CN108604538A - 用于生产复合GaN纳米柱的方法及由该方法制成的发光结构 - Google Patents

用于生产复合GaN纳米柱的方法及由该方法制成的发光结构 Download PDF

Info

Publication number
CN108604538A
CN108604538A CN201680081684.XA CN201680081684A CN108604538A CN 108604538 A CN108604538 A CN 108604538A CN 201680081684 A CN201680081684 A CN 201680081684A CN 108604538 A CN108604538 A CN 108604538A
Authority
CN
China
Prior art keywords
composite nano
column
nano
pillar
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680081684.XA
Other languages
English (en)
Inventor
A.沃尔科瓦
V.伊万索夫
A.塞尔金
B.哈斯克尔
H.埃尔-古劳里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ostendo Technologies Inc
Original Assignee
Ostendo Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ostendo Technologies Inc filed Critical Ostendo Technologies Inc
Publication of CN108604538A publication Critical patent/CN108604538A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/308Semiconductor cathodes, e.g. cathodes with PN junction layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

公开了一种用于在衬底上生长强烈对准的均匀横截面半导体复合纳米柱的方法。该方法包含:(a)在衬底表面上形成刻面锥体凹陷;(b)在凹陷的刻面上发起成核;以及(c)促进核朝向凹陷的中心的生长,在凹陷的中心处,核利用孪晶聚结并随后一起生长作为复合纳米柱。能够在纳米柱的侧壁上生长多量子阱、芯‑壳纳米柱异质结构。此外,能够通过纳米柱的过度生长形成连续的半导体外延层,以便于制造高质量的平面器件结构或以用于发光结构。

