴势垒,其场效应晶体管在室温下显示出创纪录高迁移率,减少肖特基空穴势垒的全二维接触,并展示了其减少肖特基势垒的优化机制,有助于基于二维半导体的肖特基结设计和优化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明二维半金属电极的半导体晶体管的结构示意图。
图2为本发明传统半金属和二维半金属的功函数统计图。
图3为本发明二维半金属电极的半导体晶体管的电学性能图。
图4为本发明二维半金属电极的半导体晶体管的迁移率和开关比统计图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
根据图1、图2、图3、图4所示,本实施例提供了一种基于二维半金属电极的金属半导体接触结构,包括半导体模块和金属电极模块,所述半导体模块为二维半导体材料,所述金属电极模块为表面无悬挂键的二维半金属材料,二维层状半金属具备带有狄拉克锥的独特电子结构,从而抑制费米能级钉扎效应,所述二维半导体材料与二维半金属材料之间界面为表面粗糙度在0.01-1nm且表面无悬挂键的范德华界面,所述二维半导体材料与二维半金属材料的层间距小于1nm,所述二维半导体材料为二维材料,所述二维半金属材料为MX2二维层状半金属材料。
所述二维半导体材料为BP、MoTe2、MoS2、WSe2、MoSe2和WS2中的一种,所述二维层状半金属材料MX2中,M表示过渡金属,X表示硫族元素,所述二维层状半金属材料为1T'-MoTe2、2H-NbS2、1T'-WTe2、1T'-TeSe2、1T'-TiS2、1T-HfTe2、1T-TiTe2、1T'-WS2、PtTe2和VSe2中的一种。
所述二维半导体材料为掺杂过的二维材料,所述掺杂过的二维材料中掺杂元素包含金属掺杂元素Mo、W、Nb、Cu、Al、Au和Fe及非金属掺杂元素O、S、Se、Te、N和P。
所述二维半导体材料厚度为0.1-20nm,所述二维半金属材料厚度为1-100nm。
所述二维半金属材料的功函数范围为4.0-6.0eV,表明使用具有大功函数和无悬挂键范德华表面的二维半金属材料可以实现在二维半导体材料和二维半金属材料界面中零肖特基势垒,所述二维半金属材料电极创建的空穴型肖特基势垒高度为0-30meV,利用二维半金属材料替代传统金属来创建零肖特基空穴势垒,实现高质量的金属半导体接触,所述二维半金属材料电极创建的肖特基势垒包括电子型和空穴型。
所述二维半导体材料和二维半金属材料均是通过化学气相沉积法、物理气相沉积法、化学气相传输法、机械剥离法和有机物辅助法中的一种制备得到的。
实施例二
根据图1、图2、图3、图4所示,本实施例提供了一种基于二维半金属电极的金属半导体接触结构,包括二维半金属材料1T'-WS2和二维半导体材料碲烯纳米片。二维半金属材料1T'-WS2,两个相邻层通过弱范德华耦合堆叠,面内的原子通过强共价键连接,晶体具有不对称结构,具有很强的各向异性。其半金属特性也得到了系统的表征。通过精确转移二维半金属材料1T'-WS2电极,成功构建了二维半导体材料碲烯纳米片场效应晶体管(FET),具有对称二维半金属材料1T'-WS2电极的二维半导体材料碲烯纳米片场效应晶体管的结构示意图如说明书附图2所示。二维半金属材料1T'-WS2电极的二维半导体材料碲烯纳米片场效应晶体管在说明书附图3中显示出优异的线性欧姆接触,表明室温下二维半金属材料1T'-WS2电极的二维半导体材料碲烯纳米片之间存在小的肖特基势垒,表现出近乎理想的欧姆接触。迁移率也是已报道的二维半导体材料碲烯纳米片场效应晶体管中的最高性能。这种优异的性能并非偶然。通过数十种器件的数据分析,空穴迁移率和ION/IOFF比表明二维半金属材料1T'-WS2电极的二维半导体材料碲烯纳米片场效应晶体管优异的性能,如说明书附图4所示。
以上对本申请实施例所提供的基于二维半金属电极的高质量金属半导体接触结构,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (1)

