CN108566108B - 一种基于桥式多电平开关电容模块的两级式九电平逆变器 - Google Patents

一种基于桥式多电平开关电容模块的两级式九电平逆变器 Download PDF

Info

Publication number
CN108566108B
CN108566108B CN201810365361.4A CN201810365361A CN108566108B CN 108566108 B CN108566108 B CN 108566108B CN 201810365361 A CN201810365361 A CN 201810365361A CN 108566108 B CN108566108 B CN 108566108B
Authority
CN
China
Prior art keywords
electrical level
bridge
voltage
carrier wave
type multi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810365361.4A
Other languages
English (en)
Other versions
CN108566108A (zh
Inventor
何良宗
孙嘉清
程琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810365361.4A priority Critical patent/CN108566108B/zh
Publication of CN108566108A publication Critical patent/CN108566108A/zh
Application granted granted Critical
Publication of CN108566108B publication Critical patent/CN108566108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/501Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by the combination of several pulse-voltages having different amplitude and width
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/5388Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with asymmetrical configuration of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种基于桥式多电平开关电容模块的两级式九电平逆变器。其中DC‑DC变流环节应用了桥式多电平开关电容模块,实现了峰值为4倍输入电压的电压输出,保证了升压环节的高效率和高功率密度,解决了多电平逆变存在的母线电压不平衡的问题;DC‑AC变流环节应用双向开关非对称H桥,结合不等幅载波层叠PWM控制策略,实现了九电平交流输出,提高了直流母线电压利用率,优化了输出波形质量。

Description

一种基于桥式多电平开关电容模块的两级式九电平逆变器
技术领域
本发明涉及一种基于桥式多电平开关电容模块的两级式九电平逆变器。
背景技术
随着煤、石油、天然气等常规能源的日益衰竭,作为其替代品的多种可持续清洁能源,如太阳能、风能、生物质能等成为研究的热点。其中,太阳能因其储量丰富、无噪声、无污染等优势而被公认为是最理想的可持续、绿色环保能源。电能变换装置是光伏发电系统中的一个核心部件。在光伏并网应用中,通常采用并网逆变器实现光伏电池到电网的电能传递。