Description

用于生产复合GaN纳米柱的方法及由该方法制成的发光结构
相关申请的交叉引用
本申请要求2015年12月14日提交的美国临时专利申请号 62/267,117的权益。
技术领域
本发明总体上涉及半导体材料和器件。更具体地,本发明涉及用于生产供在光电子和其他应用中使用的非极性半导体纳米柱的方法。
背景技术
半导体纳米结构在二十多年前出现,不仅作为量子实验室研究的对象,而且还作为寻求器件集成的方案以进一步扩展其操作功能的步骤。在各种半导体纳米结构当中,一维(1D)纳米柱(例如,纳米线和纳米晶须)对于在各种应用中使用而言特别有吸引力,这归因于存在适于电传导而不是隧穿的单个无约束方向。
与二维层相比,一维纳米柱几何结构在无负载表面上提供有利的横向应变松弛,在高晶格失配异质结构中,其作为应力消除路径的功能特别重要。
由GaN和相关的III-氮化物化合物制造的纳米柱有各式各样的应用的可能,所述应用从光电子(太阳能电池、新型发光和激光二极管)到高频电子(太赫兹发射器、高电子迁移率晶体管和耿氏二极管)。使用这些或类似结构的超小型谐振器和化学传感器以及便于高速光通信的基于纳米线的器件被预期(参见S.J. Pearton, B.S. Kang, B.P. Gila,D.P. Norton, O. Kryliouk, F. Ren, Young-Woo Heo, Chih-Yang Chang, Gou-ChungChi, Wei-Ming Wang和Li-Chyong Chen, GaN, ZnO and InN Nanowires and Devices,J. Nanosci. Nanotechnol. 8 (2008) 99–110)。
从碳纳米管内部的生长开始(参见W. Han, S. Fan, Q. Li,和Y. Hu, Synthesisof Gallium Nitride Nanorods through a Carbon Nanotube-Confined Reaction,Science 277, 1287 (1997)),已经使用各种方法合成了1D GaN纳米结构。最常用的是在催化剂涂覆的衬底上的催化化学气相沉积(Cat-CVD)。在Cat-CVD过程中,气态反应物在纳米级液滴中经历溶解直至其过饱和,并且随后的液滴限制的GaN生长通过气-液-固(VLS)机制而发生。通常在蓝宝石、SiC或Si衬底上用Au、Ni、Fe或In作为金属催化剂材料来执行柱生长。
在美国专利号 7,745,315中,公开了一种用于在衬底上形成垂直对准的纳米线方法,该方法使用单层金属原子来形成均匀尺寸的金属岛,所述金属岛用作用于III族氮化物纳米线的金属有机化学气相沉积(MOCVD)的催化剂。该方法包括:将催化剂金属原子沉积在结晶模板衬底的表面上;加热结晶模板以诱导催化剂金属原子的表面扩散从而形成多个金属纳米团簇;以及在金属纳米团簇处使镓和氮前体分子反应以形成与结晶模板衬底外延对准的垂直取向的单晶GaN纳米线。描述了氮前体与镓前体的大于一的比率。虽然这对于连续外延层的生长而言被认为是司空见惯的,但是对于纳米结构材料的生长而言并不是同样明显的。不管该方法在将纳米线直径降低下至几纳米方面的任何优点,它至少遭受两个主要缺点。第一,实际上不可能控制最终限定纳米线的分布和横截面的催化剂纳米团簇的自发演变。第二,VLS“自下而上”生长的常见缺点是金属催化剂对纳米线的潜在污染,而所述金属催化剂在半导体中具有有限且非零的分配系数,这归因于在生长之后在材料中留下的金属残留物。
在美国专利号 8,410,496中,描述了一种用于通过掩模辅助的MOCVD技术来创建GaN纳米线的无催化剂方法。在所描述的方法中,在衬底之上形成用于选择性纳米线生长的掩模。该选择性生长掩模包含暴露衬底的部分的多个图案化的孔。首先使用选择性和所谓的“非脉冲生长”模式在掩模的开口内生长半导体材料。然后,在掩模上方,以脉冲模式继续生长。在脉冲生长模式期间,交替引入III族前体和V族前体。通过继续脉冲生长模式,III族氮化物纳米线沿着单个方向在掩模的顶部之上延伸,并且维持开口的横截面特征。
上面提及的方法的主要缺点是其对脉冲生长模式的参数的极端敏感性。已经确定从常规到脉冲MOCVD生长的转变的定时在所描述的过程中是特别关键的(参见S.D.Hersee, X. Sun和X. Wang, The Controlled Growth of GaN Nanowires, Nano Lett.,6 (2006) 1808-1811)。如果维持非脉冲状态,则一旦纳米线从生长掩模中出现,就开始发生横向生长并且失去纳米线几何结构。还发现脉冲序列内的步骤的持续时间是关键的,并且因此必须针对不同的生长反应器配置进行优化。
在一系列学术著作中(参见H.M. Kim, D.S. Kim, D.Y. Kim, T.W. Kang, Y.H.Cho, K.S. Chung, Growth and Characterization of Single-crystal GaN Nanorodsby Hydride Vapor Phase Epitaxy, Appl. Phys. Lett. 81, No. 12 (2002) 2193-2195;H.M. Kim, D.S. Kim, Y.S. Park, D.Y. Kim, T.W. Kang, K.S. Chung, Growthof GaN Nanorods by a Hydride Vapor Phase Epitaxy Method, Adv. Mater. 14, No.13-14 (2002) 991-993;H.M. Kim, D.S. Kim, D.Y. Kim, T.W. Kang, K.S. Chung,Structural and Cathodoluminescence Properties of Gallium Nitride Nanorods byHVPE, J. Korean Phys. Soc. 42 (2003) S222-S225;H.M. Kim, Y.H. Cho, H. Lee,S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, High-Brightness LightEmitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium NitrideMultiquantum-Well Nanorod Arrays, Nano Lett. 2004, 4, 1059-1062),已经描述了用于通过氢化物气相外延(HVPE)技术生长GaN和InGaN/GaN纳米棒和纳米棒阵列的无催化剂和掩模方法。