CN108598853B - 一种锥形氧化锌紫外纳米激光器及其制备方法 - Google Patents

一种锥形氧化锌紫外纳米激光器及其制备方法 Download PDF

Info

Publication number
CN108598853B
CN108598853B CN201810468492.5A CN201810468492A CN108598853B CN 108598853 B CN108598853 B CN 108598853B CN 201810468492 A CN201810468492 A CN 201810468492A CN 108598853 B CN108598853 B CN 108598853B
Authority
CN
China
Prior art keywords
zno
laser
nanocone
zinc oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810468492.5A
Other languages
English (en)
Other versions
CN108598853A (zh
Inventor
鲍永军
黄亚东
杨柳
刘唱
刘钧松
朱品文
崔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810468492.5A priority Critical patent/CN108598853B/zh
Publication of CN108598853A publication Critical patent/CN108598853A/zh
Application granted granted Critical
Publication of CN108598853B publication Critical patent/CN108598853B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/169Nanoparticles, e.g. doped nanoparticles acting as a gain material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明的一种锥形氧化锌紫外纳米激光器及其制备方法,属于纳米激光器的技术领域。本发明以ZnO纳米锥作为增益介质和光学谐振腔,制备出一种锥形紫外纳米激光器;该纳米锥具有六边形顶面和底面,底边长约0.5~1.0μm,顶边长约0.1μm,高度约2μm。制备方法是以Zn粉和氧气为原材料,利用CVD方法在蓝宝石衬底上生长出高纯度的ZnO纳米锥。所制备的高纯度ZnO纳米锥的荧光仅出现在385nm左右,可以作为紫外纳米激光器的增益介质,经过光学测试,锥形ZnO紫外纳米激光器光泵浦阈值为5.33mJ/cm2,Q值是1440.40,在生物学、医学、信息储存等领域中具有潜在的应用价值。

