CN108613934B - 一种dna传感器及其制备方法、一种检测短链dna的方法 - Google Patents
一种dna传感器及其制备方法、一种检测短链dna的方法 Download PDFInfo
- Publication number
- CN108613934B CN108613934B CN201810224539.3A CN201810224539A CN108613934B CN 108613934 B CN108613934 B CN 108613934B CN 201810224539 A CN201810224539 A CN 201810224539A CN 108613934 B CN108613934 B CN 108613934B
- Authority
- CN
- China
- Prior art keywords
- dna
- short
- electrode
- sensor
- chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 238000011534 incubation Methods 0.000 claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 9
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 229920000128 polypyrrole Polymers 0.000 claims abstract description 9
- 229910052709 silver Inorganic materials 0.000 claims abstract description 9
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims abstract description 5
- 229940074391 gallic acid Drugs 0.000 claims abstract description 4
- 235000004515 gallic acid Nutrition 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 26
- 239000007853 buffer solution Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- 239000002070 nanowire Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims 1
- 108020004414 DNA Proteins 0.000 abstract description 75
- 201000010099 disease Diseases 0.000 abstract description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 3
- 238000013399 early diagnosis Methods 0.000 abstract description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract 3
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 8
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 7
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 7
- 238000005457 optimization Methods 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 108091027757 Deoxyribozyme Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012496 blank sample Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 101150033421 ABL gene Proteins 0.000 description 1
- 101150049556 Bcr gene Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 108700025690 abl Genes Proteins 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 101150100393 cml gene Proteins 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000011263 electroactive material Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Physics & Mathematics (AREA)
- Zoology (AREA)
- Pathology (AREA)