1.一种基于二维半金属电极的金属半导体接触结构,其特征在于:包括半导体模块和金属电极模块,所述半导体模块为二维半导体材料,所述金属电极模块为表面无悬挂键的二维半金属材料,所述二维半导体材料与二维半金属材料之间界面为表面粗糙度在0.01-1nm且表面无悬挂键的范德华界面,所述二维半导体材料与二维半金属材料的层间距小于1nm,所述二维半导体材料为二维材料,所述二维半金属材料为MX2二维层状半金属材料,所述二维半导体材料厚度为0.1-20nm,所述二维半金属材料厚度为1-100nm,所述二维半金属材料的功函数范围为4.0-6.0eV,所述二维半金属材料电极创建的空穴型肖特基势垒高度为0-30 meV,其中所述二维半金属材料电极创建的肖特基势垒包括电子型和空穴型,所述二维半导体材料和二维半金属材料均是通过化学气相沉积法、物理气相沉积法、化学气相传输法、机械剥离法和有机物辅助法中的一种制备得到的;
所述二维半导体材料为BP、MoTe2、MoS2、WSe2、MoSe2和WS2中的一种;
所述二维层状半金属材料MX2中,M表示过渡金属,X表示硫族元素;
所述二维层状半金属材料为1T'-MoTe2、2H-NbS2、1T'-WTe2、1T'-TeSe2、1T'-TiS2、1T-HfTe2、1T-TiTe2、1T'-WS2、PtTe2和VSe2中的一种;
所述二维半导体材料为掺杂过的二维材料,所述掺杂过的二维材料中掺杂元素包含金属掺杂元素Mo、W、Nb、Cu、Al、Au和Fe及硫族掺杂元素O、S、Se、Te、N和P。
CN202210107442.0A 2022-01-28 2022-01-28 一种基于二维半金属电极的金属半导体接触结构 Active CN114429988B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210107442.0A CN114429988B (zh) 2022-01-28 2022-01-28 一种基于二维半金属电极的金属半导体接触结构
US17/979,125 US11652147B1 (en) 2022-01-28 2022-11-02 Metal-semiconductor contact structure based on two-dimensional semimetal electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210107442.0A CN114429988B (zh) 2022-01-28 2022-01-28 一种基于二维半金属电极的金属半导体接触结构

Publications (2)

Publication Number Publication Date
CN114429988A CN114429988A (zh) 2022-05-03
CN114429988B true CN114429988B (zh) 2022-08-23

Family

ID=81314193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210107442.0A Active CN114429988B (zh) 2022-01-28 2022-01-28 一种基于二维半金属电极的金属半导体接触结构

Country Status (2)

Country Link
US (1) US11652147B1 (zh)
CN (1) CN114429988B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240006484A1 (en) * 2022-06-30 2024-01-04 Intel Corporation Contact architecture for 2d stacked nanoribbon transistor
CN115274908A (zh) * 2022-08-30 2022-11-01 华南师范大学 PtTe2/MoTe2光电晶体管、制备方法和应用
CN117316773B (zh) * 2023-11-28 2024-02-13 济南大学 一种钯/二硒化钨肖特基晶体管的制备方法
CN117790301B (zh) * 2024-02-26 2024-05-28 河源市众拓光电科技有限公司 一种具有二维ReS2电极的整流芯片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144546A (en) * 1996-12-26 2000-11-07 Kabushiki Kaisha Toshiba Capacitor having electrodes with two-dimensional conductivity
CN108630750A (zh) * 2017-03-17 2018-10-09 台湾积体电路制造股份有限公司 具有二维侧边异质结构的半导体装置的制造方法
CN109629004A (zh) * 2019-01-09 2019-04-16 湖南大学 在无悬挂键基底上范德华外延形成原子级薄的过渡金属碲化物二维金属材料的方法
CN110190182A (zh) * 2019-05-28 2019-08-30 衢州学院 一种超薄自旋阀器件的设计方法
CN113871453A (zh) * 2020-10-14 2021-12-31 台湾积体电路制造股份有限公司 半导体器件
CN113972262A (zh) * 2021-10-18 2022-01-25 西安邮电大学 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541132B2 (en) * 2018-06-11 2020-01-21 Taiwan Semiconductor Manufacturing Co., Ltd. Forming semiconductor structures with two-dimensional materials
KR102224497B1 (ko) * 2019-08-28 2021-03-08 연세대학교 산학협력단 이차원 반도체 물질을 이용한 수직형 쇼트키 다이오드 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144546A (en) * 1996-12-26 2000-11-07 Kabushiki Kaisha Toshiba Capacitor having electrodes with two-dimensional conductivity
CN108630750A (zh) * 2017-03-17 2018-10-09 台湾积体电路制造股份有限公司 具有二维侧边异质结构的半导体装置的制造方法
CN109629004A (zh) * 2019-01-09 2019-04-16 湖南大学 在无悬挂键基底上范德华外延形成原子级薄的过渡金属碲化物二维金属材料的方法
CN110190182A (zh) * 2019-05-28 2019-08-30 衢州学院 一种超薄自旋阀器件的设计方法
CN113871453A (zh) * 2020-10-14 2021-12-31 台湾积体电路制造股份有限公司 半导体器件
CN113972262A (zh) * 2021-10-18 2022-01-25 西安邮电大学 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Electrical Characteristics of Multilayer MoS2 FET"s with MoS2/Graphene Hetero-Junction Contacts;Joon Young Kwak等;《Nano Letters》;20140630;第14卷(第8期);第1-26页 *
Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics;Lili Yu等;《Nano Letters》;20140508;第14卷(第6期);第1-9页 *
Phase-engineered low-resistance contacts for ultrathin MoS2 transistors;Rajesh Kappera等;《Nature Materials》;20140831;第13卷(第12期);第1-7页 *
金属与二维半导体材料的接触;cylan;《https://zhuanlan.zhihu.com/p/71553010》;20190629;第1页 *