Description

一种锥形氧化锌紫外纳米激光器及其制备方法
技术领域
本发明属于激光器设计制造的技术领域,特别涉及以ZnO的微纳结构作为增益介质和谐振腔的紫外纳米激光器。
背景技术
激光器在生物传感器、显微术、激光外科、光计算、信息存储、纳米分析等领域中有着非常广泛的应用。近年来,随着微纳加工技术的发展,在微纳尺度上的半导体纳米激光器引起了人们浓厚的兴趣。具有特定几何形状的半导体微纳结构既可以作为增益介质也可以作为光学谐振腔,制备纳米激光器。
以前报道过激光器共振模式有法布里-帕罗模式、回音壁模式和随机散射模式。如ZnO纳米线在两个相对的端面之间构成法布里-帕罗共振模式;ZnO六角微盘在六个侧面之间构成回音壁共振模式;ZnO纳米粉末的颗粒之间可发生光的随机散射构成闭合光共振通道,产生随机散射共振模式。
本发明的ZnO紫外纳米激光器是利用单个ZnO纳米锥作为共振腔而制备的。这种模式不同于上述三种激射模式,是一种光学腔模。本发明的ZnO纳米锥激光器的几何形状和尺寸与上述纳米激光器不同,这种共振模式对ZnO纳米锥的几何形状和尺寸有严格的要求,尽管以前有过相关报道,利用水热或沉积方法制备出具有相类似几何结构的ZnO结构,并对其光学性质进行了充分的表征,然而,直到目前为止,由于受限于材料的纯度和几何形状,无法在这些类似的锥体结构中实现光激射,没能制备出ZnO纳米锥激光器。本发明人采用CVD方法,优化了纳米锥的材料纯度和几何形状,合成出了具有低缺陷和良好几何形状的ZnO纳米锥,制备出了一种锥形ZnO紫外纳米激光器。
发明内容
本发明要解决的技术问题是,设计一种利用单个ZnO纳米锥作为共振腔而制备的锥形氧化锌紫外纳米激光器,创立一种不同以往的光学腔模激射模式;采用操作简单、成本低廉的CVD方法生长出来纯度高和产量高的ZnO纳米锥。
本发明不仅制备出ZnO纳米锥,而且采用了数值计算方法分析了ZnO纳米锥的共振模式,计算了电场能量的分布。结果表明纳米锥共振时电场能量几乎不分布在纳米锥的上半部分,而主要分布于下半部分。通过控制CVD生长条件从而对样品的几何尺寸和纯度进行控制,使其成为光学共振腔,在内部实现了光的增益,据此设计并制备出了一种ZnO紫外纳米激光器。模拟计算表明,样品底端的六边形边长不能小于约0.3μm,而且高度不能低于约0.6μm,因此,本发明样品生长高度约2μm,底边六边形边长约0.5μm。
本发明锥形氧化锌紫外纳米激光器的具体技术方案如下所述。
一种锥形氧化锌紫外纳米激光器,由六角纳米锥形状的ZnO构成阵列;单个纳米ZnO的底端面为光滑的六边形,边长在0.5~1.0μm范围内,高度为1.9~2.2μm,顶端面为近似六边形,边长为0~0.1μm。
本发明以ZnO纳米锥作为增益介质和光学谐振腔,制备出一种锥形紫外纳米激光器。只有在上述参数范围内优化的几何形状和尺寸,才可以实现ZnO纳米锥的光学共振。
本发明的锥形氧化锌纳米激光器只在380~395nm出现对应半导体本征带隙的自发辐射(即ZnO具有高纯度和光学质量,只在385nm左右出现对应半导体本征带隙的自发辐射,参见图6),在其他波段没有缺陷导致的荧光峰出现。
本发明以ZnO纳米锥作为增益介质和光学谐振腔,制备出一种锥形紫外纳米激光器。这种基于锥体的光学共振腔,与法布里-帕罗模式(Fabry-Perot mode)和回音壁模式(whispering-gallery mode)不同。锥体的上半部分对光学共振的贡献较少,电场强度主要分布于锥体的下半部分并且靠近侧壁,与回音壁模式有些类似。
本发明锥形氧化锌紫外纳米激光器的制备方法的具体技术方案如下所述。
一种锥形氧化锌紫外纳米激光器的制备方法,有衬底制作过程和ZnO纳米锥制备过程;
所述的衬底制作过程,是在沿C面切割的蓝宝石上溅射一层GaN薄膜作为衬底;
所述的ZnO纳米锥制备过程,是将Zn粉和衬底放入石英舟内置于管式炉中间,衬底位于Zn粉下游处;将石英舟抽真空到6×10-3Pa后保持30min,再以流速为1120SCCM充入Ar气,升温至495~510℃后,以流速为13SCCM充入O2气,将石英舟内压力控制在10Pa保持1h;最后自然冷却至室温,在衬底蓝宝石C面上得到ZnO六角纳米锥阵列。
所述的GaN薄膜,厚度可以是2μm,目的在于消除蓝宝石衬底和GaN之间的应力。
所述的Zn粉,最好选择质量纯度为99.99%;所述的O2气,最好选择质量纯度为99.99%。
所述的衬底位于Zn粉下游处,二者之间应当相距2cm左右。
所述的升温,是以20℃/min的速率升温至500℃。
ZnO纳米锥制备过程中应当在通入Ar气之后再升温,升温至495~510℃以后再通入O2气,这样控制ZnO的生成条件,减少缺陷提高ZnO的光学质量。
制备之后对生长的样品进行形貌和光谱表征。使用波长为355nm脉冲激光作为激发光,分别对样品整体和单个ZnO纳米锥进行光学测试,分析激射阈值和Q值等参数。