- Wood Science & Technology (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Nanotechnology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明提供了一种DNA传感器及其制备方法、一种检测短链DNA的方法,将制备的聚吡咯/银@氯化银复合材料电极置于发夹DNA HP1的溶液,孵化后,再放入不同浓度的短链DNA中进行孵化,再浸泡在含有Zn2+的8‑17DNAzyme溶液中,即制备成DNA传感器。将没食子酸作为电活性物质,通过检测光电流的响应大小,来定量检测短链DNA的浓度。与现有技术相比,本发明提供的PEC DNA检测方法不仅检测限低,检测范围广,而且对目标DNA有很好的选择性.此外,可以广泛应用于检测各种DNA序列,特别是那些短的特定DNA序列,为开展痕量DNA序列检测开辟了新的途径,也为各种疾病的早期诊断提供了有效的检测手段。
Description
技术领域
本发明属于生物传感器技术领域,具体设计一种DNA传感器及其制备方法、一种检测短链DNA的方法,利用聚吡咯/银@氯化银纳米线复合电极作为电极材料光电检测慢性髓细胞白血病的短链DNA物种。
背景技术
慢性骨髓性白血病(CML)是一种克隆性骨髓增殖性疾病。慢性粒细胞白血病患者在初期并未出现任何明显的症状,慢性病程可持续3-5年,这些现象给CML的诊断带来了困难。BCR/ABL基因是该疾病的传统基因,并且几乎存在于所有CML患者的病例中。
BCR/ABL基因有许多种类型,而b3a2型是最常见的突变类型之一。因此,检测b3a2型基因会有助于对疾病进行早期诊断和监测,进一步提高检测微小残留白血病细胞的能力。
近年来,CML融合基因的临床诊断和预后监测方法包括染色体分析,Southern杂交,聚合酶链式反应(PCR),荧光原位杂交(FISH)等。但上述这些方法都有一定的局限性。染色体分析是耗时且不敏感的;传统的Southern杂交检测具有特异性,但对基因序列低复制性的检测非常不敏感,检测方法复杂,周期过长,而且依赖于危险的放射性标记,限制了它的广泛性应用于临床。PCR是一种基于酶的DNA扩增技术,通常用于这些应用。虽然PCR非常敏感,但从实际的角度来看,它仍有待改进。它的缺点包括相对较长的测定时间,高的测定成本以及偶尔会导致“假阳性”信号的容易出错的性质。FISH技术需要复杂的荧光着色系统,其灵敏度仍不高,不能在临床上广泛应用。因此,开展和调查CML基因检测技术是非常重要的。
发明内容
本发明的目的在于提供一种DNA传感器及其制备方法。
本发明还提供了一种检测短链DNA的方法,利用制备的聚吡咯/银@氯化银纳米线复合电极作为传感器,光电检测慢性髓细胞白血病的短链DNA物种的方法。
本发明具体技术方案如下:
本发明提供的一种DNA传感器的制备方法为:
1)将聚吡咯/银@氯化银纳米线复合电极置于发夹DNA HP1的溶液中,孵化,然后取出电极洗涤,干燥;
2)将步骤1)处理后的电极置于不同浓度的目标短链DNA溶液中进行孵化,然后取出电极洗涤,干燥;
3)步骤2)处理后的电极置于含Zn2+和8-17DNAzyme的溶液中,孵化;然后取出电极洗涤,干燥;即得DNA传感器。
步骤1)中将聚吡咯/银@氯化银纳米线复合电极置于50μL 4μM的发夹DNA HP1的溶液中,DNA HP1溶液的配制方法为:将买回来的DNA HP1加pH 7.4的0.1M的PBS缓冲溶液配成100μM的HP1溶液,然后再用同样的PBS溶液稀释到4μM的浓度;备用;
步骤1)中所述聚吡咯/银@氯化银纳米线复合电极采用201410299007.8公开的方法制备得到。
步骤1)中所述发夹DNA HP1序列为:
5′-GTGAAGGGCGACCACAGAGTTCAAAAGCCCTTCACTAT/RA/GGAAGAGA-SH-3′;
步骤1)中所述孵化:孵化温度为0-4℃,孵化时间≥12h;
步骤2)中将步骤1)处理后的电极置于50μL短链DNA溶液中进行孵化,短链DNA溶液浓度分别为0.01nM,0.05nM,0.1nM,0.5nM,1nM,2nM,4nM,8nM,12nM,16nM和20nM,所有短链DNA溶液都是用pH7.4的0.1MPBS缓冲溶液配制的;
步骤2)所述孵化是指:孵化温度为35℃-37℃,孵化时间为≥2h。
步骤2)中所述的短链DNA的序列为type b3a2DNA。
步骤2)中所述type b3a2DNA序列为5′-GAAGGGCTTTTGAACTCT-3′;
步骤3)所述含Zn2+和8-17DNAzyme的溶液制备方法为:
将50μL 1μM的8-17DNAzyme溶液和1μL20μM的Zn2+溶液混合,均是用pH7.4的0.1MPBS的缓冲溶液配制即得。
所述8-17DNAzyme序列为
5′-TCTCTTCTCCGAGCCGGTCGAAATAGTGAAGGGCTTTTGAACTCCGTCGCCCTTC-3′;
步骤3)所述孵化是指:孵化温度为35℃-37℃,孵化时间为≥90min。
一种DNA传感器,采用上述方法制备得到。
本发明还提供了一种检测短链DNA的方法,包括以下步骤:
将上述制备的传感器作为工作电极,进行光电检测,以500W的Xe灯作为光源,没食子酸GA为电活性物质,在PBS缓冲溶液中进行,通过检测光电流的响应变化,构建短链DNA浓度的关系,实现定量检测短链DNA。