在大约480℃的温度下、在水平反应器中、在2英寸的蓝宝石衬底上执行生长。在生长过程期间,经由HCl气体与Ga金属的反应,在750 ℃下在反应器的源区域中合成GaCl前体。通过氮气载气将其输送到反应器的生长区域。在那里,GaCl与气态氨(NH3)混合在一起以在衬底上形成在c轴方向上取向的直径为80-120 nm的GaN纳米棒。纳米棒而不是连续外延层的形成是低生长温度和活性组分的高V/III比率(超过60)的结果。不幸的是,所描述的方法遭受纳米棒跨越衬底的整个区域的不可控制的自发分布以及难以操纵纳米柱的直径,这两者均被认为是纳米器件应用的关键缺点。
在美国专利号 8,338,818中,描述了一种用于形成非平面纳米线、纳米线阵列和纳米线网络的方法。根据该专利,该公开的非平面纳米线被描述为以受控方式形成在具有非平面取向的表面上。在所描述的实施例中,选择性生长掩模被设置在至少两个半导体侧壁上,并且多个III族-N纳米线通过选择性生长掩模而选择性地设置在至少两个半导体侧壁中的每个上。形成的III族-N纳米线在相同的半导体侧壁上沿单个方向取向,并且每个纳米线维持恒定的横截面特征,其中在至少两个半导体侧壁的不同侧壁上的相邻的III族-N纳米线合并在一起从而形成一个或更多的纳米线分支。
所描述的方法的明显缺点是:将生长的晶体界面的分离部分合并在一起通常相消干扰其单晶性的损失,而代替地形成具有广角晶界的多晶体。所描述的方法的又一缺点是忽略了纳米线与在其上合成它们的衬底之间的外延配位的现有温度依赖性。先前的观察示出(参见H.Y. Peng, N. Wang, X.T. Zhou, Y.F. Zheng, C.S. Lee, S.T. Lee, Controlof growth orientation of GaN nanowires, Chemical Physics Letters 359 (2002)241–245):无催化剂的GaN纳米线具有在900与950℃之间的温度下垂直于{1011}平面并且在较低的800-900℃温度下沿[0001]方向生长的趋势。此外,纳米线的形状在相同的温度序列中从直的变为不规则的,这使得该方法的实际实现是有问题的。
在本发明的一个方面中,提供了一种用于没有在现有技术方法中发现的上面提及的缺陷的均匀直径III-氮化物纳米柱及其有序阵列的无催化剂生长的方法,该缺陷包含:(1)沿预定的结晶方向的非均匀直径纳米柱;(2)纳米柱的不受控制的位置;以及(3)如V.Ivantsov等人的题为“On the origin of the spontaneous transition to non-polara-plane GaN growth on c-plane sapphire”的本文的附件A中所讨论的纳米柱的温度相关的结晶取向,附件A的全部内容并入本文中。
本发明的复合纳米柱在衬底上的位置由成核平面的阵列的公共中心限定。由于纳米柱由在聚结(coalescence)期间孪晶之后形成的至少三个对称的子纳米柱(sub-nanocolumn)构成,因此在每个纳米柱的中心处存在与出现的凹角相关联的优选成核位点。在纳米柱的顶部上的优选成核的出现支配要与纳米柱轴对准的最高生长速率的方向。
复合纳米柱的轴生长速度胜于其侧向速度,从而不仅在扩散中而且在动力学限制的生长模式中提供均匀的纳米柱直径。对于纳米级结构(包含来自III-氮化物的纳米级结构)的生长,纳米柱能够以比现有技术方法能够提供的宽得多的范围的生长参数产生。此外,纳米柱生长的方向能够选自具有适当的孪晶配位的极性或非极性取向,从而允许选择。复合纳米柱增强了开发例如改进的光电子和高频电子器件的可能性。在下面的描述中进一步阐述了本发明的附加目的和优点。
附图说明
根据附图和下面阐述的详细描述,本发明的特征和优点将变得更加明显。本文中呈现的图示并不意味着是任何特定半导体材料、结构或器件的实际视图,而仅仅是用于描述本发明的实施例的说明性表示。
图1是呈现根据本发明的实施例中的一个或多个的用于在c面蓝宝石衬底上生产复合a面GaN纳米柱的方法的流程图。
图2是示出由三个分支240形成复合纳米柱250的结构的透视图,这三个分支240从刻蚀在衬底210中的凹陷220的侧壁230前进并且利用孪晶合并在一起。
图3是通过HVPE生长的并且由三个相邻的a面GaN纳米柱320、330和340构成的本发明的复合a面GaN纳米柱310的顶视SEM图像。
图4是根据本发明的在c面蓝宝石上生长的{1013} GaN反射部(reflex)410的XRD极图,其包含由c面外延层411围绕的复合GaN纳米柱412。为了简化极图410的描述,示出了针对c面蓝宝石420上的c面外延层和r面蓝宝石430上的a面外延层431的{1013}反射部421的极图。
图5是根据本发明的本方法生长的GaN复合纳米柱的SEM图像。纳米柱的取向对应于a面GaN。C面蓝宝石用作衬底。围绕纳米柱的起伏的外延层是c面GaN。
图6是本发明的GaN复合纳米柱的横截面SEM图像。纳米柱的高度与其直径成反比,并且由在其处形成纳米分支的刻蚀凹陷的直径限定。
图7是呈现根据本发明的实施例的用于使用c面蓝宝石衬底上的复合a面GaN纳米柱生产诸如发光二极管结构或激光二极管结构的发光结构的过程的流程图。
图8是复合纳米柱发光结构的示意图。
具体实施方式
公开了一种用于在衬底上生长强烈对准的均匀横截面半导体复合纳米柱的方法。该方法可以包括(a)在衬底表面上形成一个或多个刻面锥体凹陷或凹处;(b)在凹陷的刻面上发起成核; 以及(c)促进核朝向凹陷的中心的生长,由此它们利用孪晶聚结并且一起生长作为一个或多个复合纳米柱。理想地,可以在纳米柱的顶部或侧壁上生长多量子阱、芯-壳纳米柱异质结构。可以通过纳米柱的过度生长形成连续的半导体外延层,以便于制造高质量的平面器件结构。例如,本发明的纳米柱可以用作发光结构中的元件,或者用作顺从的插入物,以用于减轻可以在它们上生长的连续外延层中的应力和缺陷密度。
在优选的实施例中,本发明的复合III-氮化物纳米柱被描述为使用氢化物气相外延(HVPE)生长,但也可以使用金属有机化学气相沉积(MOCVD)、分子束外延(MBE)或类似过程形成。纳米柱生长可以在由多区电阻炉加热的水平管石英反应器中执行。尽管水平反应器因其容易容纳所需的组分源而是优选的,但应理解的是,本发明的实现方式不限于特定的反应器配置,并且也可以使用对温度、气流和衬底位置提供所需控制的其他配置。虽然反应器管优选地具有圆柱形形状,但是也可以使用诸如矩形横截面的其他反应器配置。
图1的流程图总体上图示了用于在HVPE生长设备中生产复合GaN纳米柱的优选方法。参考图1,将例如蓝宝石的外延开盒即用(epi-ready)衬底插入外延反应器(110)的生长区中。衬底取向优选地与蓝宝石的(0001)面重合或邻近。在随后的步骤中,在生长区的温度下在氨(NH3)气流中执行衬底的第一次氮化(120)。根据反应器几何结构,氨的流量优选地在大约0.5至大约20标准升/分钟(slm)的范围内。生长区的温度可以在大约900 ℃至大约1100℃的范围内,该范围如被确定是经由HVPE化学法生长GaN最佳的。
按活性氮离子和蓝宝石的扩散和表面反应所需要的,第一次氮化可持续大约4分钟至大约90分钟。在图1流程图步骤130期间,由于(0001)蓝宝石表面用氯化氢(HCl)和氨的气体混合物的原位刻蚀,出现了用于子纳米柱生长的倾斜{1012}成核平面(r面)。锥体{1012}蓝宝石成核平面受到限制并且产生三角形刻蚀凹陷,在其处开始生长{1120} a面GaN子纳米柱。
r面蓝宝石刻面刻蚀凹陷的形成不仅可以如本文所描述的那样原位执行,而且可以使用干法刻蚀和湿法刻蚀中的任一种或两种进行非原位地执行。在任一种情况下,刻蚀凹陷的直径限定子纳米柱之间的距离,并且随后限定结果得到的复合纳米柱的直径。
图1的步骤140提供刻蚀的衬底在氨流中的大约10分钟长的二次氮化,其中气流和温度参数类似于第一氮化的那些。
在图1的步骤150期间,通过使氯化镓和氨在衬底之上通过而实现GaN子纳米柱和复合纳米柱的生长。
通过从生长反应器中除去具有纳米柱的衬底来停止该过程(160)。
在图2中提供对本发明的纳米柱形成的进一步描述。刻蚀凹陷220形成在c面蓝宝石衬底210上,并且刻面有三个r面230。蓝宝石的r面是针对a面GaN的成核位置。三个a面GaN子纳米柱240利用{1013}孪晶而彼此接合,并且作为由三个120度旋转域构成的a面复合纳米柱250垂直前进。复合纳米柱的六个侧壁平行于GaN的三对+ c和-c面。由于它们在高生长温度下的较低热稳定性,相对于-c面而言,稳定的+ c面能够过度生长,从而产生其中三角形横截面仅由+ c面限制的习惯。
现在参考图3,在顶视SEM图像中看到本发明的复合纳米柱结构的进一步细节。复合a面纳米柱310的HVPE生长是从c面蓝宝石衬底上的原位创建的刻蚀凹陷进行的。纳米柱由三个相邻的a面GaN子纳米柱320、330和340构成。由于纳米柱310是从r面刻面蓝宝石刻蚀凹陷中演变出来的,因此其侧壁的位置由衬底表面上的刻蚀凹陷的取向限定。
通过参考图4更全面地描述了作为纳米柱的复合结构的外延层和纳米柱的相互取向。图4中的{1013} XRD反射部的极图是从复合a面纳米柱和周围的c面GaN外延层得到的,并且由曲线410表示。为了简化对所图示的极图的理解,分别在420和430中示出对于纯c面GaN和纯a面GaN测量的两个对应的{1013}极图。看出,复合纳米柱和外延层的极图410能够包括与c面外延层420相关的一个连同三个120度旋转的a面极图430。三个a面极图中的每个能够归因于a面子纳米柱中之一。它们与外延层相比转动大约30度,因为后者的取向由与衬底的外延关系限定,而前者的取向归因于刻蚀凹陷取向。
参考图5,示出了根据本发明生长的GaN复合纳米柱的另一SEM图像。如上面所描述的,纳米柱的取向对应于垂直于c面蓝宝石衬底生长的a面GaN。围绕纳米柱的非平面GaN外延层沿着c轴取向并且与纳米柱同时生长。
参考图6,示出了本发明的GaN复合纳米柱以及周围外延层的侧视SEM图像。纳米柱的高度与其直径成反比,其继而由它们所源自的刻蚀凹陷的直径确定。
在本发明的替代优选实施例中,两英寸c面蓝宝石衬底的表面上的复合纳米柱可以用作具有连续GaN外延层的外延横向过度生长的成核位点。纳米柱可以通过在衬底表面掩模中刻蚀的有规律地间隔的开口生长。
在该实施例中,首先,可以使用例如远程等离子体增强化学气相沉积(PECVD)技术在衬底上沉积大约50 nm厚的SiO2掩模。
其次,在该样例实施例中,可以执行使用SF6和Ar反应离子刻蚀(RIE)的标准光刻,以在掩模中制造大约4 μm直径和大约5 μm间隔的孔图案。
再次,可以使用基于H3PO4的溶液在大约300-400 ℃的刻蚀温度和大约120-140 s的刻蚀时间下对蓝宝石表面上的暴露的掩模开口执行湿法刻蚀。
在刻蚀之后,在开口的底部以网格结构形成具有平坦r面刻面的三角形形状的刻蚀凹陷。
最后,可以使用如前面所描述的HVPE发起GaN生长,并且持续,直到从掩模开口出现在其上边缘上方延伸大约3-5 μm的复合纳米柱。
注意的是,在本发明的过程中,氯化镓和氨流量的增加导致GaN生长速率的增加。掩模过度生长期间的V/III比率优选地设定在大约30和大约35之间。由于侧壁不可接近,所以GaN过度生长仅从纳米柱的顶部(或顶部刻面)进行。结果,纳米柱彼此合并,并且变成完全聚结的GaN膜。聚结过程能够在大约10 μm的膜厚度内完成。该膜悬于纳米柱上,并且如果其厚度足以避免裂缝,则其能够被分离以便制备独立式GaN晶体。从大约100 μm的厚度开始能够获得无裂缝的材料。
在图7和图8中所描绘的又一优选实施例中,可以在复合GaN纳米柱上生长诸如发光二极管(LED)的发光结构。
在图7的过程流程图中图示了用于使用本发明的纳米柱制造发光结构的优选的一组方法步骤。首先,如本说明书中前面所描述的那样生长GaN复合纳米柱(710)。在纳米柱制造之后,通过引入硅烷(SiH4)作为掺杂剂试剂,在纳米柱的顶部上、侧壁上和底部周围生长n型GaN(720)。然后诸如通过等离子体增强化学气相沉积(PECVD)将 SiO2膜沉积在n型GaN的顶部上(730)。诸如通过反应离子刻蚀(RIE)从纳米柱的顶部除去SiO2膜(740)。接下来,在n型a面顶部纳米柱的顶部上形成InGaN /GaN量子阱(QW)结构(750),并且在InGaN/GaNQW的顶部上生长a面连续p型GaN外延层(760)。接下来,诸如通过电子束(EB)蒸发将接触形成到顶部a面p型外延层(770)。然后在围绕纳米柱的底部c面n-型GaN外延层的表面上执行RIE刻蚀(780),并且诸如通过EB蒸发将接触形成到底部c面n-型外延层(790)。
如上面所描述的那样,使用其上具有c面GaN层840的蓝宝石衬底810中的刻蚀凹陷820生长纳米柱。在该LED实施例中,在生长步骤期间,可以在气体流动流中引入硅烷(SiH4)以添加硅杂质,从而便于纳米柱和相邻的一个或多个外延层中的n型导电。
然后可以如上面所描述的那样通过PECVD技术在纳米柱和外延层上沉积大约20nm厚的SiO2膜850,并且可以执行反应离子刻蚀或“RIE”。因为RIE的刻蚀速率取决于离子束朝向衬底的方向,所以垂直刻蚀速率比水平刻蚀速率快。因此,用户能够控制RIE参数以便除去a面复合纳米柱的顶部上的SiO2,并且同时在纳米柱的侧壁上留下残留的SiO2 860,使得侧壁被钝化有10 nm厚的SiO2膜。因此,纳米柱830的顶部展现出无氧化物的复合a面表面,其适于随后再生长发光外延层。在图8中,假设衬底区域被掩蔽,因此将保留氧化物层850。
在随后的步骤中,将具有纳米柱的生长模板转移至MOCVD生长反应器,在MOCVD生长反应器中,使用例如三甲基镓Ga(CH3)3、三甲基铟In(CH3)3和氨(NH3)作为气体载体,在n型纳米柱的顶部上沉积InGaN/GaN量子阱结构880。可以在c面n型GaN层840上提供n焊盘870。发光结构也可以形成为InGaN/GaN多层量子阱结构。也可以可选地在n型半导体层上形成反射膜。
可以用双(环戊二烯基)镁(Cp2Mg)执行进一步的生长,以产生顶部a面p型导电外延层。在p型GaN的生长期间,氨和三甲基镓以及载气的流速可以逐渐增加以加宽纳米柱的直径,并且最终合并它们并形成平面的a面p型GaN外延层890。
此后,可以通过例如在电子束(EB)气相沉积设备中进行气相沉积而在p型外延层的表面上形成Ni/氧化铟锡(ITO)作为透明电极。可以在透明电极上形成Au p型电极以形成p焊盘821。
类似地,可以通过在EB气相沉积设备中进行气相沉积而在n型GaN外延层的被RIE刻蚀的表面上形成Ti/Au或其他合适的n型电极以形成n型接触850,以便完成发光二极管(LED)结构。可以类似地形成GaN和AlGaN光电探测器结构以及复合纳米柱场发射结构和功率器件。
形成的LED结构包括附接到n型GaN外延层表面的n型电极(第一电极)850;多个a面n型GaN复合纳米柱830,在纳米柱830的顶部上相继堆叠有InGaN/GaN发光结构(纳米柱LED),其继而由外延层环绕;p型连续GaN外延层以及形成在透明电极811表面上的p型电极或焊盘(第二电极)821。
因此,图8的LED结构是在c面极性GaN 850上开始外延生长过程形成a面非极性GaNLED结构的方法的实施例。该方法克服了在r面蓝宝石上外延生长非极性GaN中通常遇到的困难,包含但不限于在r面蓝宝石/a面GaN界面处的位错形成和应力管理。因此,有可能使用在c面蓝宝石上的很好理解且可靠的生长来实现a面LED结构,该a面LED结构具有可以通过这样的晶面实现的优点,诸如较低应变、显着较低的穿透位错密度、较高效率以及a面LED结构的InGaN QW中的更潜在地较高的铟吸入比率。结果,图8的实施例使得能够实现具有足够高的In比率x的InxGa(1-x)N QW LED结构以实现诸如红色650 nm的长可见光谱波长,这在显示器应用中被非常高度地寻求。
本领域技术人员将认识到,在发光结构生长之前,可能发生如图8的框890所图示的纳米柱之间的GaN的横向聚结,有可能是与n型或未掺杂的GaN而不是p型GaN。这样的生长顺序的反转可以用于生长松弛平面发光二极管和激光二极管,其利用结果得到的材料中的低应力和缺陷密度。这样的结构可以进一步容易地接合到载体晶片或基板,以用于封装在薄膜光发射器结构中。
虽然上面描述的LED实现方式利用了纳米柱的顶表面上的外延生长,但是本领域技术人员将认识到,也有可能代替地掩蔽纳米柱的顶表面并在垂直侧壁上生长发光结构。例如,这样的方法可以为边缘发射激光二极管的制造提供优势。替代地,可以在侧壁和顶表面两者上生长发光层。在这种情况下,可以调整生长过程以改变两个不同结晶平面上的铟掺入比率,从而分别从纳米柱的顶面和侧面产生不同的发射波长。这样的颜色混合可以在制造用于照明和显示应用的高效白色LED方面提供明显的优势。而且,在本文的许多实例中,已经在LED的背景下描述了所创建的结构,然而结构中的许多会被或者可以容易地被本领域的有理的技术人员修改为激光器结构并且容易用作激光二极管。因此,如本文所使用的,LED和激光二极管之间存在对应关系,其被统称为发光结构。
在前述公开中,使用c面蓝宝石作为示例性衬底材料,然而c面蓝宝石仅是示例性的,因为也可以使用各种其他衬底材料,列举若干这样的其他材料,诸如c面蓝宝石GaN、碳化硅、硅、a面蓝宝石、铝酸锂或尖晶石材料。在这方面,本发明可以使用衬底材料来实践,所述衬底材料将不会由于来自晶格失配的不利结果而被认为是用于GaN生长的传统衬底材料,因为优选地在10纳米至50微米的范围内并且更优选地小于1微米的横向方向上的锥体凹陷的正常尺寸避免晶格失配的累积,如果要生长均匀的GaN层将会遇到所述晶格失配的累积。此外,在前述公开中,将GaN用作纳米柱和子纳米柱的示例性材料。然而,也可以使用其他材料,包含AlN、AlGaN、InGaN、AlInN或AlInGaN。
虽然关于所选择的实现方式说明了本发明,但是在不脱离所附权利要求的精神和范围的情况下,可以对所说明的示例做出更改和修改。另外,虽然可能仅关于若干实现方式已公开了本发明的特定特征,但是这样的特征可以与一个或多个其他特征组合,如对于任何给定或特定功能可能期望的和有利的。
对于本领域技术人员而言,根据对本说明书的考虑和对本文中公开的本发明的实践,本发明的其他实施例将是显然的。意图是,说明书和示例被认为仅是示例性的,其中本发明的真实范围和精神由所附权利要求指示。

Claims (45)

1.一种用于生长复合纳米柱的方法,包括以下步骤:
在衬底表面上形成凹陷;
在所述凹陷中发起多个子纳米柱成核;以及
促进多个子纳米柱朝向所述凹陷的中心的生长,在所述凹陷的中心处,所述子纳米柱聚结以形成单个纳米柱。
2.根据权利要求1所述的方法,其中,所述凹陷是刻面锥体凹陷。
3.根据权利要求2所述的方法,其中,所述刻面锥体凹陷是通过在基于H3PO4的溶液中进行湿法化学刻蚀而形成的。
4.根据权利要求3所述的方法,其中,所述子纳米柱包括GaN材料,并且其中,所述GaN子纳米柱和复合纳米柱具有非极性a面取向。
5.根据权利要求2所述的方法,其中,所述刻面锥体凹陷在横向维度上的尺寸是亚微米。
6.根据权利要求2所述的方法,其中,所述刻面锥体凹陷在横向维度上的尺寸在10纳米至50微米的范围内。
7.根据权利要求2所述的方法,还包括多个锥体凹陷,并且其中,使用掩模在所述衬底的表面上形成所述锥体凹陷,以在所述衬底表面上创建刻面锥体凹陷的二维网格图案。
8.根据权利要求7所述的方法,其中,所述子纳米柱包括GaN材料,并且其中,所述GaN子纳米柱和复合纳米柱具有非极性a面取向。
9.根据权利要求7所述的方法,其中,所述子纳米柱和复合纳米柱是通过氢化物气相外延技术生长的。
10.根据权利要求1所述的方法,其中,所述衬底选自由c面蓝宝石、GaN、碳化硅、a面蓝宝石、铝酸锂或尖晶石材料组成的一组材料。
11.根据权利要求1所述的方法,其中,所述复合纳米柱包括III族氮化物半导体材料。
12.根据权利要求1所述的方法,其中,所述衬底是c面蓝宝石衬底。
13.根据权利要求12所述的方法,其中,所述锥体凹陷的刻面平行于所述c面蓝宝石衬底的r面。
14.根据权利要求1所述的方法,其中,所述凹陷是刻面锥体凹陷,并且所述刻面锥体凹陷是通过在含有HCl的气体混合物中刻蚀所述衬底而形成的。
15.根据权利要求14所述的方法,其中,所述衬底是c面蓝宝石衬底,并且其中,所述锥体凹陷的刻面平行于所述c面蓝宝石衬底的r面。
16.根据权利要求1所述的方法,其中,所述子纳米柱和复合纳米柱是GaN、AlN、InN、AlGaN、InGaN、AlInN或AlInGaN子纳米柱和复合纳米柱。
17.根据权利要求16所述的方法,其中,所述方法还包括生长复合纳米柱多层GaN和InGaN发光结构。
18.根据权利要求16所述的方法,其中,所述方法还包括在所述复合纳米柱的顶部上生长复合纳米柱多层GaN和InGaN发光结构。
19.根据权利要求16所述的方法,其中,所述方法还包括在所述复合纳米柱的侧面上生长复合纳米柱多层GaN和InGaN发光结构。
20.根据权利要求16所述的方法,其中,所述方法还包括在所述复合纳米柱上生长复合纳米柱多层GaN和AlGaN光电探测器结构。
21.根据权利要求16所述的方法,其中,所述方法还包括在所述复合纳米柱的顶部上生长复合纳米柱多层GaN和AlGaN光电探测器结构。
22.根据权利要求16所述的方法,其中,所述方法还包括在所述复合纳米柱的侧面上生长复合纳米柱多层GaN和AlGaN光电探测器结构。
23.根据权利要求16所述的方法,其中,所述方法还包括在所述复合纳米柱上生长复合纳米柱场发射结构。
24.根据权利要求16所述的方法,其中,所述方法还包括在所述复合纳米柱上生长功率器件。
25.根据权利要求1所述的方法,还包括在所述纳米柱上生长复合纳米柱多层GaN和InGaN发光结构,其中,所述发光结构基于在其上它们生长在所述复合纳米柱上的结晶刻面而发射不同的波长。
26.一种复合纳米柱,包括:
衬底表面上的刻面锥体凹陷;
在所述锥体凹陷的刻面上的多个子纳米柱;以及
所述多个子纳米柱聚结以形成单个纳米柱。
27.根据权利要求26所述的复合纳米柱,其中,所述衬底是c面蓝宝石、GaN、碳化硅、a面蓝宝石、铝酸锂或尖晶石材料中之一。
28.根据权利要求26所述的复合纳米柱,其中,所述复合纳米柱包括III族氮化物半导体材料。
29.根据权利要求28所述的复合纳米柱,其中,所述衬底是c面蓝宝石衬底,并且其中,所述锥体凹陷的刻面平行于所述c面蓝宝石衬底的r面。
30.根据权利要求28所述的复合纳米柱,其中,所述子纳米柱包括GaN材料,并且其中,所述GaN子纳米柱和复合纳米柱具有非极性a面取向。
31.根据权利要求26所述的复合纳米柱,其中,所述衬底是c面蓝宝石衬底。
32.根据权利要求31所述的复合纳米柱,其中,所述锥体凹陷的刻面平行于所述c面蓝宝石衬底的r面。
33.根据权利要求26所述的复合纳米柱,其中,所述刻面锥体凹陷的尺寸为亚微米。
34.根据权利要求26所述的复合纳米柱,其中,所述刻面锥体凹陷的尺寸在10纳米至50微米的范围内。
35.根据权利要求26所述的复合纳米柱,其中,所述子纳米柱和复合纳米柱是GaN、AlN、InN、AlGaN、InGaN、AlInN或AlInGaN子纳米柱和复合纳米柱。
36.根据权利要求35所述的复合纳米柱,其中,所述复合纳米柱还包括在所述复合纳米柱上的复合纳米柱多层GaN和InGaN发光结构。
37.根据权利要求36所述的复合纳米柱,其中,所述复合纳米柱多层GaN和InGaN发光结构基于其所位于的结晶刻面而发射不同的波长。
38.根据权利要求35所述的复合纳米柱,其中,所述复合纳米柱还包括在所述复合纳米柱的顶部上的复合纳米柱多层GaN和InGaN发光结构。
39.根据权利要求35所述的复合纳米柱,其中,所述复合纳米柱还包括在所述复合纳米柱的侧面上的复合纳米柱多层GaN和InGaN发光结构。
40.根据权利要求35所述的复合纳米柱,其中,所述复合纳米柱还包括在所述复合纳米柱上的复合纳米柱多层GaN和AlGaN光电探测器结构。
41.根据权利要求35所述的复合纳米柱,其中,所述复合纳米柱还包括在所述复合纳米柱的顶部上的复合纳米柱多层GaN和AlGaN光电探测器结构。
42.根据权利要求35所述的复合纳米柱,其中,所述复合纳米柱还包括在所述复合纳米柱的侧面上的多层GaN和AlGaN光电探测器结构。
43.根据权利要求35所述的复合纳米柱,其中,所述复合纳米柱还包括在所述复合纳米柱上的场发射结构。
44.根据权利要求35所述的复合纳米柱,还包括在所述复合纳米柱上的功率器件。
45.根据权利要求26所述的复合纳米柱,其中,所述子纳米柱包括GaN材料,并且其中,所述GaN子纳米柱和复合纳米柱具有非极性a面取向。
CN201680081684.XA 2015-12-14 2016-12-14 用于生产复合GaN纳米柱的方法及由该方法制成的发光结构 Pending CN108604538A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562267117P 2015-12-14 2015-12-14
US62/267117 2015-12-14
US15/377775 2016-12-13
US15/377,775 US11322652B2 (en) 2015-12-14 2016-12-13 Methods for producing composite GaN nanocolumns and light emitting structures made from the methods
PCT/US2016/066729 WO2017106387A1 (en) 2015-12-14 2016-12-14 METHODS FOR PRODUCING COMPOSITE GaN NANOCOLUMNS AND LIGHT EMITTING STRUCTURES MADE FROM THE METHODS