本发明的ZnO纳米锥生长方法具有操作简单、成本低廉、无需催化剂和对环境友好等优点,并且生长出来的ZnO纳米锥具有纯度高和产量高的特点,为纳米锥激光器在实际应用提供了便利,在生物学、医学、信息储存、光计算和纳米分析等领域中具有重要的潜在应用价值。
附图说明
图1是ZnO紫外纳米激光器的电场强度分布的计算结果。
图2是本发明制备样品的生长设备。
图3是本发明制备的整个样品的电子扫描图像(SEM)。
图4是本发明制备的单根ZnO纳米锥的SEM图。
图5是测试样品光学性质的光路示意图。
图6是本发明ZnO纳米锥荧光谱图。
图7是本发明整个样品的光学激射图。
图8是本发明整个样品的激射谱图。
图9是本发明单根ZnO纳米锥的光学激射图。
图10是本发明单根ZnO纳米锥样品激射谱图。
图11是本发明ZnO紫外纳米激光器激射阈值的拟合图。
具体实施方式
实施例1ZnO纳米锥激光器的设计
为了设计ZnO紫外纳米激光器,模拟计算了ZnO纳米锥的电场强度分布,分析其共振模式。图1是本发明计算的纳米锥内电场强度的分布图。从图1中可以看出,电场能量主要分布于纳米锥下半部分,样品的上半部分电场能量的分布很少,这表明ZnO纳米锥激光器对底边长具有严格的要求,样品的底边长大于约0.3μm的时候,才能支持光学共振腔模式的存在。在经过严格的计算分析后,得到了激光器的几何尺寸的范围,底边边长约0.5μm-1.0μm,顶边边长约0.1μm,高度大约2μm。
实施例2ZnO纳米锥制备过程和样品表征
图2是ZnO纳米锥生长设备的示意图。管式炉内插有石英舟,石英舟内左侧放置锌粉,右侧放置溅射一层GaN薄膜的蓝宝石衬底。
采用CVD方法,在沿C面切割的蓝宝石上溅射一层厚度约2μm的GaN薄膜作为衬底,高纯度Zn粉(99.99%)和O2气(99.99%)作为原材料。将Zn粉放入石英舟内置于管式炉中间,衬底位于Zn粉2cm下游处。利用分子泵将背底真空抽到6×10-3Pa后保持30min,充入Ar气,控制Ar气的流速为1120SCCM,利用蝶阀将压力自始至终控制在10Pa附近,以20℃/min的速率从室温升至500℃后充入O2气,控制O2气的流速为13SCCM,保持1h,完成反应后自然冷却至室温,在衬底蓝宝石C面上得到ZnO六角纳米锥阵列。
为了进一步确认样品的形貌,利用SEM分别表征了整个样品和分离出来的单个锥体。图3是整体ZnO纳米锥的SEM图像,从图中可以看出样品底端面是六边形,其边长在0.5μm-1.0μm范围内,光滑平整。图4是单个ZnO纳米锥的SEM图像,高度大约2μm,顶端面为近似六边形,其边长约为0.1μm。侧壁光滑平整。
测量样品的荧光光谱,表征其光学性质。图5是光谱测试设备的光路示意图。用波长355nm的激光作为泵浦光源,用50X紫外物镜将激光聚焦在样品上,光斑大小约为11μm,背散射信号经物镜进入光谱仪和CCD进行采集和处理,得到相应的光谱,相机用来拍摄样品的光学照片。
图6给出样品的荧光谱图。本实施例生长的ZnO纳米锥在波长385nm左右有样品的本征荧光发光,在波长500nm左右没有发现相应的缺陷发光。
如图7所示,利用紫外物镜将355nm的脉冲激光照射到样品上,出现非常亮的紫色光斑。为了研究光谱的光学性质,进一步测量了样品的光谱,得到了如图8所示的激射光谱。横轴表示波长,纵轴表示绝对强度。当激光功率较低时,样品由于自发辐射发出微弱的荧光,谱线光滑,荧光峰大约在385nm处。随着激光功率的增加,样品的荧光不断增强,当入射光强度达到一定强度后,开始出现一些尖锐的发光峰。这些尖锐的窄峰对应氧化锌纳米锥的激射光谱。为了进一步表征ZnO纳米锥的光学特性,再分离出单个纳米锥并测量其光谱。图9是将单个样品挑在盖玻片上的光学激射照片,中间呈现三角形的亮斑为单个ZnO纳米锥。图10是单个ZnO纳米锥的光谱,横轴仍用波长来标示,纵轴表示绝对强度。仍用355nm激光激发,慢慢增加激光功率。从图中可以发现当激光强度增加时,在波长387nm和388附近先后出现两个激射峰,表明单个ZnO纳米锥具有双模的激光发射。在以前报道中,相应的ZnO纳米激光器的共振模式为回音壁模式、法布里帕罗模式或者随机散射模式。而本发明人发明的样品由于其独特的几何形状,光学共振模式与他们的共振机制明显不同。单个ZnO纳米锥构成了一个光学共振腔,实现了光学腔共振模式。
为了研究ZnO纳米锥激光器的光学参数,在不同激发功率密度情况下测试了荧光光谱,通过数值拟合计算纳米锥激光器的激射阈值。如图11所示,用激光斑的能量密度作为横坐标,纵轴表示绝对强度,前五个测试点采用线性拟合,后6个测试点采用e指数拟合,两条曲线的交点值为5.33mJ/cm2,即为ZnO纳米锥激光器的阈值,其明显低于其他ZnO微纳结构的激射阈值。采用峰值强度除以半高宽的方法,计算出了该激光器的Q值约为1440.40。

Claims (5)

1.一种锥形氧化锌紫外纳米激光器的制备方法,所述的锥形氧化锌紫外纳米激光器,由六角纳米锥形状的ZnO构成阵列,在380~395nm出现对应半导体本征带隙的自发辐射;制备有衬底制作过程和ZnO纳米锥制备过程;
所述的衬底制作过程,是在沿C面切割的蓝宝石上溅射一层GaN薄膜作为衬底;
所述的ZnO纳米锥制备过程,是将Zn粉和衬底放入石英舟内置于管式炉中间,衬底位于Zn粉下游处;将石英舟抽真空到6×10-3Pa后保持30min,再以流速为1120SCCM充入Ar气,升温至495~510℃后,以流速为13SCCM充入O2气,将石英舟内压力控制在10Pa保持1h;最后自然冷却至室温,在衬底蓝宝石C面上得到ZnO六角纳米锥阵列。
2.如权利要求1所述的锥形氧化锌紫外纳米激光器的制备方法,其特征在于,所述的GaN薄膜,厚度为2μm。
3.如权利要求1所述的锥形氧化锌紫外纳米激光器的制备方法,其特征在于,所述的Zn粉,质量纯度为99.99%;所述的O2气,质量纯度为99.99%。
4.如权利要求1、2或3所述的锥形氧化锌紫外纳米激光器的制备方法,其特征在于,所述的衬底位于Zn粉下游处,二者之间相距2cm。
5.如权利要求1、2或3所述的锥形氧化锌紫外纳米激光器的制备方法,其特征在于,所述的升温,是以20℃/min的速率升温至500℃。
CN201810468492.5A 2018-05-16 2018-05-16 一种锥形氧化锌紫外纳米激光器及其制备方法 Expired - Fee Related CN108598853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810468492.5A CN108598853B (zh) 2018-05-16 2018-05-16 一种锥形氧化锌紫外纳米激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810468492.5A CN108598853B (zh) 2018-05-16 2018-05-16 一种锥形氧化锌紫外纳米激光器及其制备方法

Publications (2)

Publication Number Publication Date
CN108598853A CN108598853A (zh) 2018-09-28
CN108598853B true CN108598853B (zh) 2020-04-17

Family

ID=63631398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810468492.5A Expired - Fee Related CN108598853B (zh) 2018-05-16 2018-05-16 一种锥形氧化锌紫外纳米激光器及其制备方法

Country Status (1)

Country Link
CN (1) CN108598853B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054102A (zh) * 2021-03-15 2021-06-29 江苏师范大学 一种纳米仿生器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978310A (zh) * 2005-12-09 2007-06-13 中国科学院物理研究所 一种表面纳米锥阵列及其制作方法
CN106953231A (zh) * 2017-05-02 2017-07-14 中山大学 一种实现碲化镓(GaTe)二维材料激子激光发射的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070314B1 (ko) * 2009-01-28 2011-10-06 명지대학교 산학협력단 염산 수용액 내에서 화학적 에칭에 의하여 제조된 산화아연나노콘 및 그의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978310A (zh) * 2005-12-09 2007-06-13 中国科学院物理研究所 一种表面纳米锥阵列及其制作方法
CN106953231A (zh) * 2017-05-02 2017-07-14 中山大学 一种实现碲化镓(GaTe)二维材料激子激光发射的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Y. H. Yang et al.ZnO nanocone: Application in fabrication of the smallest whispering gallery optical resonato.《Nanoscale》.2011,第3卷(第2期),摘要,第592-597页,图1-3. *
ZnO nanocone: Application in fabrication of the smallest whispering gallery optical resonato;Y. H. Yang et al;《Nanoscale》;20110228;第3卷(第2期);摘要,第592-597页,图1-3 *

Also Published As

Publication number Publication date
CN108598853A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
Snee et al. Whispering‐gallery‐mode lasing from a semiconductor nanocrystal/microsphere resonator composite
Christodoulou et al. Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route
CN112016676B (zh) 一种神经网络模型预测的半导体薄膜工艺参数优化系统
CN108598853B (zh) 一种锥形氧化锌紫外纳米激光器及其制备方法
CN105606588B (zh) 一种GaN热膨胀系数测量的Raman散射方法
FR2851259A1 (fr) Procede de fabrication de monocristaux hexagonaux et leur utilisation comme substrat pour des composants semi-conducteurs.
JP2020180042A (ja) バルク吸収率が低くかつ微小特徴部密度が低い厚手の高光学品質合成多結晶ダイヤモンド材料
Fan et al. Single-mode channel waveguide at 1540 nm in Er-doped ZnO thin film
Ashikkalieva Laser-induced graphitization of diamond bulk: the state of the art (a review)
Novikov et al. Highly stable silver nanoparticles for SERS applications
CN110618478A (zh) 一种基于单个金属银纳米颗粒-金属银薄膜的Fano共振结构及其制备方法
US20070054425A1 (en) Apparatus for measuring semiconductor physical characteristics
CN113249700A (zh) 一种具有红外高折射率低色散的超材料及其制备方法
CN102368502A (zh) 一种Al掺杂的氧化锌薄膜及其制备方法
Gruzintsev et al. Mode structure of laser emission from ZnO Nanorods with one metal mirror
Kumaran New solid state laser crystals created by epitaxial growth
Hasheminiasari Aluminium nitride piezoelectric thin films reactively deposited in closed field unbalanced magnetron sputtering for elevated temperature'smart'tribological applications
Rossinelli et al. High-Temperature Synthesis of CdSe-Based Core/Shell, Core/Shell/Shell, and Core/Graded-Shell Nanoplatelets for Stable and Efficient Narrowband Emitters
CN109852381A (zh) 一种Yb和Er共掺杂的氧化镓薄膜及其制备方法
CN109182979A (zh) 一种生长可控的稀土钕掺杂二硒化钼薄膜材料制备方法
KR20240068493A (ko) 황화아연 소재 및 이의 품질 평가 방법
Andersson et al. Silicon nanoclusters formed through self-assembly on CaF2 substrates: morphology and optical properties
Thonke et al. ZnO nanostructures: optical resonators and lasing
US20060243197A1 (en) Transition metal doped spinel type mgal2o4 fluorescent material and laser apparatus using, and method of making, such fluorescent material
Koulas-Simos et al. High-𝜷 Lasing in Self-Assembled Photonic-Defect Microcavities with a Transition Metal Dichalcogenide Monolayer as Active Material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200417

Termination date: 20210516