本发明中,在没有加入发夹DNAHP1时,检测的光电流很大;但发夹DNAHP1修饰在工作电极上后,由于工作电极接触不到电活性物质(GA),检测到的光电流就很小。当加入目标type b3a2DNA后,发夹DNAHP1的发夹结构得以打开,可以与长链DNA 8-17DNAzyme酶互补配对,而将目标短链DNA挤下来。由于这样形成的双链DNA有Zn2+的切割位点,所以在Zn2+的作用下,双链DNA被切割后只剩下很短的单链DNA在电极表面,工作电极又可以接触到电活性物质(GA),光电流又得到恢复。随着加入的目标DNA的浓度不同,光电流的回复情况也随之改变。找到目标DNA的浓度与光电流变化的关系,构建线性关系,从而可以定量检测目标DNA的浓度大小。
本发明提供的一种聚吡咯/银@氯化银纳米线复合电极作为电极材料光电检测慢性髓细胞白血病的短链DNA物种的方法,与现有技术相比,本发明提供的PEC DNA检测方法不仅检测限低,检测范围广,而且对目标DNA有很好的选择性.此外,PEC DNA测定法可以广泛应用于检测各种DNA序列,特别是那些短的特定DNA序列,为开展痕量DNA序列检测开辟了新的途径,也为各种疾病的早期诊断提供了有效的检测手段。
附图说明
图1为实施例1中制备的DNA传感器检测目标type b3a2DNA的实验可行性图;1矩形是指没有加入发夹DNA HP1时,检测的光电流信号,光电流信号很大;2矩形是指发夹DNA(HP1)修饰在工作电极上后检测到的光电流,电流很小;3矩形是指当加入目标typeb3a2DNA以及在8-17DNAzyme和Zn2+的作用下,恢复的光电流信号;
图2为实施例1中制备的DNA传感器检测不同浓度的目标type b3a2DNA的光电流响应图;
图3为实施例1中制备的DNA传感器检测的目标type b3a2DNA浓度的对数与光电流的线性关系图;
图4为实施例1中制备的DNA传感器选择性图;
a是指目标DNA,b和c是与目标DNA在不同位置有一个碱基不一样的短链DNA,d是有三个碱基不同的短链DNA,e是完全不一样的短链DNA,f是空白样;
图5为实施例1制备的DNA传感器对目标type b3a2DNA检测过程中8-17DNAzyme浓度的优化图;
图6为实施例1制备的DNA传感器对目标type b3a2DNA检测过程中在8-17DNAzyme和Zn2+混合溶液中浸泡时间的优化图;
图7为实施例1制备的DNA传感器对目标type b3a2DNA检测过程中Zn2+浓度的优化图;
图8为实施例1制备的DNA传感器对目标type b3a2DNA检测过程中溶液的PH值的优化图;
图9为本发明检测原理示意图。
具体实施方式
实施例1
一种检测短链DNA的方法,检测慢性髓细胞白血病的短链DNA物种,包括以下步骤:
1)、聚吡咯/银@氯化银复合材料电极的制备:采用201410299007.8公开的方法制备得到。
2)、DNA传感器的制备:将步骤1)制备的聚吡咯/银@氯化银复合材料电极浸入50μL4μM的发夹DNA HP1溶液中孵化,孵化温度为4℃,孵化时间12h,电极取出,洗涤、干燥后,再将该电极分别放入50μL不同浓度的type b3a2DNA溶液中孵化,孵化温度为37℃,孵化时间为2h,电极取出,洗涤、干燥后,再将电极被放入50μL 1μM的8-17DNAzyme和1μL20μM的Zn2+溶液的混合溶液中孵化,孵化温度为37℃,孵化时间为90min,电极取出,洗涤、干燥后,得到的电极为DNA传感器。
上述DNA HP1溶液的配制方法为:将买回来的DNA HP1加pH 7.4的0.1M的PBS缓冲溶液配成100μM的HP1溶液,然后再用同样的PBS溶液稀释到4μM的浓度;备用;
发夹DNA HP1序列为:
5′-GTGAAGGGCGACCACAGAGTTCAAAAGCCCTTCACTAT/RA/GGAAGAGA-SH-3′;
type b3a2DNA序列为5′-GAAGGGCTTTTGAACTCT-3′,type b3a2DNA溶液浓度分别为0.01nM,0.05nM,0.1nM,0.5nM,1nM,2nM,4nM,8nM,12nM,16nM和20nM,所有type b3a2DNA溶液都是用pH7.4的0.1MPBS缓冲溶液配制的;
8-17DNAzyme序列为
5′-TCTCTTCTCCGAGCCGGTCGAAATAGTGAAGGGCTTTTGAACTCCGTCGCCCTTC-3′;
50μL1μM的8-17DNAzyme溶液和1μL20μM的Zn2+溶液均是用pH7.4的0.1MPBS的缓冲溶液配制即得。
3)、光电检测目标DNA方法:将100μM没食子酸作为电活性物质,上述制备的传感器电极作为工作电极。在PBS缓冲溶液中进行,通过检测光电流的响应变化,构建typeb3a2DNA浓度的关系,实现定量检测type b3a2DNA。结果如图2和图3所示
在没有加入HP1时,检测的光电流很大;但HP1修饰在工作电极上后,由于工作电极接触不到电活性物质,检测到的光电流就很小。当加入不同浓度的目标type b3a2DNA,经过8-17DNAzyme和Zn2+的作用,光电流的恢复情况也随之改变。找到目标DNA的浓度与光电流变化的关系,从而可以定量检测目标DNA的浓度大小。结果图如1所示。
实施例2
重复实施例1,将短链DNA分别替换为与目标DNA在不同位置有一个碱基不一样的短链DNA、有三个碱基不同的短链DNA、完全不一样的短链DNA和空白样,结果如图4。
实施例3
重复实施例1,改变检测过程中8-17zyme浓度,得到结果如图5。
实施例4
重复实施例1,将电极在8-17DNAzyme和Zn2+混合溶液中浸泡时间的优化图;结果如图6。
实施例5
重复实施例1,改变检测过程中Zn2+浓度,结果如图7。
实施例6
重复实施例1,改变使用的PBS缓冲溶液PH值,结果如图8。
Claims (7)
1.一种DNA传感器的制备方法,其特征在于,所述制备方法为:
1)将聚吡咯/银@氯化银纳米线复合电极置于发夹DNA HP1的溶液中,孵化,然后取出电极洗涤,干燥;
2)将步骤1)处理后的电极置于不同浓度的短链DNA溶液中进行孵化,然后取出电极洗涤,干燥;
3)步骤2)处理后的电极置于含Zn2+和8-17DNAzyme的溶液中,孵化;然后取出电极洗涤,干燥;即得DNA传感器;
步骤1)中所述发夹DNA HP1序列为:
5′-GTGAAGGGCGACCACAGAGTTCAAAAGCCCTTCACTAT/RA/GGAAGAGA-SH-3′;
步骤2)中所述的短链DNA的序列为type b3a2 DNA;所述type b3a2 DNA序列为5′-GAAGGGCTTTTGAACTCT-3′;
所述8-17DNAzyme序列为:5′-TCTCTTCTCCGAGCCGGTCGAAATAGTGAAGGGCTTTTGAACTCCGTCGCCCTTC-3′。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)中所述孵化:孵化温度为0-4℃,孵化时间≥12h。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤2)所述孵化是指:孵化温度为35℃-37℃,孵化时间为≥2 h。
4.根据权利要求1所述的制备方法,其特征在于,短链DNA溶液浓度分别为0.01nM,0.05nM,0.1nM,0.5nM,1nM,2nM,4nM,8nM,12nM,16nM和20nM。
5.根据权利要求1或2所述的制备方法,其特征在于,步骤3)所述孵化是指:孵化温度为35℃-37℃,孵化时间为≥90 min。
6.一种权利要求1或2所述的制备方法制备的DNA传感器。
7.根据权利要求6所述的DNA传感器,其特征在于,所述DNA传感器的使用方法包括以下步骤:
将DNA传感器作为工作电极,进行光电检测,以500W的Xe灯作为光源,没食子酸为电活性物质,在PBS缓冲溶液中进行,通过检测光电流的响应变化,构建目标短链DNA浓度的关系,实现定量检测短链DNA。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810224539.3A CN108613934B (zh) | 2018-03-19 | 2018-03-19 | 一种dna传感器及其制备方法、一种检测短链dna的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810224539.3A CN108613934B (zh) | 2018-03-19 | 2018-03-19 | 一种dna传感器及其制备方法、一种检测短链dna的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108613934A CN108613934A (zh) | 2018-10-02 |
CN108613934B true CN108613934B (zh) | 2021-01-05 |
Family
ID=63659160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810224539.3A Active CN108613934B (zh) | 2018-03-19 | 2018-03-19 | 一种dna传感器及其制备方法、一种检测短链dna的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108613934B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928767A (zh) * | 2009-06-29 | 2010-12-29 | 林新华 | 用于检测慢性粒细胞白血病bcr/abl融合基因的电化学dna生物传感器 |
CN104034775A (zh) * | 2014-06-27 | 2014-09-10 | 安徽师范大学 | 一种聚吡咯/银@氯化银核壳结构纳米线、制备方法及其应用 |
CN104328192A (zh) * | 2014-11-05 | 2015-02-04 | 南京大学 | 核酸酶放大的高灵敏电化学免疫分析方法 |
CN104694655A (zh) * | 2015-03-19 | 2015-06-10 | 南昌大学 | 基于dna链取代循环放大技术检测dna甲基转移酶活性的比色传感方法 |
CN105112540A (zh) * | 2015-09-17 | 2015-12-02 | 山东大学 | 一种基于链置换放大和DNAzyme放大的检测DNA甲基转移酶活性的方法 |
CN105132524A (zh) * | 2015-09-25 | 2015-12-09 | 山东大学 | ExoIII辅助的循环和DNAzyme循环的双重放大反应用于Hg2+检测 |
CN106244703A (zh) * | 2016-08-26 | 2016-12-21 | 山东大学 | 基于粘性末端‑介导的链置换反应结合聚合切刻等温扩增技术检测udg活性的方法 |
CN106841340A (zh) * | 2017-03-14 | 2017-06-13 | 浙江省农业科学院 | 同时检测水胺硫磷和啶虫脒的电化学传感器及其方法体系 |