Publications (1)

Publication Number Publication Date
CN108604538A true CN108604538A (zh) 2018-09-28

Family

ID=59020145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680081684.XA Pending CN108604538A (zh) 2015-12-14 2016-12-14 用于生产复合GaN纳米柱的方法及由该方法制成的发光结构

Country Status (6)

Country Link
US (1) US11322652B2 (zh)
JP (1) JP6947746B2 (zh)
KR (1) KR20180095608A (zh)
CN (1) CN108604538A (zh)
TW (1) TWI740865B (zh)
WO (1) WO2017106387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993755A (zh) * 2019-12-18 2020-04-10 天津工业大学 电注入三维GaN核壳结构Nano-LED及制造方法
CN116705889A (zh) * 2023-06-28 2023-09-05 北京科技大学 梯度应变调控的范德华异质结型光电探测器及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322652B2 (en) * 2015-12-14 2022-05-03 Ostendo Technologies, Inc. Methods for producing composite GaN nanocolumns and light emitting structures made from the methods
CN109148654B (zh) * 2018-08-30 2020-04-07 芜湖德豪润达光电科技有限公司 非极性面ⅲ族氮化物外延结构及其制备方法
US10854646B2 (en) * 2018-10-19 2020-12-01 Attollo Engineering, LLC PIN photodetector
KR20210136967A (ko) * 2019-03-12 2021-11-17 가부시키가이샤 알박 진공 증착 장치
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
WO2024084634A1 (ja) * 2022-10-19 2024-04-25 京セラ株式会社 半導体基板、半導体基板の製造方法および製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443887A (zh) * 2006-03-10 2009-05-27 Stc.Unm公司 Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
CN101685774A (zh) * 2008-09-24 2010-03-31 北京邮电大学 一种基于界面纳米结构的异质外延生长工艺
CN103098216A (zh) * 2010-06-24 2013-05-08 Glo公司 具有用于定向纳米线生长的缓冲层的衬底
CN103531447A (zh) * 2012-07-06 2014-01-22 中国科学院金属研究所 一种降低氮化镓纳米线阵列晶体缺陷密度的方法
US8658519B1 (en) * 2008-12-19 2014-02-25 Stc.Unm Nanowires, nanowire networks and methods for their formation and use

