CN108572200A - 一种气体分子探测器 - Google Patents

一种气体分子探测器 Download PDF

Info

Publication number
CN108572200A
CN108572200A CN201810752911.8A CN201810752911A CN108572200A CN 108572200 A CN108572200 A CN 108572200A CN 201810752911 A CN201810752911 A CN 201810752911A CN 108572200 A CN108572200 A CN 108572200A
Authority
CN
China
Prior art keywords
graphene film
graphene
film
basilar memebranes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810752911.8A
Other languages
English (en)
Other versions
CN108572200B (zh
Inventor
高超
彭蠡
沈颖
俞丹萍
卡西克燕.戈坡塞米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810752911.8A priority Critical patent/CN108572200B/zh
Publication of CN108572200A publication Critical patent/CN108572200A/zh
Application granted granted Critical
Publication of CN108572200B publication Critical patent/CN108572200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Abstract

本发明公开了一种气体分子探测器,该探测器是基于一超薄的石墨烯膜实现探测,该超薄的石墨烯膜通过以下方法获得:将表面贴合有石墨烯膜的AAO基底膜以石墨烯膜所在的面朝上,置于水面上;按压AAO基底膜,使得AAO基底膜下沉,石墨烯膜漂浮于水面本发明避开了还原剥离、刻蚀剥离两种剥离手段,保证剥离得到的石墨烯膜不受任何破坏,保持其在AAO基底膜上的原有形态、结构和性能。同时,对AAO基底膜也没有产生任何破坏,可重复利用。由于这种石墨烯膜厚度小,在60nm以下,甚至可以达到几个纳米,这种探测器具有极高的灵敏度。

Description

一种气体分子探测器
技术领域
本发明涉及传感器领域,尤其涉及一种气体分子探测器。
背景技术
2010年以来,石墨烯及其衍生物由于其卓越的物理化学性能得到了各个领域的关注。氧化石墨烯是制备石墨烯的最重要的前驱体,同时其也具有自身独特的物理性质,具有大量的缺陷、含氧官能团等,因此具有很高的光透明性、高亲水性、高带隙等等。基于此,其在湿度探测方面得到了广泛关注。
目前氧化石墨烯在湿度探测方面主要运用滴涂、旋涂、喷雾等方法,此方法有以下弊端:其一,表面结构不可控;第二,均匀性不可控;第三,厚度不可控;第四,膜内部结构不可控。综合以上因素,所做的氧化石墨烯基湿度探测器,不具有很好的线性响应,且响应时间很长。
为此,我们设计了纳米厚褶皱石墨烯膜。褶皱的结构,保证了气体分子探测的响应面积。其纳米级的厚度以及化学氧化石墨烯表面众多的空洞结构使得气体可以快速穿透整个膜,保证了膜高度的响应性以及很短的响应时间。
发明内容
本发明的目的在于针对现有技术的不足,提供一种气体分子探测器。
本发明的目的是通过以下技术方案实现的:一种气体分子探测器,包括高灵敏度探测膜;所述高灵敏度探测膜通过以下方法负载于基底上:
(1)在AAO基底膜上抽滤得到厚度不大于60nm的氧化石墨烯膜;
(2)将表面贴合有石墨烯膜的AAO基底膜以石墨烯膜所在的面朝上,置于水面上;按压AAO基底膜,使得AAO基底膜下沉,石墨烯膜漂浮于水面。
(3)用硅片将漂浮于水面的石墨烯膜从下往上捞起,使得石墨烯膜平铺于基底表面,自然晾干;
(4)对位于硅片表面的氧化石墨烯膜进行还原,使得其电导率大于50S/cm。
进一步地,所述按压位置为AAO基底膜的边缘。
进一步地,所述步骤1中石墨烯的厚度为4nm。
进一步地,所述AAO基底膜的表面的孔隙率不小于40%。
进一步地,所述步骤4中,还原方法包括化学还原、热还原;所述化学还原采用的还原剂选自水合肼、氢碘酸;热还原具体为:200℃水蒸气还原。
进一步地,所述基底为具有二氧化硅涂层的硅基底。
进一步地,所述基底为多孔结构。
进一步地,所述金属电极为金电极。
本发明的有益效果在于:本发明用抽滤的方法制备薄膜,保证了薄膜的均匀性以及器件的稳定性;采用了水转移的方法,将石墨烯膜的厚度控制在纳米级别,提高了薄膜的响应度,同时转移过程中,引入了微观褶皱,增加了薄膜的响应速度。整个过程简单、绿色、极易操作。
附图说明
图1为AAO基底膜剥离石墨烯膜的流程示意图。
图2为实施例1AAO基底膜剥离石墨烯膜的实验过程图。
图3为对比例1MCE基底膜剥离石墨烯膜的实验过程图。
图4为实施例1制得的石墨烯膜的原子力显微镜图。
图5为实施例2制得的石墨烯膜的原子力显微镜图。
图6为实施例1制备得到的石墨烯膜的电阻变化与NO2浓度的线性曲线。
图7为为实施例1制备得到的石墨烯膜的响应曲线。
图8为为实施例1制备得到的石墨烯膜的扫描图。
具体实施方式
实施例1
如图1所示,通过控制石墨烯溶液的浓度,通过抽滤方法在AAO基底膜抽滤得到尺寸为2mm的超薄的氧化石墨烯膜;将表面贴合有氧化石墨烯膜的AAO基底膜(孔隙率为40%),以石墨烯膜所在的面朝上,置于水面上,如图1a和2a;按压AAO基底膜,如图2b,AAO基底膜开始下沉,如图2c,最后,AAO基底膜沉于杯底,石墨烯膜(虚线圈内)漂浮于水面,如图1b和2d。
用多孔硅片将漂浮于水面的石墨烯膜从下往上捞起,使得石墨烯膜平铺于基底表面,自然晾干后,如图8所示,表面具有大量褶皱;通过原子力显微镜测试其厚度为4nm,如图4所示。
对位于多孔硅片表面的氧化石墨烯膜利用200℃水蒸气还原,还原1h,干燥后测得其电导率54S/cm。在石墨烯膜的两端喷涂金电极。
将上述探测器分别置于NO2为10、20、30……、90ppm的真空手套箱内,实时监测其电阻变化,如图6所示,从图中可以看出,该石墨烯膜的电阻与NO2浓度呈线性变化,可用于NO2浓度检测。另外,测试了NO2浓度为10ppm的响应速度,如图7所示,从图中可以看出,该石墨烯膜的响应时间为0.3秒。
实施例2
通过控制石墨烯溶液的浓度,通过抽滤方法在AAO基底膜抽滤得到尺寸为2mm的超薄氧化石墨烯膜;将表面贴合有氧化石墨烯膜的AAO基底膜(孔隙率为60%),以石墨烯膜所在的面朝上,置于水面上,按压AAO基底膜边缘,AAO基底膜开始下沉,最后,AAO基底膜沉于杯底,石墨烯膜漂浮于水面,石墨烯膜成功剥离。
用多孔硅片将漂浮于水面的石墨烯膜从下往上捞起,使得石墨烯膜平铺于基底表面,自然晾干后,得到表面褶皱的石墨烯膜,通过原子力显微镜测试其厚度为14nm,如图5所示。
对位于硅片表面的氧化石墨烯膜利用水合肼还原,还原0.5h,干燥后测得其电导率67S/cm。在石墨烯膜的两端喷涂铂金电极。
将上述探测器分别置于NO2为10、20、30……、90ppm的真空手套箱内,实时监测其电阻变化,该石墨烯膜的电阻与NO2浓度呈线性变化,可用于NO2浓度检测。另外,测试了NO2浓度为10ppm的响应速度,该石墨烯膜的响应时间为0.6秒。
实施例3
通过控制石墨烯溶液的浓度,通过抽滤方法在AAO基底膜抽滤得到尺寸为2mm的超薄氧化石墨烯膜;将表面贴合有氧化石墨烯膜的AAO基底膜(孔隙率为60%),以石墨烯膜所在的面朝上,置于水面上,按压AAO基底膜边缘,AAO基底膜开始下沉,最后,AAO基底膜沉于杯底,石墨烯膜漂浮于水面,石墨烯膜成功剥离。
用多孔硅片将漂浮于水面的石墨烯膜从下往上捞起,使得石墨烯膜平铺于基底表面,自然晾干后,得到表面褶皱的石墨烯膜,通过原子力显微镜测试其厚度为57nm。
对位于硅片表面的氧化石墨烯膜利用氢碘酸还原,还原0.5h,干燥后测得其电导率84S/cm。在石墨烯膜的两端喷涂铂金电极。
将上述探测器分别置于NO2为10、20、30……、90ppm的真空手套箱内,实时监测其电阻变化,该石墨烯膜的电阻与NO2浓度呈线性变化,可用于NO2浓度检测。另外,测试了NO2浓度为10ppm的响应速度,该石墨烯膜的响应时间为1秒左右。
对比例1
按照如实施例2的抽滤方法,在MCE基底膜抽滤得到厚度为20nm的还原氧化石墨烯膜,然后将表面贴合有还原氧化石墨烯膜的MCE基底膜(孔隙率为60%),以石墨烯膜所在的面朝上,置于水面上,图3a所示,按压MCE基底膜边缘,MCE基底膜不下沉,图3b所示,石墨烯膜剥离失败。
需要说明的是,抽滤法是目前公认的最均匀制备石墨烯膜的方法,在一定的抽滤液量下,可以调控浓度来对石墨烯膜的厚度进行控制,厚度最低可以是一层石墨烯,随着石墨烯浓度的增加,在压力作用下,新增的石墨烯逐步填充到第一层石墨烯的间隙,使得第一层石墨烯逐步完全填充,进而发展成第二层,不断重复以上步骤,可以制备厚度跨越2层到上万层石墨烯的石墨烯纳米膜。因此,本领域技术人员可通过简单的实验参数调整即可获得厚度为4nm的石墨烯膜。

Claims (8)

1.一种气体分子探测器,其特征在于,包括基底和高灵敏度探测膜;所述高灵敏度探测膜的两端均连接有一金属电极,所述高灵敏度探测膜通过以下方法负载于基底上:
(1)在AAO基底膜上抽滤得到厚度不大于60nm的氧化石墨烯膜;
(2)将表面贴合有石墨烯膜的AAO基底膜以石墨烯膜所在的面朝上,置于水面上;按压AAO基底膜,使得AAO基底膜下沉,石墨烯膜漂浮于水面;
(3)用硅片基底将漂浮于水面的石墨烯膜从下往上捞起,使得石墨烯膜平铺于基底表面,自然晾干;
(4)对位于硅片表面的氧化石墨烯膜进行还原,使得其电导率大于50S/cm。
2.根据权利要求1所述的探测器,其特征在于,所述按压位置为AAO基底膜的边缘。
3.根据权利要求1所述的探测器,其特征在于,所述步骤1中石墨烯的厚度为4nm。
4.根据权利要求1所述的探测器,其特征在于,所述AAO基底膜的表面孔隙率不小于40%。
5.根据权利要求1所述的探测器,其特征在于,所述步骤4中,还原方法包括化学还原、热还原;所述化学还原采用的还原剂选自水合肼、氢碘酸;热还原具体为:200℃水蒸气还原。
6.根据权利要求1所述的探测器,其特征在于,所述基底为具有二氧化硅涂层的硅基底。
7.根据权利要求6所述的探测器,其特征在于,所述基底为多孔结构。
8.根据权利要求1所述的探测器,其特征在于,所述金属电极为金电极。
CN201810752911.8A 2018-07-10 2018-07-10 一种气体分子探测器 Active CN108572200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810752911.8A CN108572200B (zh) 2018-07-10 2018-07-10 一种气体分子探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810752911.8A CN108572200B (zh) 2018-07-10 2018-07-10 一种气体分子探测器

Publications (2)

Publication Number Publication Date
CN108572200A true CN108572200A (zh) 2018-09-25
CN108572200B CN108572200B (zh) 2021-12-07

Family

ID=63572401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810752911.8A Active CN108572200B (zh) 2018-07-10 2018-07-10 一种气体分子探测器

Country Status (1)

Country Link
CN (1) CN108572200B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127666A (zh) * 2019-04-23 2019-08-16 宁波昕科工贸有限公司 一种可多次折叠高弹性石墨烯膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602916A (zh) * 2012-03-16 2012-07-25 南京先丰纳米材料科技有限公司 一种大面积石墨烯薄膜的异地应用方法
WO2013123339A1 (en) * 2012-02-17 2013-08-22 Aksay Ilhan A Graphene-ionic liquid composites
CN104502412A (zh) * 2014-12-08 2015-04-08 中国石油大学(华东) 一种基于石墨烯的氨气敏感材料及其制备方法
WO2015149116A1 (en) * 2014-04-04 2015-10-08 Commonwealth Scientific And Industrial Research Organisation Graphene process and product
CN106770160A (zh) * 2016-12-13 2017-05-31 中国计量大学 一种贵金属/石墨烯sers衬底制备方法
CN107651673A (zh) * 2017-10-13 2018-02-02 浙江大学 一种纳米级厚度独立自支撑褶皱石墨烯膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123339A1 (en) * 2012-02-17 2013-08-22 Aksay Ilhan A Graphene-ionic liquid composites
CN102602916A (zh) * 2012-03-16 2012-07-25 南京先丰纳米材料科技有限公司 一种大面积石墨烯薄膜的异地应用方法
WO2015149116A1 (en) * 2014-04-04 2015-10-08 Commonwealth Scientific And Industrial Research Organisation Graphene process and product
CN104502412A (zh) * 2014-12-08 2015-04-08 中国石油大学(华东) 一种基于石墨烯的氨气敏感材料及其制备方法
CN106770160A (zh) * 2016-12-13 2017-05-31 中国计量大学 一种贵金属/石墨烯sers衬底制备方法
CN107651673A (zh) * 2017-10-13 2018-02-02 浙江大学 一种纳米级厚度独立自支撑褶皱石墨烯膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHE-NING YEH 等: "On the origin of the stability of graphene oxide membranes in water", 《NATURE CHEMISTRY》 *
ZHIQIANG NIU 等: "A Leavening Strategy to Prepare Reduced Graphene Oxide Foams", 《ADVANCED MATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127666A (zh) * 2019-04-23 2019-08-16 宁波昕科工贸有限公司 一种可多次折叠高弹性石墨烯膜及其制备方法

Also Published As

Publication number Publication date
CN108572200B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN106841326B (zh) 一种对乙醇敏感的氧化锌-氧化钴纳米中空多面体膜
CN104458835B (zh) 一种湿度传感器及其制备方法
US8445889B2 (en) Method of patterning of nanostructures
CN105800605B (zh) 一种氧化石墨烯/石墨烯双层压阻薄膜及制备方法
CN110887874B (zh) 一种基于钙钛矿的湿敏传感器及其制备方法和用途
CN102953113A (zh) 一种硅基纳米尺寸有序多孔硅的制备方法
CN106769287B (zh) 一种实现高效率液体封装的方法
WO2012036634A1 (en) Process for altering the wetting properties of a substrate surface
CN106556677B (zh) 一种三维多孔石墨烯超薄膜气体传感器及其制备方法
Fan et al. Ethanol sensing properties of hierarchical SnO2 fibers fabricated with electrospun polyvinylpyrrolidone template
KR101651108B1 (ko) 센서용 전극의 제조방법 및 이에 따라 제조되는 센서
JP2007147556A (ja) 薄膜及び薄膜の製造方法およびその薄膜を用いた化学センサ
CN108572200A (zh) 一种气体分子探测器
CN109928387A (zh) 一种电催化制备无缺陷乱层堆叠石墨烯纳米膜的方法与应用
CN107192743A (zh) 一种花状分等级结构二硫化锡/二氧化锡纳米复合气敏材料的制备方法
CN107024510B (zh) 一种石墨烯试纸及其制备和基于该试纸的液体分析方法
CN108593720A (zh) 一种快速响应的气体分子探测器
CN108226236A (zh) 一种集成化湿度传感器及其制作工艺
CN108892125A (zh) 一种气体分子探测膜
CN207866749U (zh) 一种集成化湿度传感器
CN209513602U (zh) 一种纳米粒子自组装结构的制作装置
CN108862247A (zh) 一种气体分子探测复合膜
Zeng et al. Synthesis and room-temperature NO2 gas sensing properties of a WO3 nanowires/porous silicon hybrid structure
CN106823849B (zh) 超薄沸石咪唑酯骨架杂化膜、其制备方法及应用
CN106383196B (zh) 一种石墨烯/铜颗粒混合结构的生物传感器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Gao Chao

Inventor after: Fang Wenzhang

Inventor after: Shen Ying

Inventor after: Yu Danping

Inventor after: Peng Li

Inventor after: Karthik Yan.

Inventor before: Gao Chao

Inventor before: Peng Li

Inventor before: Shen Ying

Inventor before: Yu Danping

Inventor before: Karthik Yan.

GR01 Patent grant
GR01 Patent grant