CN107236790A (zh) * | 2017-05-09 | 2017-10-10 | 济南大学 | 一种纸基灵敏检测miRNA的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070122817A1 (en) * | 2005-02-28 | 2007-05-31 | George Church | Methods for assembly of high fidelity synthetic polynucleotides |
-
2018
- 2018-03-19 CN CN201810224539.3A patent/CN108613934B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928767A (zh) * | 2009-06-29 | 2010-12-29 | 林新华 | 用于检测慢性粒细胞白血病bcr/abl融合基因的电化学dna生物传感器 |
CN104034775A (zh) * | 2014-06-27 | 2014-09-10 | 安徽师范大学 | 一种聚吡咯/银@氯化银核壳结构纳米线、制备方法及其应用 |
CN104328192A (zh) * | 2014-11-05 | 2015-02-04 | 南京大学 | 核酸酶放大的高灵敏电化学免疫分析方法 |
CN104694655A (zh) * | 2015-03-19 | 2015-06-10 | 南昌大学 | 基于dna链取代循环放大技术检测dna甲基转移酶活性的比色传感方法 |
CN105112540A (zh) * | 2015-09-17 | 2015-12-02 | 山东大学 | 一种基于链置换放大和DNAzyme放大的检测DNA甲基转移酶活性的方法 |
CN105132524A (zh) * | 2015-09-25 | 2015-12-09 | 山东大学 | ExoIII辅助的循环和DNAzyme循环的双重放大反应用于Hg2+检测 |
CN106244703A (zh) * | 2016-08-26 | 2016-12-21 | 山东大学 | 基于粘性末端‑介导的链置换反应结合聚合切刻等温扩增技术检测udg活性的方法 |
CN106841340A (zh) * | 2017-03-14 | 2017-06-13 | 浙江省农业科学院 | 同时检测水胺硫磷和啶虫脒的电化学传感器及其方法体系 |
CN107236790A (zh) * | 2017-05-09 | 2017-10-10 | 济南大学 | 一种纸基灵敏检测miRNA的方法 |
Non-Patent Citations (1)
Title |
---|
基于DNAzymes构建电化学生物传感器检测生物小分子;路璐;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20141015;第2章 * |
Also Published As
Publication number | Publication date |
---|---|
CN108613934A (zh) | 2018-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Torrente-Rodríguez et al. | Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification | |
CN112226492B (zh) | 一种检测miRNA的自产生共反应剂信号放大电化学发光体系 | |
Xia et al. | An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical–chemical–chemical redox cycling | |
Tao et al. | A new mode for highly sensitive and specific detection of DNA based on exonuclease III-assisted target recycling amplification and mismatched catalytic hairpin assembly | |
Xu et al. | An electrochemical biosensor based on nucleic acids enzyme and nanochannels for detecting copper (II) ion | |
Zhang et al. | A new photoelectrochemical biosensors based on DNA conformational changes and isothermal circular strand-displacement polymerization reaction | |
Ma et al. | Highly sensitive ratiometric electrochemical DNA biosensor based on homogeneous exonuclease III-assisted target recycling amplification and one-step triggered dual-signal output | |
CN104502437B (zh) | 一种多重信号放大的免标记电化学传感器及对核酸的检测 | |
CN110408679B (zh) | 一种基于酶辅助循环信号放大的电化学急性白血病基因Pax-5a检测方法 | |
CN108192948A (zh) | 一种利用α-溶血素纳米孔检测DNA糖基化酶活性的方法 | |