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992960B1 (ko) * 2002-04-15 2010-11-09 더 리전츠 오브 더 유니버시티 오브 캘리포니아 유기금속 화학기상 증착법에 의해 성장된 무극성 α면질화갈륨 박막
KR20060127743A (ko) * 2005-06-06 2006-12-13 스미토모덴키고교가부시키가이샤 질화물 반도체 기판과 그 제조 방법
JP2007048869A (ja) * 2005-08-09 2007-02-22 Sony Corp GaN系半導体発光素子の製造方法
WO2008048704A2 (en) 2006-03-10 2008-04-24 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
JP5082752B2 (ja) * 2006-12-21 2012-11-28 日亜化学工業株式会社 半導体発光素子用基板の製造方法及びそれを用いた半導体発光素子
US8964020B2 (en) * 2007-04-25 2015-02-24 Stc.Unm Solid-state microscope for selectively imaging a sample
US8652947B2 (en) * 2007-09-26 2014-02-18 Wang Nang Wang Non-polar III-V nitride semiconductor and growth method
US7745315B1 (en) 2007-10-03 2010-06-29 Sandia Corporation Highly aligned vertical GaN nanowires using submonolayer metal catalysts
US8188513B2 (en) * 2007-10-04 2012-05-29 Stc.Unm Nanowire and larger GaN based HEMTS
KR20100093872A (ko) * 2009-02-17 2010-08-26 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
US8409892B2 (en) 2011-04-14 2013-04-02 Opto Tech Corporation Method of selective photo-enhanced wet oxidation for nitride layer regrowth on substrates
WO2013015810A2 (en) 2011-07-27 2013-01-31 Hewlett-Packard Development Company, L.P. Surface enhanced raman spectroscopy employing a nanorod in a surface indentation
JP6293157B2 (ja) * 2012-10-26 2018-03-14 グロ アーベーGlo Ab ナノワイヤサイズの光電構造及びその選択された部分を改質する方法
US11502219B2 (en) 2013-03-14 2022-11-15 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and devices for solid state nanowire devices
KR102070209B1 (ko) * 2013-07-01 2020-01-28 엘지전자 주식회사 성장기판 및 그를 포함하는 발광소자
US9171843B2 (en) 2013-08-02 2015-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and fabricating the same
US9053890B2 (en) * 2013-08-02 2015-06-09 University Health Network Nanostructure field emission cathode structure and method for making
TWI621278B (zh) 2013-12-17 2018-04-11 瑞典商Glo公司 具有應變改質表面活性區域之第三族氮化物奈米線led及其製造方法
KR102140741B1 (ko) * 2014-02-18 2020-08-03 엘지전자 주식회사 무분극 이종 기판 및 그 제조방법, 이를 이용한 질화물 반도체 발광 소자
FR3019188B1 (fr) * 2014-03-27 2017-11-24 Commissariat Energie Atomique Procede de croissance d'un element allonge a partir d'un germe forme dans un creux d'une couche ou d'un plot de nucleation
US9773889B2 (en) * 2014-07-18 2017-09-26 Taiwan Semiconductor Manufacturing Company Limited Method of semiconductor arrangement formation
US11322652B2 (en) * 2015-12-14 2022-05-03 Ostendo Technologies, Inc. Methods for producing composite GaN nanocolumns and light emitting structures made from the methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443887A (zh) * 2006-03-10 2009-05-27 Stc.Unm公司 Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
CN101685774A (zh) * 2008-09-24 2010-03-31 北京邮电大学 一种基于界面纳米结构的异质外延生长工艺
US8658519B1 (en) * 2008-12-19 2014-02-25 Stc.Unm Nanowires, nanowire networks and methods for their formation and use
CN103098216A (zh) * 2010-06-24 2013-05-08 Glo公司 具有用于定向纳米线生长的缓冲层的衬底
CN103531447A (zh) * 2012-07-06 2014-01-22 中国科学院金属研究所 一种降低氮化镓纳米线阵列晶体缺陷密度的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993755A (zh) * 2019-12-18 2020-04-10 天津工业大学 电注入三维GaN核壳结构Nano-LED及制造方法
CN110993755B (zh) * 2019-12-18 2021-09-21 天津工业大学 电注入三维GaN核壳结构Nano-LED及制造方法
CN116705889A (zh) * 2023-06-28 2023-09-05 北京科技大学 梯度应变调控的范德华异质结型光电探测器及其制备方法
CN116705889B (zh) * 2023-06-28 2024-02-27 北京科技大学 梯度应变调控的范德华异质结型光电探测器及其制备方法

Also Published As

Publication number Publication date
JP6947746B2 (ja) 2021-10-13
KR20180095608A (ko) 2018-08-27
US20170170363A1 (en) 2017-06-15
US11322652B2 (en) 2022-05-03
JP2019502273A (ja) 2019-01-24
TW201737317A (zh) 2017-10-16
TWI740865B (zh) 2021-10-01
WO2017106387A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
CN108604538A (zh) 用于生产复合GaN纳米柱的方法及由该方法制成的发光结构
JP3864870B2 (ja) 単結晶窒化ガリウム基板およびその成長方法並びにその製造方法
JP3968968B2 (ja) 単結晶GaN基板の製造方法
Kente et al. Gallium nitride nanostructures: Synthesis, characterization and applications
JP2009234914A (ja) 発光デバイスの製造方法、発光デバイス、GaN基板の製造方法およびGaN基板
US11664221B2 (en) Forming a planar surface of a III-nitride material
Li et al. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE
JP2007084435A (ja) 単結晶GaN基板の製造方法と単結晶GaN基板
JPH11261169A (ja) 窒化物系iii−v族化合物半導体の成長方法および半導体装置
Wu et al. Crystallographic orientation control and optical properties of GaN nanowires
Hong et al. Position‐Controlled Selective Growth of ZnO Nanorods on Si Substrates Using Facet‐Controlled GaN Micropatterns
JP2022173200A (ja) 横方向に配向した低欠陥密度で大面積の金属窒化物アイランドのプラットフォームおよびその製造方法
Suo et al. Synthetic strategies and applications of GaN nanowires
Alloing et al. Metalorganic chemical vapor deposition of GaN nanowires: from catalyst-assisted to catalyst-free growth, and from self-assembled to selective-area growth
Tang et al. Nitride nanocolumns for the development of light-emitting diode
JP4573049B2 (ja) 窒化ガリウム結晶、窒化ガリウム基板及び半導体レーザデバイス
Daudin et al. The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes
US20220246797A1 (en) Semiconductor template and fabrication method
JP5418437B2 (ja) 単結晶GaN基板
Sallet Metal‐Organic Chemical Vapor Deposition Growth of ZnO Nanowires
WO2005110057A2 (en) Crystallographic alignment of high-density nanowire arrays
JP2006282504A (ja) 窒化ガリウム単結晶基板ならびにその製造方法
RU2758776C2 (ru) Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n
Al Marwani Size–dependent Optical Properties of Top-Down GaN Nano LEDs
Dogan et al. III–V semiconductor nanowires: Nitrides (N-based; III-N)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1261540

Country of ref document: HK

AD01 Patent right deemed abandoned

Effective date of abandoning: 20240507