逆变器作为光伏阵列和电网接口的主要设备,它的性能决定着整个光伏发电系统的性能。为了将光伏阵列产生的电能最大限度地馈入电网,并提高其运行的稳定度、可靠性和精确度,必须对并网逆变器的主电路拓扑选择、滤波器参数设计及其控制策略选取等进行深入研究。
根据功率变换级数,可将并网逆变结构分为两极式变流和单级式变流两种方案。两级式并网逆变结构是指将DC-DC升压变流环节与DC-AC逆变变流环节独立开来,便于两级变流环节都能够独立简化各自的变流控制方法,专注运行效率的提升,确保系统运行的安全与稳定。
针对传统逆变器存在的成本高、体积大、功率密度低、电压抬升能力有限、逆变效率难以提升等缺点,人们将目光投向了开关电容型逆变器。开关电容因为不含电感、变压器等磁性元件,能有效提高功率密度和集成度,减轻系统重量,促进系统小型化,实现高变比升压和宽范围调节。将开关电容网络应用于并网逆变变流技术,对于提高直流侧的电压泵升能力、拓宽并网逆变器容许接入分布式电源输出的直流电压范围,以及分布式并网发电系统进一步的集成化、小型化、高效化发展具有重要的研究意义。
基于传统逆变器在直流输电系统中电压等级的限制,人们开始在拓扑结构和控制方法上来寻求解决方法,其中之一就是多电平逆变技术。多电平逆变技术从系统的拓扑结构上进行优化以实现高压大功率的输出。输出电压随着电平数的增加,其波形会更加平滑、越接近正弦波,谐波也会随之减少,同时,每个开关器件所要承受的电压应力较小。
发明内容
本发明的目的是提供一种基于桥式多电平开关电容模块的两级式九电平逆变器,实现DC-DC变换环节的高效率、高功率密度和高电压变比,DC-AC变换环节应用双向开关非对称H桥,结合不等幅载波层叠PWM控制策略,实现九电平交流输出,提高直流母线电压利用率,优化输出波形质量。
为了解决上述的技术问题,本发明提供了一种基于桥式多电平开关电容模块的两级式九电平逆变器,包括桥式多电平开关电容模块与逆变模块;
所述桥式多电平开关电容模块包含H桥和基本开关电容模块;其中H桥由四个全控器件MOSFET开关管S1、S2、S3、S4组成;其中S1
基本开关电容模块包括串联连接的第一电容C1a和第二电容C1b、串联连接的第三电容C2a和第四电容C2b,以及四个全控器件MOSFET开关管S1a、S1b、S2a、S2b
其中S1的漏极、S3的漏极、S1a的源极相连;S1的源极、S2的漏极、C2a的负极、C2b的正极相连;S2的源极、S4的源极、S1b的漏极相连;S3的源极、S4与C1a的负极、C1b的正极相连;S1a的漏极、S2a的源极、C1a的正极相连;S2a的漏极、C2a的正极相连;S1b的源极、S2b的漏极、C1b的负极相连;S2b的源极、C2b的负极相连;低压端电源并联滤波电容,电源Ui正极接S1的漏极,负级接S2的源极;系统运行过程中,先由桥式多电平开关电容模块变换实现输出电压Ui→2Ui→4Ui→2Ui→Ui的变换过程,继而经由逆变模块实现DC-AC变换。
在一较佳实施例中:当所述全控器件MOSFET开关管S1a、S1b、S2a、S2b闭合,S1、S2、S3、S4断开时,桥式多电平开关电容模块输出的电压Ud=Ui
在一较佳实施例中:当所述全控器件MOSFET开关管S1、S3、S1b、S2b闭合,S2、S4、S1a、S2a断开时,桥式多电平开关电容模块输出的电压Ud=2Ui
当所述全控器件MOSFET开关管S2、S4、S1a、S2a闭合,S1、S3、S1b、S2b断开时,桥式多电平开关电容模块输出的电压Ud=2Ui;且上述两种开关状态保持占空比为0.5的高频交替转换。
在一较佳实施例中:当所述全控器件MOSFET开关管S1、S4、S1a、S2b闭合,S2、S3、S1b、S2a断开时,桥式多电平开关电容模块输出的电压Ud=4Ui
当所述全控器件MOSFET开关管S2、S3、S1b、S2a闭合,S1、S4、S1a、S2b断开时,桥式多电平开关电容模块输出的电压Ud=4Ui;且上述两种开关状态保持占空比为0.5的高频交替转换。
在一较佳实施例中:当所述全控器件MOSFET开关管S1、S1b、S2b闭合,S2、S3、S4、S1a、S2a断开时,桥式多电平开关电容模块输出的电压Ud=2Ui
当所述全控器件MOSFET开关管S2、S1a、S2a闭合,S1、S3、S4、S1b、S2b断开时,桥式多电平开关电容模块输出的电压Ud=2Ui;且上述两种开关状态保持占空比为0.5的高频交替转换。
在一较佳实施例中:所述逆变模块采用双向开关型非对称H桥结构,由一个双向开关与全桥逆变组成;
其中全桥逆变包括由四个MOS管S5、S6、S7、S8构成全桥结构,与基板开关电容模块输出端连接,双向开关S9两端分别连接到基本开关电容模块中电容C2a、C2b的连接点和全桥结构MOS管S5、S6的连接点;
所述MOS管S5、S7的漏极相连,所述MOS管S6、S8的源极相连,MOS管S5的源极与S6的漏极相连,MOS管S7的源极与S8的漏极相连。
在一较佳实施例中:所述逆变模块采用不等幅载波层叠PWM控制策略。
相较于现有技术,本发明的技术方案具有以下优点:
本发明提供的基于桥式多电平开关电容模块的两级式九电平逆变器,产生Ui,2Ui,4Ui三种输出电平合成阶梯波输入逆变模块,控制策略采用基于载波层叠PWM控制方法的不等幅控制方法,输出连续稳定的正弦电压。与传统逆变器相比,上述逆变器在实现DC-DC-AC转换的基础上,保证了升压部分的高效率,实现了母线电容电压平衡;提高了母线电压的利用率,优化了输出波形质量。
附图说明
图1为基于桥式多电平开关电容模块的两级式九电平逆变器拓扑图;
图2为桥式多电平开关电容模块驱动信号与输出电压时序图;
图3为桥式多电平开关电容模块工作状态图
图4为逆变模块拓扑图;
图5为逆变模块工作状态图;
图6为不等幅载波层叠PWM控制策略图;
图7为逆变模块开关时序图;
图8为逆变器输出电压波形图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
参考图1,由图可知,该逆变器可分为桥式多电平开关电容模块1与逆变模块2两部分。
所述桥式多电平开关电容模块1包含H桥和基本开关电容模块;其中H桥由四个全控器件MOSFET开关管S1、S2、S3、S4组成;基本开关电容模块包括串联连接的第一电容C1a和第二电容C1b、串联连接的第三电容C2a和第四电容C2b,以及四个全控器件MOSFET开关管S1a、S1b、S2a、S2b
其中S1的漏极、S3的漏极、S1a的源极相连;S1的源极、S2的漏极、C2a的负极、C2b的正极相连;S2的源极、S4的源极、S1b的漏极相连;S3的源极、S4与C1a的负极、C1b的正极相连;S1a的漏极、S2a的源极、C1a的正极相连;S2a的漏极、C2a的正极相连;S1b的源极、S2b的漏极、C1b的负极相连;S2b的源极、C2b的负极相连;低压端电源并联滤波电容,电源Ui正极接S1的漏极,负级接S2的源极;
该桥式开关电容模块1可通过控制高频开关S1、S2、S3、S4与S1a、S1b、S2a、S2b的通断实现三种电平输出(Ui,2Ui,4Ui),并实现输出电压Ud由Ui→2Ui→4Ui→2Ui→Ui的变换过程,开关驱动信号与电压变换波形如图2所示。现对前半周期即θ∈[0,180°)时开关工作状态分析如下,后半周期θ∈(180°,360°]开关工作状态与前半周期相同。
状态I如图3(a)所示,此时θ∈[0,α)∪[180°-α,180°)。S1a、S1b、S2a、S2b闭合,S1、S2、S3、S4断开,电源Ui直接向串联电容C1a、C1b与串联电容C2a、C2b充电,电容C2a、C2b两端电容均为1/2Ui。由上可得
Ud=Ui (1)
状态II如图3(b)、(c)所示,此时θ∈[α,β)。图3(b)中S1、S3、S1b、S2b闭合,S2、S4、S1a、S2a断开,构成两条回路:Ui通过S1、S2b、S1b向C2b充电,Ui通过S3、S1b向C1b充电。图3(c)中S2、S4、S1a、S2a闭合,S1、S3、S1b、S2b断开,构成两条回路:Ui通过S1a、S2a、S2向C2a充电,Ui通过S1a、S4向C1a充电。在状态II中,图3(b)、(c)的开关状态保持占空比为0.5的交替转换,由此可得
UC1a=UC1b=U,UC2a=UC2b=Ui (2)
Ud=2Ui (3)
状态III如图3(d)、(e)所示,此时θ∈[β,180°-β)。图3(d)中S1、S4、S1a、S2b闭合,S2、S3、S1b、S2a断开,构成两条回路:回路1由Ui、S1a、C1a、S4组成,Ui对C1a充电;回路2由Ui、S1、C2b、C1b、S4组成,Ui、C1b对C2b充电。图3(e)中S2、S3、S1b、S2a闭合,S1、S4、S1a、S2b断开,构成回路:回路1由Ui、S3、C1b、S1b组成,Ui对C1b充电;回路2由Ui、S3、C1a、C2a、S2组成,Ui、C1a对C2a充电。图3(d)、(e)的开关状态保持占空比为0.5的交替转换,此时
UC1a=UC1b=Ui,UC2a=UC2b=2Ui (4)
Ud=4Ui (5)
状态IV如图3(f)、(g)所示,此时θ∈[180°-β,180°-α)。图3(f)中S1、S1b、S2b闭合,S2、S3、S4、S1a、S2a断开,C2b向Ui放电;图3(g)中S2、S1a、S2a闭合,S1、S3、S4、S1b、S2b断开,C2a向Ui放电。图3(f)、(g)的开关状态保持占空比为0.5的交替转换,此时
UC1a=UC1b=Ui,UC2a=UC2b=Ui (6)
Ud=2Ui (7)
上述桥式多电平开关电容模块1输出电压Ud作为直流母线电压与逆变模块2连接。逆变模块2为双向开关型非对称H桥结构,由一个双向开关与全桥逆变组成。参考图4,其中全桥逆变包括由四个MOS管S5、S6、S7、S8构成全桥结构,与基板开关电容模块输出端连接,双向开关S9两端分别连接到基本开关电容模块中电容C2a、C2b的连接点和全桥结构MOS管S5、S6的连接点;所述MOS管S5、S7的漏极相连,所述MOS管S6、S8的源极相连,MOS管S5的源极与S6的漏极相连,MOS管S7的源极与S8的漏极相连。
以下对逆变模块的工作模态进行说明:
模态a:如图5(a)所示,当逆变模块开关S5、S8导通,开关S6、S7、S9关断时,输出端电压为母线电压,即电容C2a、C2b串联后两端电压Ud
模态b:如图5(b)所示,当逆变模块开关S8、S9导通,开关S5、S6、S7关断时,输出端电压为电容C2b两端电压,即UX=1/2Ud
模态c:如图5(c)所示,当逆变模块开关S5与S7导通,其余开关均处于断开状态时,输出端电压UX=0。图5(d)中开关S6与S8导通,其余开关断开时,输出端电压UX=0。
模态d:图5(e)中,开关S7与S9导通,开关S5、S6、S8关断,逆变模块输出端电压为电容C2a两端反向电压,即UX=-UC2a=-1/2Ud
模态e:图5(f)中,开关S6、S7导通,开关S5、S8、S9关断,逆变模块输出端电压为负的母线电压,即UX=-Ud
控制策略如图6所示。该控制策略为基于载波层叠PWM控制方法的不等幅控制方法:由8组频率相同的三角载波a-h分为八层上下层叠,且8组三角载波对称分布于横轴上下,通过一个正弦调制波uS进行调制,调制波uS的幅值为US。其中三角载波a与载波h幅值为1/2US,载波a位于调制波uS为US~1/2US的范围内,载波h位于调制波uS为-US~-1/2US的范围内。载波a与h应用在母线电压Ud等于4Uin的范围内,分别用于实现输出电压在4Uin~2Uin与-4Uin~-2Uin之间的转换;三角载波b与载波g幅值为1/4US,载波b位于调制波uS为1/2US~1/4US的范围内,载波h位于调制波uS为-1/2US~-1/4US的范围内。载波b与g应用在母线电压Ud等于2Uin的范围内,分别用于实现输出电压在2Uin~Uin与-2Uin~-Uin之间的转换;三角载波c、d、e、f幅值为1/8US,载波c位于调制波uS为1/4US~1/8US的范围内,载波d位于调制波uS为1/8US~0的范围内,载波e位于调制波uS为0~-1/8US的范围内,载波f位于调制波uS为-1/8US~-1/4US的范围内。载波c、d、e、f均应用在母线电压Ud等于Uin的范围内,分别用于实现输出电压在Uin~1/2Uin、1/2Uin~0、0~-1/2Uin与-1/2Uin~-Uin之间的转换。
根据输出电压与开关状态的关系和图6给出的控制策略,将调制过程按照调制波uS的值划分为uS≥1/2US,1/4US≤uS<1/2US,1/8US≤uS<1/4US,0≤uS<1/8US,-1/8US≤uS<0,-1/4US≤uS<-1/8US,-1/2US≤uS<-1/4US和uS<-1/2US八个部分分别与载波波a-h进行比较,控制策略分析如表1所示。
表1.不等幅载波层叠PWM控制策略
为简化控制策略,令逆变器正半周输出电平为0时,逆变模块开关S8导通,其余开关均关断;逆变器负半周输出电平为0时,逆变模块开关S7导通,其余开关均关断。
零电平模态简化之后,逆变模块在正半周运行过程中,开关S6、S7驱动信号保持低电平,开关S8驱动信号保持高电平;负半周运行过程中,开关S5、S8驱动信号保持低电平,开关S7驱动信号保持高电平。开关驱动信号时序如图7所示。由图可知,开关S5、S6仅在半个周期内动作,开关S7、S8则工作在工频状态下,有效降低了开关损耗。
由以上工作模态分析与控制策略设计可知,开关电容型九电平逆变器输出波形如图8所示。
综上所述,本文提供的一种基于桥式多电平开关电容模块1的两级式九电平逆变器,产生Ui,2Ui,4Ui三种输出电平合成阶梯波输入逆变模块,控制策略采用基于载波层叠PWM控制方法的不等幅控制方法,输出连续稳定的正弦电压。与传统逆变器相比,上述逆变器在实现DC-DC-AC转换的基础上,保证了升压部分的高效率,实现了母线电容电压平衡;提高了母线电压的利用率,优化了输出波形质量。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
以上所述,仅为本实用新型较佳实施例而已,故不能依此限定本实用新型实施的范围,即依本实用新型专利范围及说明书内容所作的等效变化与修饰,皆应仍属本实用新型涵盖的范围内。

Claims (5)

1.一种基于桥式多电平开关电容模块的两级式九电平逆变器,其特征在于:包括桥式多电平开关电容模块与逆变模块;
所述桥式多电平开关电容模块包含H桥和基本开关电容模块;其中H桥由四个全控器件MOSFET开关管S1、S2、S3、S4组成;基本开关电容模块包括串联连接的第一电容C1a和第二电容C1b、串联连接的第三电容C2a和第四电容C2b,以及四个全控器件MOSFET开关管S1a、S1b、S2a、S2b
其中S1的漏极、S3的漏极、S1a的源极相连;S1的源极、S2的漏极、C2a的负极、C2b的正极相连;S2的源极、S4的源极、S1b的漏极相连;S3的源极、S4与C1a的负极、C1b的正极相连;S1a的漏极、S2a的源极、C1a的正极相连;S2a的漏极、C2a的正极相连;S1b的源极、S2b的漏极、C1b的负极相连;S2b的源极、C2b的负极相连;低压端电源Ui并联滤波电容,电源Ui正极接S1的漏极,负极接S2的源极;
系统运行过程中,先由桥式多电平开关电容模块变换实现输出电压Ui→2Ui→4Ui→2Ui→Ui的变换过程,继而经由逆变模块实现DC-AC变换;
