CN108579675A - 一种改性碳纳米管薄膜及其制备方法和应用 - Google Patents

一种改性碳纳米管薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN108579675A
CN108579675A CN201810399524.0A CN201810399524A CN108579675A CN 108579675 A CN108579675 A CN 108579675A CN 201810399524 A CN201810399524 A CN 201810399524A CN 108579675 A CN108579675 A CN 108579675A
Authority
CN
China
Prior art keywords
carbon nano
tube film
modified carbon
iron
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810399524.0A
Other languages
English (en)
Inventor
刘艳彪
姚劲宇
李方
沈忱思
马春燕
吴鹏
杨胜楠
刘翔
许凯
马帅
温金熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810399524.0A priority Critical patent/CN108579675A/zh
Publication of CN108579675A publication Critical patent/CN108579675A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种改性碳纳米管薄膜及其制备方法和应用,所述改性碳纳米管薄膜由负载有铁和/或锰有机盐的酸化碳纳米管薄膜,经热处理诱导在薄膜表面原位分解生成纳米氧化铁和/或纳米氧化锰颗粒制得。所述改性碳纳米管薄膜应用于处理含砷、锑废水。本发明的纳米级铁、锰氧化物可原位生成,数量和尺寸可控,且不影响碳纳米管薄膜导电性,在使用过程中有能耗低、无物化污泥等优点。

Description

一种改性碳纳米管薄膜及其制备方法和应用
技术领域
本发明属于水处理技术领域,特别涉及一种改性碳纳米管薄膜及其制备方法和应用。
背景技术
砷(arsenic,As)、锑(antimony,Sb)在元素周期表中同属第五主族,具有相同ns2np3外层电子轨道和相似物理化学性质的元素。近年来由于锑、砷超标导致的一系列水环境污染和生态安全问题引起广泛关注。锑、砷均可与人体内蛋白质的巯基结合,导致细胞内离子失衡、代谢紊乱以及神经系统和其它器官受损,对人体具有高累积毒性和高致癌性,美国和欧盟已将锑、砷列为优先控制污染物,并严格限制排放。我国的锑矿储备量和生产量都居于世界首位,因此面临着最为严重的锑污染风险。在自然水环境中,锑、砷主要以三价(III)和五价(V)无机含氧酸根离子形式存在,其存在形式受水环境氧化还原状态影响显著,在有氧环境中大多以五价的形式存在,而在地下水等无氧环境中主要以三价的形式存在,三价化合物的毒性更高、迁移性更强,且去除难度更大。研究表明,Sb(III)的毒性比Sb(V)高10倍,As(III)的毒性比As(V)高60倍以上。采矿、电子、金属加工、纺织印染等行业大量使用含砷、锑化合物,由于人们对重金属材料的开发和利用,大量砷、锑化合物被释放到了环境中,导致我国水体面临着严重的砷、锑污染问题,极大地加剧了环境风险。发展高效、快速、经济解决砷、锑污染的新技术,也是满足国家水资源安全可持续利用重大需求的有力保障,对缓解日益严峻的环境压力有着重要的现实意义。
目前去除锑、砷的主流技术是化学沉淀法、生物处理法和吸附法。由于环境水体中锑、砷浓度较低,传统化学法往往受限于动力学,难以达到理想的处理效果,同时还会具有工艺复杂,成本高,产泥量大和二次污染等问题;生物法尽管成本低廉,但存在占地面积大和处理周期长等问题;吸附法具有操作简单、效率高、成本低和可回收等优点,被认为是适用于水体砷、锑污染治理的可行技术之一。
根据吸附材料的不同,吸附法可分为生物吸附、碳材料吸附和金属氧化物吸附等。相关研究表明,砷、锑与铁基吸附材料和铁锰复合材料有强亲和力,可通过表面络合、氧化还原等作用相互结合。铁基和铁锰复合吸附材料因其廉价易制、吸附能力强、结构功能可调、易分离回收、安全环保等特点而被认为是理想的砷、锑吸附材料。
由于铁基与铁锰复合吸附材料是一种松散的、易水解的、无定形的絮凝物质,同时存在导水性能差和难于脱水等问题,通常将其负载到的载体上使用。而在载体材料的选择上,碳基材料、沸石和合成树脂等具有比表面积大、机械性能好、孔道结构丰富和分散性优良特点的材料得到了广泛应用。尽管现阶段在复合材料的制备上有大量的文献发表,但在高效复合锑、砷吸附体系的构筑上仍存在不足,例如吸附速率慢、脱附难、效率低且功能单一。要实现现有锑、砷吸附体系的局限,必须在两方面取得突破:(1)强化体系的快/高吸附和易脱附特性,(2)丰富吸附体系的活性位点及耦合氧化功能。近年来碳纳米管领域的新进展九尾高效功能复合的锑、砷污染物处理技术开辟了一个新方向。
碳纳米管是一种具有特殊结构的一维量子材料,自从1991年被正式认识并命名后,引起各个领域研究者的关注。由于碳纳米管薄膜兼具优异的机械性、柔韧性、化学稳定性、抗菌耐污性和超疏水性等理化性质,被认为是具有前景的分离材料。碳纳米管可通过相转化或物理过滤等方法制成孔隙率高(>85%)和孔径小(<100nm)的三维自支撑膜,可用作吸附材料的优良载体。
同时,近年来辅助电场技术在膜分离领域的应用也备受关注,将电化学和膜分离的技术优势相结合,基于尺寸筛分和催化氧化双重机制以实现污染物的物理吸附和电化学氧化共同去除。对于具有高导电性和大比表面积的碳纳米管薄膜,可在辅助电场作用下,进一步将截留的污染物原位电化学降解来实现自清洁。通过改变电场强度,可实现直接氧化(直接电子转移)和间接氧化(利用OH·等活性氧化物或Cl·等活性氯化物)的有效调控。
发明内容
本发明所要解决的技术问题是提供一种改性碳纳米管薄膜及其制备方法和应用,该材料纳米级铁、锰氧化物可原位生成,数量和尺寸可控,且不影响碳纳米管薄膜导电性,在使用过程中有能耗低、无物化污泥等优点。
本发明提供了一种改性碳纳米管薄膜,所述改性碳纳米管薄膜由负载有铁和/或锰有机盐的酸化碳纳米管薄膜,经热处理诱导在薄膜表面原位分解生成纳米氧化铁和/或纳米氧化锰颗粒制得。
所述有机盐为硬脂酸盐、乙酰丙酮盐或醇盐。
优选的,所述铁有机盐为硬脂酸铁、乙基己醇异丙氧基铁(III)或乙酰丙酮铁;锰有机盐为乙酰丙酮锰。
所述铁和/或锰与碳的摩尔比为1:0.1~0.5。
当酸化碳纳米管薄膜同时负载铁有机盐和锰有机盐时,所述铁和锰的质量比为……。
本发明还提供了一种改性碳纳米管薄膜的制备方法,包括:
(1)将碳纳米管用混合酸回流冲洗酸化,离心,然后抽滤到PTFE支撑膜上,得到酸化碳纳米管薄膜;
(2)将铁和/或锰有机盐溶解于溶剂中,超声分散,通过蠕动泵将铁和/或锰有机盐负载到酸化碳纳米管薄膜表面;随后将碳纳米管薄膜进行热处理,得到改性碳纳米管薄膜;其中,铁和/或锰与碳的摩尔比为1:0.1~0.5。
所述步骤(1)中的混合酸为体积比3:1的硫酸和硝酸。
所述步骤(2)中的热处理温度为200~500℃,热处理时间为0.5~3h。
本发明还提供了一种改性碳纳米管薄膜的应用,所述改性碳纳米管薄膜应用于处理含砷、锑废水。
所述处理步骤具体如下:
(1)以改性碳纳米管薄膜作为阳极,以多孔钛片为阴极,通过蠕动泵将含砷、锑废水以0.5-6mL/min的流速通过改性碳纳米管薄膜,进行电化学氧化处理;其中,当砷、锑浓度不超过500μg/L时所施加电压的范围为0.5~2V,当砷、锑浓度超过500μg/L施加电压的范围为2~4V;
(2)含砷、锑废水通过改性碳纳米管薄膜后收集于蓄水容器,进行循环过滤。
所述改性碳纳米管薄膜吸附饱和后,通过碱溶液浸泡再生,再生过程中利用辅助电场施加反向电压,即以改性碳纳米管薄膜作为阴极,以多孔钛片为阳极,再生过程所施加电压不超过1V。
本发明利用铁基或铁锰复合材料对碳纳米管薄膜进行妥善修饰和改性,可基于改性薄膜的孔径小和孔隙率高的特征,缩短锑、砷离子向活性吸附位点的迁移距离;基于改性薄膜的高导电性特征,在辅助电场作用下,可实现三价锑、砷的吸附强化,通过施加反向电场可实现其氧化产物的脱附强化;通过辅助电场诱导的直接/间接氧化机制可实现三价锑、砷到五价的原位转化,再利用铁基或铁锰复合改性材料实现对五价锑、砷的高效吸附去除。
有益效果
(1)本发明制备原料简单易得、制备周期较短、制备条件温和,原料和制备的成本都较低;
(2)本发明采用低沸点铁有机盐和/或锰有机盐过滤-热解技术,低温热处理诱导有机盐分解原位生成纳米氧化铁和/或纳米氧化锰,分散性良好,数量和尺寸可控,制备工序简单;
(3)纳米氧化铁和/或纳米氧化锰牢固有序地搭载在碳纳米管网络的结构,相比于颗粒状吸附剂增大了吸附剂的比表面积和孔隙率,基于碳纳米管薄膜的小孔径特征,有效缩短了锑离子向活性吸附位点的迁移距离,且有效防止纳米铁和/或纳米锰的失活溶出;
(4)本发明采取过滤的吸附方式相比于传统的吸附方式减少了水力阻抗,增强传质,从吸附动力学上增强吸附作用,提高了吸附速率与吸附量;
(5)本发明利用材料中碳纳米管的导电性,通过电化学氧化将砷、锑,尤其是高毒性的三价砷、锑氧化为五价。在外加电场的作用下减少了铁锰氧化物表面的负电荷,降低吸附过程中的静电阻抗作用,提高了材料的吸附能力。
(6)本发明改性碳纳米管薄膜吸附饱和后,可采用辅助电场增强脱附,用碱溶液浸泡再生,具有优良的脱附速率与再生性能。
附图说明
图1为本发明改性碳纳米管薄膜的工作原理示意图;
图2为实施例5的吸附动力曲线图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
取20mg碳纳米管用混酸(硫酸:硝酸=3:1)回流冲洗3小时,在转速15000RPM下的离心15min。将酸化后的碳纳米管抽滤到PTFE支撑膜上,先用蒸馏水冲洗,再用乙醇冲洗。将200mg乙酰丙酮铁和100mg乙酰丙酮锰溶解于乙醇溶剂中,水浴超声10min,使乙酰丙酮铁和乙酰丙酮锰分散于乙醇溶剂中。通过蠕动泵将铁锰有机盐溶液负载到酸化CNT薄膜表面。将负载有铁锰有机盐的碳纳米管薄膜在290℃的反应釜中加热3h,使乙酰丙酮铁和乙酰丙酮锰分别分解原位生成氧化铁和氧化锰。制备的薄膜在100℃的烘箱8h烘干后质量为159.8mg。该材料对砷的吸附容量为17.6mg/L。
实施例2
取18mg碳纳米管用混酸(硫酸:硝酸=3:1)回流冲洗3小时,在转速15000RPM下的离心15min。将酸化后的碳纳米管抽滤到PTFE支撑膜上,先用蒸馏水冲洗,再用乙醇冲洗。将50mg乙基己醇异丙氧基铁(III)溶解于乙醇溶剂中,水浴超声10min。通过蠕动泵将乙基己醇异丙氧基铁(III)溶液负载到酸化碳纳米管薄膜表面。然后将负载有乙基己醇异丙氧基铁(III)的碳纳米管薄膜在200℃的反应釜中加热0.5h,使乙基己醇异丙氧基铁(III)分解原位生成氧化铁。制备的薄膜在100℃的烘箱7h烘干后质量为45.57mg。该材料对锑的吸附容量为17.0mg/L。
实施例3
取16.5mg碳纳米管用混酸(硫酸:硝酸=3:1)回流冲洗3小时,在转速15000RPM下的离心15min。将酸化后的碳纳米管抽滤到PTFE支撑膜上,先用蒸馏水冲洗,再用乙醇冲洗。将146.5mg硬脂酸铁溶解于乙醇溶剂中,水浴超声10min。通过蠕动泵将硬脂酸铁溶液负载到酸化碳纳米管薄膜表面。将负载有硬脂酸铁的碳纳米管薄膜在500℃的反应釜中加热2h,使硬脂酸铁分解原位生成氧化铁。制备的薄膜在100℃的烘箱7h烘干后质量为59.8mg,其比表面积为188.6m2/g,约为碳纳米管比表面积的两倍(88.5m2/g)。
实施例4
取20mg碳纳米管用混酸(硫酸:硝酸=3:1)回流冲洗3小时,在转速15000RPM下的离心10min。将酸化后的碳纳米管抽滤到PTFE支撑膜上,先用蒸馏水冲洗,再用乙醇冲洗。将40.0mg乙酰丙酮铁和29.0mg乙酰丙酮锰溶解于乙醇溶剂中,水浴超声10min,使乙酰丙酮铁和乙酰丙酮锰分散于乙醇溶剂中。通过蠕动泵将铁锰有机盐溶液负载到酸化碳纳米管薄膜表面。将负载有铁锰有机盐的碳纳米管薄膜在230℃的反应釜中加热2.5h,使乙酰丙酮铁和乙酰丙酮锰分别分解原位生成氧化铁和氧化锰。制备的薄膜在100℃的烘箱7h烘干后质量为72.35mg,其比表面积为192.5m2/g。
取上海某地地下水样100mL,测量得知其砷浓度为52μg/L,pH=7.82,采用循环过滤式方式,通过蠕动泵将含砷、锑溶液以6mL/min的流速通过单层氧化铁改性碳纳米管薄膜后收集于100mL烧杯中,然后重新进入过滤装置循环过滤6h。经过滤后样品砷浓度小于10μg/L,pH=7.0。
实施例5
取18.0mg碳纳米管用混酸(硫酸:硝酸=3:1)回流冲洗3小时,在转速15000RPM下的离心10min。将酸化后的碳纳米管抽滤到PTFE支撑膜上,先用蒸馏水冲洗,再用乙醇冲洗。将63.5mg乙酰丙酮铁溶解于乙醇溶剂中,水浴超声10min,使乙酰丙酮铁分散于乙醇溶剂中。通过蠕动泵将乙酰丙酮铁溶液负载到酸化碳纳米管薄膜表面。将负载有乙酰丙酮铁的碳纳米管薄膜在300℃的反应釜中加热3h,使乙酰丙酮铁分解原位生成氧化铁。制备的薄膜在100℃的烘箱7h烘干后质量为61.5mg,其比表面积为176.5m2/g。
如图1设置电化学改性碳纳米管薄膜工作装置,将纳米铁改性碳纳米管薄膜作为阳极,多孔钛片做阴极。在过滤操作中,通过蠕动泵将含砷、锑的溶液以0.5mL/min的流速通过纳米铁改性碳纳米管薄膜。含锑溶液通过氧化铁改性碳纳米管薄膜后进入蓄水容器,然后重新进入过滤装置进行循环过滤。电化学氧化所施加的电压范围为4V。配制1000μg/L的Sb(III)、Sb(V)溶液,分别在施加辅助点电场和不施加辅助电场的情况下进行吸附动力学实验,实验结果如图2所示,在不施加辅助电场的情况下,氧化铁改性碳纳米管薄对Sb(III)的吸附动力学常数k为0.037min-1,吸附平衡时的Sb浓度为235μg/L,而对Sb(V)的吸附动力学常数k为0.011min-1,吸附平衡时的Sb浓度为8.84μg/L,说明纳米铁对五价锑具有亲和力,三价锑迁移性为强,不易吸附。而在施加辅助电场的情况下三价锑的吸附平衡浓度与不施加辅助电场的五价锑吸附平衡浓度相近,吸附速率和吸附量都比不施加辅助电场的情况下三价锑吸附高,说明在过滤过程中通过薄膜的锑(III)被氧化为锑(V),从而增强了吸附速率与吸附量。
该改性碳纳米管薄膜在4V电压的辅助电场下的吸附量为1.8mg/g,在吸附饱和后通过5mmol/L的NaOH溶液浸泡再生,第一次浸泡再生和第二次浸泡再生后的吸附量分别为初次吸附量的91%和84%。第三次浸泡再生通以反向电压,即改性碳纳米管薄膜作为阴极,钛片作为阳极,辅助电场电压为1V,第三次浸泡再生后的改性碳纳米管薄膜吸附量为初次吸附的95%。

Claims (10)

1.一种改性碳纳米管薄膜,其特征在于:所述改性碳纳米管薄膜由负载有铁和/或锰有机盐的酸化碳纳米管薄膜,经热处理诱导在薄膜表面原位分解生成纳米氧化铁和/或纳米氧化锰颗粒制得。
2.根据权利要求1所述的一种改性碳纳米管薄膜,其特征在于:所述有机盐为硬脂酸盐、乙酰丙酮盐或醇盐。
3.根据权利要求1所述的一种改性碳纳米管薄膜,其特征在于:所述铁和/或锰与碳的摩尔比为1:0.1~0.5。
4.根据权利要求1或3所述的一种改性碳纳米管薄膜,其特征在于:所述铁和锰的质量比为1:0.05~0.20。
5.一种改性碳纳米管薄膜的制备方法,包括:
(1)将碳纳米管用混合酸回流冲洗酸化,离心,然后抽滤到PTFE支撑膜上,得到酸化碳纳米管薄膜;
(2)将铁和/或锰有机盐溶解于溶剂中,超声分散,通过蠕动泵将铁和/或锰有机盐负载到酸化碳纳米管薄膜表面;随后将碳纳米管薄膜进行热处理,得到改性碳纳米管薄膜;其中,铁和/或锰与碳的摩尔比为1:0.1~0.5。
6.根据权利要求5所述的一种改性碳纳米管薄膜的制备方法,其特征在于:所述步骤(1)中的混合酸为体积比3:1的硫酸和硝酸。
7.根据权利要求5所述的一种改性碳纳米管薄膜的制备方法,其特征在于:所述步骤(2)中的热处理温度为200~500℃,热处理时间为0.5~3h。
8.一种如权利要求1所述的改性碳纳米管薄膜的应用,其特征在于:所述改性碳纳米管薄膜应用于处理含砷、锑废水。
9.根据权利要求8所述的一种改性碳纳米管薄膜的应用,其特征在于:所述处理步骤具体如下:
(1)以改性碳纳米管薄膜作为阳极,以多孔钛片为阴极,通过蠕动泵将含砷、锑废水以0.5-6mL/min的流速通过改性碳纳米管薄膜,进行电化学氧化处理;其中,当砷、锑浓度不超过500μg/L时所施加电压的范围为0.5~2V,当砷、锑浓度超过500μg/L施加电压的范围为2~4V;
(2)含砷、锑废水通过改性碳纳米管薄膜后收集于蓄水容器,进行循环过滤。
10.根据权利要求9所述的一种改性碳纳米管薄膜的应用,其特征在于:所述改性碳纳米管薄膜吸附饱和后,通过碱溶液浸泡再生,再生过程中利用辅助电场施加反向电压,即以改性碳纳米管薄膜作为阴极,以多孔钛片为阳极,再生过程所施加电压不超过1V。
CN201810399524.0A 2018-04-28 2018-04-28 一种改性碳纳米管薄膜及其制备方法和应用 Pending CN108579675A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810399524.0A CN108579675A (zh) 2018-04-28 2018-04-28 一种改性碳纳米管薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810399524.0A CN108579675A (zh) 2018-04-28 2018-04-28 一种改性碳纳米管薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN108579675A true CN108579675A (zh) 2018-09-28

Family

ID=63610809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810399524.0A Pending CN108579675A (zh) 2018-04-28 2018-04-28 一种改性碳纳米管薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108579675A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956529A (zh) * 2019-04-01 2019-07-02 东华大学 一种FeOCl/CNT复合膜的制备方法和应用
CN110683616A (zh) * 2019-10-17 2020-01-14 东华大学 一种连续流光电化学过滤系统及其应用
CN114031224A (zh) * 2021-11-11 2022-02-11 重庆大学 用于从水中去除pfas的可持续电化学过滤系统和方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162965A1 (en) * 2010-01-07 2011-07-07 Samsung Electronics Co., Ltd. Deionization device
CN102641722A (zh) * 2012-04-24 2012-08-22 清华大学 电化学强化纳米铁锰负载碳纤维吸附除砷材料及方法
KR20130135416A (ko) * 2012-05-31 2013-12-11 에스케이이노베이션 주식회사 유동성 전극 및 유동성 전극 구조체
CN103723801A (zh) * 2014-01-03 2014-04-16 湖南农业大学 基于电吸附去除水体中砷的复合电极水热合成方法及其去砷的方法
CN103936116A (zh) * 2014-04-22 2014-07-23 中国科学院生态环境研究中心 一种用于电吸附水中重金属离子的二氧化锰/碳复合电极及电吸附方法
CN104229949A (zh) * 2014-09-18 2014-12-24 西安建筑科技大学 负载铁离子和锰离子活性炭纤维复合阴极的制备及其应用
CN104941576A (zh) * 2014-03-28 2015-09-30 西南科技大学 三维网状羟基氧化铁/细菌纤维素碳复合材料及制备方法和用途
CN105478074A (zh) * 2015-12-23 2016-04-13 中国科学院烟台海岸带研究所 一种重金属离子去除剂的制备方法及应用
CN105948183A (zh) * 2016-05-06 2016-09-21 清华大学 一种低能耗的电化学协同氧化-絮凝去除水体中砷的装置与方法
US20180080148A1 (en) * 2016-09-16 2018-03-22 Paul K. Westerhoff Electrospun polymeric porous fibers containing nanomaterials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162965A1 (en) * 2010-01-07 2011-07-07 Samsung Electronics Co., Ltd. Deionization device
CN102641722A (zh) * 2012-04-24 2012-08-22 清华大学 电化学强化纳米铁锰负载碳纤维吸附除砷材料及方法
KR20130135416A (ko) * 2012-05-31 2013-12-11 에스케이이노베이션 주식회사 유동성 전극 및 유동성 전극 구조체
CN103723801A (zh) * 2014-01-03 2014-04-16 湖南农业大学 基于电吸附去除水体中砷的复合电极水热合成方法及其去砷的方法
CN104941576A (zh) * 2014-03-28 2015-09-30 西南科技大学 三维网状羟基氧化铁/细菌纤维素碳复合材料及制备方法和用途
CN103936116A (zh) * 2014-04-22 2014-07-23 中国科学院生态环境研究中心 一种用于电吸附水中重金属离子的二氧化锰/碳复合电极及电吸附方法
CN104229949A (zh) * 2014-09-18 2014-12-24 西安建筑科技大学 负载铁离子和锰离子活性炭纤维复合阴极的制备及其应用
CN105478074A (zh) * 2015-12-23 2016-04-13 中国科学院烟台海岸带研究所 一种重金属离子去除剂的制备方法及应用
CN105948183A (zh) * 2016-05-06 2016-09-21 清华大学 一种低能耗的电化学协同氧化-絮凝去除水体中砷的装置与方法
US20180080148A1 (en) * 2016-09-16 2018-03-22 Paul K. Westerhoff Electrospun polymeric porous fibers containing nanomaterials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN LIU ET AL.: "Titanium Dioxide-Coated Carbon Nanotube Network Filter for Rapid and Effective Arsenic Sorption", 《ENVIRONMENTAL SCIENCE & TECHNOLOGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956529A (zh) * 2019-04-01 2019-07-02 东华大学 一种FeOCl/CNT复合膜的制备方法和应用
CN110683616A (zh) * 2019-10-17 2020-01-14 东华大学 一种连续流光电化学过滤系统及其应用
CN114031224A (zh) * 2021-11-11 2022-02-11 重庆大学 用于从水中去除pfas的可持续电化学过滤系统和方法
CN114031224B (zh) * 2021-11-11 2023-09-19 重庆大学 用于从水中去除pfas的可持续电化学过滤系统和方法

Similar Documents

Publication Publication Date Title
Xiao et al. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials
Hu et al. Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr (VI) under visible-light irradiation
Wu et al. Amidoxime-functionalized macroporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water
Yu et al. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application
Liang et al. A novel vacancy-strengthened Z-scheme g-C3N4/Bp/MoS2 composite for super-efficient visible-light photocatalytic degradation of ciprofloxacin
Tao et al. Fabrication, application, optimization and working mechanism of Fe2O3 and its composites for contaminants elimination from wastewater
Pan et al. Removal of heavy metal from wastewater using ion exchange membranes
Xie et al. Hierarchical Bi2MoO6 microsphere photocatalysts modified with polypyrrole conjugated polymer for efficient decontamination of organic pollutants
Yan et al. Construction of 3D/2D ZnFe2O4/g-C3N4 S-scheme heterojunction for efficient photo-Fenton degradation of tetracycline hydrochloride
CN106000130B (zh) 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法
Vo et al. Facile synthesis of magnetic framework composite MgFe2O4@ UiO-66 (Zr) and its applications in the adsorption–photocatalytic degradation of tetracycline
CN108579675A (zh) 一种改性碳纳米管薄膜及其制备方法和应用
CN102641722A (zh) 电化学强化纳米铁锰负载碳纤维吸附除砷材料及方法
CN109999752A (zh) 一种高效吸附和降解有机污染物的多功能材料的制备方法及应用
CN104258816B (zh) 一种用于废水处理的磁性剥离型蒙脱土纳米复合材料的制备方法
Li et al. Self-cleaning photocatalytic PVDF membrane loaded with NH2-MIL-88B/CDs and Graphene oxide for MB separation and degradation
Wang et al. Self-sustained bioelectrical reduction system assisted iron–manganese doped metal-organic framework membrane for the treatment of electroplating wastewater
Mao et al. Simultaneous removal of arsenite and cadmium by a manganese-crosslinking sodium alginate modified biochar and zerovalent iron composite from aqueous solutions
Tan et al. Highly efficient photocatalytic degradation over rose-like 1D/2D La (OH) 3/(BiO) 2 OHCl heterostructures boosted by rich oxygen vacancies and enhanced interfacial charge transfer
Chen et al. One-dimensional magnetic flower-like CoFe2O4@ Bi2WO6@ BiOBr composites for visible-light catalytic degradation of Rhodamine B
CN105498552B (zh) 一种半导体氧化物改性的导电滤膜及其制备方法和应用
Yang et al. Well-designed MOF-derived hollow octahedral structure TiO2 coupled with ultra-thin porous g-C3N4 to enhance the degradation of real liquor brewing wastewater
Li et al. In-situ polymerization induced Mn2O3 sites as intrinsic carbon defects for capacitive organic dye removal
Wang et al. High-efficiency electrochemical removal of Cd (II) from wastewater using birnessite-biochar composites: performance and mechanism
Liu et al. Control strategies for microplastic pollution in groundwater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928

RJ01 Rejection of invention patent application after publication