Also Published As

Publication number Publication date
CN114429988A (zh) 2022-05-03
US11652147B1 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
CN114429988B (zh) 一种基于二维半金属电极的金属半导体接触结构
Zheng et al. Ohmic contact engineering for two-dimensional materials
Chen et al. Fermi-level depinning of 2D transition metal dichalcogenide transistors
Si et al. Scaled atomic-layer-deposited indium oxide nanometer transistors with maximum drain current exceeding 2 A/mm at drain voltage of 0.7 V
JP6043022B2 (ja) 半導電性グラフェン構造、このような構造の形成方法およびこのような構造を含む半導体デバイス
CN108493255B (zh) 一种电场可控的二维材料肖特基二极管
Si et al. Enhancement-mode atomic-layer-deposited In 2 O 3 transistors with maximum drain current of 2.2 A/mm at drain voltage of 0.7 V by low-temperature annealing and stability in hydrogen environment
US20210226011A1 (en) Semiconductor device including two-dimensional semiconductor material
US9147824B1 (en) Reactive contacts for 2D layered metal dichalcogenides
WO2018076268A1 (zh) 场效应晶体管结构及其制作方法
Kamaei et al. An Experimental Study on Mixed-Dimensional 1D-2D van der Waals Single-Walled Carbon Nanotube-WSe 2 Hetero-Junction
Bi et al. InGaZnO tunnel and junction transistors based on vertically stacked black phosphorus/InGaZnO heterojunctions
Ni et al. Status and prospects of Ohmic contacts on two-dimensional semiconductors
CN111969046A (zh) 高线性度增强型氮化镓高电子迁移率晶体管及制备方法
Zhang et al. Electrical contacts to few-layer MoS2 with phase-engineering and metal intercalation for tuning the contact performance
CN109103264B (zh) 基于纳米带的晶体管及其制备方法
Huang et al. High-Performance WSe₂ n-Type Field-Effect Transistors Enabled by InOₓ Damage-Free Doping
CN109659358A (zh) 一种氮化镓hemt低欧姆接触电阻结构及其制作方法
CN115101594A (zh) 一种基于二维碲烯的场效应晶体管及其制备方法
Moun et al. Metal–semiconductor interface engineering in layered 2D materials for device applications
US9202899B2 (en) Voltage switchable non-local spin-FET and methods for making same
KR100593257B1 (ko) 반도체 나노구조체를 이용한 샤트키 전극을 포함하는전기소자 및 이의 제조방법
Kawanago et al. Doping-Free Complementary Metal-Oxide-Semiconductor Inverter Based on N-Type and P-Type Tungsten Diselenide Field-Effect Transistors With Aluminum-Scandium Alloy and Tungsten Oxide for Source/Drain Contact
CN109119485B (zh) 基于纳米带的晶体管及其制备方法
Hong et al. Universal transfer of full‐class metal electrodes for barrier‐free two‐dimensional semiconductor contacts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant