CN108570649A - 一种区域表面等离子体增强超薄宽带复合吸收膜 - Google Patents

一种区域表面等离子体增强超薄宽带复合吸收膜 Download PDF

Info

Publication number
CN108570649A
CN108570649A CN201810385545.7A CN201810385545A CN108570649A CN 108570649 A CN108570649 A CN 108570649A CN 201810385545 A CN201810385545 A CN 201810385545A CN 108570649 A CN108570649 A CN 108570649A
Authority
CN
China
Prior art keywords
sio
nanometer
layer
surface plasma
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810385545.7A
Other languages
English (en)
Inventor
俞科
郭廷玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROYAL TECH CSP Ltd
Original Assignee
ROYAL TECH CSP Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROYAL TECH CSP Ltd filed Critical ROYAL TECH CSP Ltd
Priority to CN201810385545.7A priority Critical patent/CN108570649A/zh
Publication of CN108570649A publication Critical patent/CN108570649A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种区域表面等离子体增强超薄宽带复合吸收膜,由上而下依次为Ag+SiO2纳米层、SiO2纳米层、Ag纳米层和Si纳米层,其中,所述Ag+SiO2纳米层中,Ag纳米颗粒随机嵌入电介质SiO2纳米膜层中,在电介质SiO2纳米膜层中形成蜂窝状孔隙结构,且孔隙直径为50~100nm,孔隙间距为100~200nm,所述Si纳米层由共聚焦孪生Si靶通过中频电源溅射镀覆在不锈钢基底表面上,形成中频孪生溅射形态。本发明利用表面等离子光子学的原理,通过将超薄吸收膜内的强干涉与局部表面等离激元共振结合起来,利用表面特殊的纳米结构可导致局域光电场显著增强,产生奇异的光学特性,在300‑800nm波长范围内吸收率接近100%。

Description

一种区域表面等离子体增强超薄宽带复合吸收膜
技术领域
本发明涉及一种区域表面等离子体增强超薄宽带复合吸收膜,属于光热领域。
背景技术
传统的基于金属陶瓷的选择性太阳能吸收膜因其优异的光吸收性能对正在蓬勃发展的太阳能热发电行业起了至关重要的作用,典型的金属陶瓷吸收膜如Mo-Al2O3,W-Al2O3等正在被使用于槽式太阳能光热电站的集热管。但是,作为集热管内管的不锈钢管对于太阳光为选择性吸收,在吸热的同时由于光的反射而散热,造成一定的热损失,虽然现有的金属陶瓷吸收膜如Mo-Al2O3,W-Al2O3由于太阳光的吸收,但是并不能减弱光的反射,从而不能有效减少热损失,一般的金属陶瓷吸收膜如Mo-Al2O3,W-Al2O3的太阳光吸收率为96%,但是反射率达到13%,影响了太阳光的吸收效率,而且传统的金属陶瓷薄膜较厚,涂覆成本较高,因此造成了一定的资源浪费和生产成本。
发明内容
为了克服传统金属陶瓷薄膜的不足,本发明提出一种区域表面等离子体增强超薄宽带复合吸收膜,利用表面等离子光子学的原理,通过将超薄吸收膜内的强干涉与局部表面等离激元共振结合起来,利用表面特殊的纳米结构可导致局域光电场显著增强,产生奇异的光学特性,在300-800nm波长范围内吸收率接近100%。
为达到上述目的,本发明的技术方案是这样实现的:
一种区域表面等离子体增强超薄宽带复合吸收膜,由上而下依次为Ag+SiO2纳米层、SiO2纳米层、Ag纳米层和Si纳米层,其中,所述Ag+SiO2纳米层中,Ag纳米颗粒随机嵌入电介质SiO2纳米膜层中,在电介质SiO2纳米膜层中形成蜂窝状孔隙结构,且孔隙直径为50~100nm,各孔隙间间距为100~200nm,所述Si纳米层由共聚焦孪生Si靶通过中频电源溅射镀覆在不锈钢基底表面上,形成中频孪生溅射形态。
优选地,所述Ag+SiO2纳米层由Ag靶和SiO2靶分别通过直流电源和射频电源同时共溅射镀覆在SiO2纳米层表面,且所述Ag+SiO2纳米层厚度为10~40nm。
优选地,所述SiO2纳米层由SiO2靶通过射频电源溅射镀覆在Ag纳米层表面,且所述SiO2纳米层的厚度为10~30nm。
优选地,所述Ag纳米层由Ag靶通过直流电源溅射镀覆在Si纳米层表面上,且所述Ag纳米层的厚度为70~110nm。
优选地,所述Si纳米层的厚度为150~200nm。
优选地,所述Ag靶、SiO2靶和共聚焦孪生Si靶均为平面靶,且所述共聚焦孪生Si靶中Si的纯度为:99.9999% ,所述Ag靶中Ag的纯度为99.999%,所述SiO2靶中SiO2纯度为99.98%。
优选地,所述Ag纳米颗粒的粒径为3-5.5nm。
优选地,所述Ag纳米颗粒在Ag+SiO2纳米层中的填充率为40-68%。
有益效果:本发明提供一种区域表面等离子体增强超薄宽带复合吸收膜,通过受控制造,将具有各种充填因子的超薄复合吸收膜作为用于阻抗匹配的金属绝缘体复合吸收膜的顶层,在纳米复合膜的表面上随机形成几十纳米直径的金属颗粒,这些自形成的顶层表面纳米粒子通过激发局域表面等离子体激元共振来增强光的捕获,且通过优化纳米复合薄膜的填充系数和厚度,实现吸收膜在从紫外到可见光的宽带范围内的光吸收达到几乎100%。此外本发明不仅可提高在可见光光谱范围内的光吸收率,而且由于本发明的超薄纳米复合吸收膜比传统的金属陶瓷吸收膜薄得多,且致密度高、纯度高,附着牢固,因此还具有成本效益。
附图说明
图1是本发明的膜层结构图;
图2是本发明的镀膜室工作状态简图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
一种区域表面等离子体增强超薄宽带复合吸收膜, 由上而下依次为Ag+SiO2纳米层、SiO2纳米层、Ag纳米层和Si纳米层,其中,所述Ag+SiO2纳米层中,Ag纳米颗粒随机嵌入电介质SiO2纳米膜层中,在电介质SiO2纳米膜层中形成蜂窝状孔隙结构,且孔隙直径为50~100nm,孔隙间距为100~200nm,所述Si纳米层由共聚焦孪生Si靶通过中频电源溅射镀覆在不锈钢基底表面上,形成中频孪生溅射形态。
优选地,所述Ag+SiO2纳米层由Ag靶和SiO2靶分别通过直流电源和射频电源同时共溅射镀覆在SiO2纳米层表面,且所述Ag+SiO2纳米层厚度为30nm。
优选地,所述SiO2纳米层由SiO2靶通过射频电源溅射镀覆在Ag纳米层表面,且所述SiO2纳米层的厚度为20nm。
优选地,所述Ag纳米层由Ag靶通过直流电源溅射镀覆在Si纳米层表面上,且所述Ag纳米层的厚度为100nm。
优选地,所述Si纳米层的厚度为150~200nm。
优选地,所述Ag靶、SiO2靶和共聚焦孪生Si靶均为平面靶,且所述共聚焦孪生Si靶中Si的纯度为:99.9999% ,所述Ag靶中Ag的纯度为99.999%,所述SiO2靶中SiO2纯度为99.98%。
优选地,所述Ag纳米颗粒的粒径为3-5.5nm。
优选地,所述Ag纳米颗粒在Ag+SiO2纳米层中的填充率为58%。
实施例1:
集热管的不锈钢基体管材经过抛光达到镀膜要求后,经超声波清洗、烘干,放入镀膜室内,进行如下镀膜步骤:
(1)对镀膜室进行抽真空,当真空镀膜室真空度达3×10-4Pa时,开启粒子轰击,清洗不锈钢基体管材;
(2)加热不锈钢基体管材并向镀膜室内充氩气,保持真空室内真空度达5×10-3Pa,开始加热温度升至450℃;
(3)镀Si纳米层,开启中频双靶电源(其他电源关闭),启动中频孪生靶开始工作,如图2所示,不锈钢基体管材从左向右运动镀Si,其厚度是通过控制镀膜速率、不锈钢基体管材运动速率、镀膜时间和真空度来控制, 控制Si纳米层厚度为150nm-200nm;
(4)镀Ag纳米层,开启直流电源(其它电源关闭),启动Ag靶开始工作,如图2所示,不锈钢基体管材从右向左运动镀Ag,其厚度是通过控制镀膜速率、不锈钢基体管材运动速率、镀膜时间和真空度来控制, 当工件达到最左边时控制Ag纳米层厚度为100nm;
(5)镀SiO2,开启射频电源(其它电源关闭),启动SiO2靶开始工作,如图2所示,不锈钢基体管材从左向右运动镀Ag,其厚度是通过控制镀膜速率、不锈钢基体管材运动速率、镀膜时间和真空度来控制, 当工件达到最左边时控制SiO2纳米层厚度为20nm;
(6)Ag+SiO2共溅射:直流电源和射频电源共同开启(其它电源关闭),同时启动Ag靶和SiO2靶开始共溅,如图2所示,不锈钢基体管材从右向左运动,实现直流和射频共溅,Ag+SiO2纳米层厚度是通过控制镀膜速率、不锈钢基体管材运动速率、镀膜时间和真空度来控制,控制Ag+SiO2纳米层厚度为30nm,镀膜工艺结束。
本发明通过透射电子显微镜(TEM),扫描电子显微镜(SEM)和原子力显微镜(AFM)对上述步骤制备的复合膜层进行表征测试,发现其表面形态不是光滑表面,而是以直径为3-5.5nm的颗粒状Ag纳米离子随机嵌入电介质SiO2主体,这种纳米复合吸收膜在红外区域的反射率接近100%,这表明这种纳米复合膜具有较低的热发射率,是一种高吸收率、低热发射率的理想的太阳光吸收表面。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的两种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于: 由上而下依次为Ag+SiO2纳米层、SiO2纳米层、Ag纳米层和Si纳米层,其中,所述Ag+SiO2纳米层中,Ag纳米颗粒随机嵌入电介质SiO2纳米膜层中,在电介质SiO2纳米膜层中形成蜂窝状孔隙结构,且孔隙直径为50~100nm,各孔隙间间距为100~200nm,所述Si纳米层由共聚焦孪生Si靶通过中频电源溅射镀覆在不锈钢基底表面上,形成中频孪生溅射形态。
2.根据权利要求1所述的一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于,所述Ag+SiO2纳米层由Ag靶和SiO2靶分别通过直流电源和射频电源同时共溅射镀覆在SiO2纳米层表面,且所述Ag+SiO2纳米层厚度为10~40nm。
3.根据权利要求1或2所述的一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于,所述SiO2纳米层由SiO2靶通过射频电源溅射镀覆在Ag纳米层表面,且所述SiO2纳米层的厚度为10~30nm。
4.根据权利要求3所述的一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于,所述Ag纳米层由Ag靶通过直流电源溅射镀覆在Si纳米层表面上,且所述Ag纳米层的厚度为70~110nm。
5.根据权利要求1、2或4所述的一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于,所述Si纳米层的厚度为150~200nm。
6.根据权利要求1、2或4所述的一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于,所述Ag靶、SiO2靶和共聚焦孪生Si靶均为平面靶,且所述共聚焦孪生Si靶中Si的纯度为:99.9999% ,所述Ag靶中Ag的纯度为99.999%,所述SiO2靶中SiO2纯度为99.98%。
7.根据权利要求1所述的一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于,所述Ag纳米颗粒的粒径为3-5.5nm。
8.根据权利要求1或6所述的一种区域表面等离子体增强超薄宽带复合吸收膜,其特征在于,所述Ag纳米颗粒在Ag+SiO2纳米层中的填充率为40-68%。
CN201810385545.7A 2018-04-26 2018-04-26 一种区域表面等离子体增强超薄宽带复合吸收膜 Pending CN108570649A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810385545.7A CN108570649A (zh) 2018-04-26 2018-04-26 一种区域表面等离子体增强超薄宽带复合吸收膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810385545.7A CN108570649A (zh) 2018-04-26 2018-04-26 一种区域表面等离子体增强超薄宽带复合吸收膜

Publications (1)

Publication Number Publication Date
CN108570649A true CN108570649A (zh) 2018-09-25

Family

ID=63575369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810385545.7A Pending CN108570649A (zh) 2018-04-26 2018-04-26 一种区域表面等离子体增强超薄宽带复合吸收膜

Country Status (1)

Country Link
CN (1) CN108570649A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196460A (zh) * 2019-06-21 2019-09-03 东北大学 一种与可见光隐身兼容的红外隐身金属纳米颗粒超材料复合膜及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040027973A1 (en) * 2002-08-12 2004-02-12 Tdk Corporation Optical recording medium and method for optically recording data in the same
US20060228564A1 (en) * 2005-04-06 2006-10-12 Eclipse Energy Systems Transparent Electrode
WO2009098655A2 (en) * 2008-02-08 2009-08-13 Politecnico Di Torino Antibacterial films obtained by sputtering, and method for conferring antibacterial properties to a substrate
JP2009256762A (ja) * 2008-04-18 2009-11-05 Toyoshima Seisakusho:Kk スパッタリングターゲットおよびその製造方法
CN101876490A (zh) * 2009-12-25 2010-11-03 中国科学院广州能源研究所 一种太阳能中高温选择性吸热涂层
DE102011113571A1 (de) * 2011-09-19 2013-03-21 Christian-Albrechts-Universität Zu Kiel Absorberschicht für den VIS- und/oder NIR-Spektralbereich
US20130168228A1 (en) * 2011-04-12 2013-07-04 Geoffrey A. Ozin Photoactive Material Comprising Nanoparticles of at Least Two Photoactive Constituents
US20150036234A1 (en) * 2013-08-01 2015-02-05 Board Of Regents, The University Of Texas System Methods and compositions related to dielectric coated metal nanoparticles in thin-film opto-electronic conversion devices
US20160343887A1 (en) * 2015-05-20 2016-11-24 King Fahd University Of Petroleum And Minerals Silver nanoparticles on conducting electrode as plasmonic scattering nanomaterial and related photovoltaic cells
CN106288461A (zh) * 2016-09-29 2017-01-04 常州龙腾光热科技股份有限公司 太阳能集热管
US20170200526A1 (en) * 2014-05-23 2017-07-13 The Regents Of The University Of Michigan Ultra-thin doped noble metal films for optoelectronics and photonics applications
CN208395261U (zh) * 2018-04-26 2019-01-18 常州龙腾光热科技股份有限公司 一种区域表面等离子体增强超薄宽带复合吸收膜

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040027973A1 (en) * 2002-08-12 2004-02-12 Tdk Corporation Optical recording medium and method for optically recording data in the same
US20060228564A1 (en) * 2005-04-06 2006-10-12 Eclipse Energy Systems Transparent Electrode
WO2009098655A2 (en) * 2008-02-08 2009-08-13 Politecnico Di Torino Antibacterial films obtained by sputtering, and method for conferring antibacterial properties to a substrate
JP2009256762A (ja) * 2008-04-18 2009-11-05 Toyoshima Seisakusho:Kk スパッタリングターゲットおよびその製造方法
CN101876490A (zh) * 2009-12-25 2010-11-03 中国科学院广州能源研究所 一种太阳能中高温选择性吸热涂层
US20130168228A1 (en) * 2011-04-12 2013-07-04 Geoffrey A. Ozin Photoactive Material Comprising Nanoparticles of at Least Two Photoactive Constituents
DE102011113571A1 (de) * 2011-09-19 2013-03-21 Christian-Albrechts-Universität Zu Kiel Absorberschicht für den VIS- und/oder NIR-Spektralbereich
US20150036234A1 (en) * 2013-08-01 2015-02-05 Board Of Regents, The University Of Texas System Methods and compositions related to dielectric coated metal nanoparticles in thin-film opto-electronic conversion devices
US20170200526A1 (en) * 2014-05-23 2017-07-13 The Regents Of The University Of Michigan Ultra-thin doped noble metal films for optoelectronics and photonics applications
US20160343887A1 (en) * 2015-05-20 2016-11-24 King Fahd University Of Petroleum And Minerals Silver nanoparticles on conducting electrode as plasmonic scattering nanomaterial and related photovoltaic cells
CN106288461A (zh) * 2016-09-29 2017-01-04 常州龙腾光热科技股份有限公司 太阳能集热管
CN208395261U (zh) * 2018-04-26 2019-01-18 常州龙腾光热科技股份有限公司 一种区域表面等离子体增强超薄宽带复合吸收膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙小飞;魏长平;李启源;许洁;: "Ag/SiO_2复合薄膜的紫外光还原制备及其光学性能", 无机化学学报, no. 11 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196460A (zh) * 2019-06-21 2019-09-03 东北大学 一种与可见光隐身兼容的红外隐身金属纳米颗粒超材料复合膜及其制备方法

Similar Documents

Publication Publication Date Title
CN102121757B (zh) 一种非真空太阳光谱选择性吸收涂层及其制备方法
CN101666557B (zh) 一种非真空太阳光谱选择性吸收膜层及其制备方法
CN107015412A (zh) 一种固态全薄膜电致变色器件的结构及制备方法
Khamlich et al. Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers
CN201218622Y (zh) 一种太阳能选择性吸收涂层
Esposito et al. Optimization procedure and fabrication of highly efficient and thermally stable solar coating for receiver operating at high temperature
CN102122006A (zh) 太阳光谱选择性吸收涂层及其制备方法
CN106676473A (zh) 高光透过且疏水功能的聚四氟乙烯薄膜及其制备方法和应用
CN107270564B (zh) 一种太阳光热吸收涂层
CN103234294A (zh) 中高温太阳能选择性吸收镀层的膜系结构及其制备方法
CN108917210A (zh) 一种自掺杂纳米复合光热转换涂层及其制备方法
CN103255377B (zh) 一种纳米复合Cr-Al-O太阳光谱选择吸收涂层及其制备方法
CN108570649A (zh) 一种区域表面等离子体增强超薄宽带复合吸收膜
CN208395261U (zh) 一种区域表面等离子体增强超薄宽带复合吸收膜
CN106500374B (zh) 一种双相纳米复合太阳能吸收涂层及制造方法
CN109457219B (zh) 一种中低温太阳光谱选择性吸收涂层及其制备方法
Xu et al. Optical optimization and thermal stability of SiN/Ag/SiN based transparent heat reflecting coatings
CN110670029A (zh) 一种铝合金表面高硬耐磨TiN/TiAlSiN复合涂层及其制备方法
CN110257771A (zh) 一种高Al含量的c-CrAlSiN硬质涂层及其制备方法
CN1584445A (zh) NiCrOXNY太阳光谱选择性吸收薄膜及制备方法
CN106403329A (zh) 高温太阳能选择性吸收涂层及其制备方法
CN114635105B (zh) 双织构表面太阳能选择性吸收涂层的制备方法及该涂层
CN108505002A (zh) 一种区域表面等离子体增强超薄复合吸收膜的制备方法
CN108645061A (zh) 多层复合太阳光谱选择性吸收涂层及其制备方法
Park et al. Influence on the haze effect of Si thin-film solar cell on multi-surface textures of periodic honeycomb glass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180925

RJ01 Rejection of invention patent application after publication