Li et al. | Electrochemiluminescence aptasensor based on cascading amplification of nicking endonuclease-assisted target recycling and rolling circle amplifications for mucin 1 detection | |
Wang et al. | An electrochemical biosensor for highly sensitive determination of microRNA based on enzymatic and molecular beacon mediated strand displacement amplification | |
EP2776583A1 (en) | Detecting analytes | |
Xie et al. | A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires | |
Wang et al. | Dual-probe electrochemical DNA biosensor based on the “Y” junction structure and restriction endonuclease assisted cyclic enzymatic amplification for detection of double-strand DNA of PML/RARα related fusion gene | |
Xue et al. | Ultrasensitive fluorescence detection of nucleic acids using exonuclease III-induced cascade two-stage isothermal amplification-mediated zinc (II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent nanotags | |
Sun et al. | Electrochemical detection of sequence-specific DNA based on formation of G-quadruplex-hemin through continuous hybridization chain reaction | |
Li et al. | Electrophoresis separation assisted G-quadruplex DNAzyme-based chemiluminescence signal amplification strategy on a microchip platform for highly sensitive detection of microRNA | |
CN111187806B (zh) | 一种基于3D DNA纳米网状结构双信号放大技术的microRNA检测方法 | |
Cao et al. | An ultrasensitive biosensor for virulence ompA gene of Cronobacter sakazakii based on boron doped carbon quantum dots-AuNPs nanozyme and exonuclease III-assisted target-recycling strategy | |
CN113686934A (zh) | 一种CRISPR/Cas12a-RCA电化学传感器检测体系及其应用 | |
CN106596662A (zh) | 一种温度可控的电化学dna生物传感器及其制备方法 | |
CN105567808B (zh) | 滚环扩增产物为模板的铜纳米颗粒合成方法及其在电化学检测中的应用 | |
Gao et al. | A novel electrochemical biosensor for DNA detection based on exonuclease III-assisted target recycling and rolling circle amplification | |
Zhou et al. | Construction of a sensitive ratiometric electrochemical sensing platform for DNA methylation detection based on the design of multistep DNA amplification circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220527 Address after: No.1 Huanghai Road, Shuiji sub district office, Laixi City, Qingdao City, Shandong Province 266600 Patentee after: Qingdao Yanding Biomedical Technology Co.,Ltd. Address before: 241000 Wuhu Road, Yijiang District, Anhui, Patentee before: ANHUI NORMAL University |