所述逆变模块采用基于载波层叠PWM控制方法的不等幅控制方法:由8组频率相同的三角载波a-h分为八层上下层叠,且8组三角载波对称分布于横轴上下,通过一个正弦调制波uS进行调制,调制波uS的幅值为US;其中三角载波a与载波h幅值为1/2US,载波a位于调制波uS为US~1/2US的范围内,载波h位于调制波uS为-US~-1/2US的范围内;载波a与h应用在母线电压Ud等于4Uin的范围内,分别用于实现输出电压在4Uin~2Uin与-4Uin~-2Uin之间的转换;三角载波b与载波g幅值为1/4US,载波b位于调制波uS为1/2US~1/4US的范围内,载波g位于调制波uS为-1/2US~-1/4US的范围内;载波b与g应用在母线电压Ud等于2Uin的范围内,分别用于实现输出电压在2Uin~Uin与-2Uin~-Uin之间的转换;三角载波c、d、e、f幅值为1/8US,载波c位于调制波uS为1/4US~1/8US的范围内,载波d位于调制波uS为1/8US~0的范围内,载波e位于调制波uS为0~-1/8US的范围内,载波f位于调制波uS为-1/8US~-1/4US的范围内;载波c、d、e、f均应用在母线电压Ud等于Uin的范围内,分别用于实现输出电压在Uin~1/2Uin、1/2Uin~0、0~-1/2Uin与-1/2Uin~-Uin之间的转换;所述母线电压Ud为桥式多电平开关电容模块输出的电压Ud
所述逆变模块采用双向开关型非对称H桥结构,由一个双向开关S9与全桥逆变电路组成;
其中全桥逆变电路包括由四个MOS管S5、S6、S7、S8构成的全桥结构,与基本开关电容模块输出端连接,双向开关S9两端分别连接到基本开关电容模块中电容C2a、C2b的连接点和全桥结构MOS管S5、S6的连接点;
所述MOS管S5、S7的漏极相连,所述MOS管S6、S8的源极相连,MOS管S5的源极与S6的漏极相连,MOS管S7的源极与S8的漏极相连。
2.根据权利要求1所述的一种基于桥式多电平开关电容模块的两级式九电平逆变器,其特征在于:当所述全控器件MOSFET开关管S1a、S1b、S2a、S2b闭合,S1、S2、S3、S4断开时,桥式多电平开关电容模块输出的电压Ud=Ui
3.根据权利要求1所述的一种基于桥式多电平开关电容模块的两级式九电平逆变器,其特征在于:
当所述全控器件MOSFET开关管S1、S3、S1b、S2b闭合,S2、S4、S1a、S2a断开时,桥式多电平开关电容模块输出的电压Ud=2Ui
当所述全控器件MOSFET开关管S2、S4、S1a、S2a闭合,S1、S3、S1b、S2b断开时,桥式多电平开关电容模块输出的电压Ud=2Ui;且上述两种开关状态保持占空比为0.5的高频交替转换。
4.根据权利要求1所述的一种基于桥式多电平开关电容模块的两级式九电平逆变器,其特征在于:
当所述全控器件MOSFET开关管S1、S4、S1a、S2b闭合,S2、S3、S1b、S2a断开时,桥式多电平开关电容模块输出的电压Ud=4Ui
当所述全控器件MOSFET开关管S2、S3、S1b、S2a闭合,S1、S4、S1a、S2b断开时,桥式多电平开关电容模块输出的电压Ud=4Ui;且上述两种开关状态保持占空比为0.5的高频交替转换。
5.根据权利要求1所述的一种基于桥式多电平开关电容模块的两级式九电平逆变器,其特征在于:
当所述全控器件MOSFET开关管S1、S1b、S2b闭合,S2、S3、S4、S1a、S2a断开时,桥式多电平开关电容模块输出的电压Ud=2Ui
当所述全控器件MOSFET开关管S2、S1a、S2a闭合,S1、S3、S4、S1b、S2b断开时,桥式多电平开关电容模块输出的电压Ud=2Ui;且上述两种开关状态保持占空比为0.5的高频交替转换。
CN201810365361.4A 2018-04-20 2018-04-20 一种基于桥式多电平开关电容模块的两级式九电平逆变器 Active CN108566108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810365361.4A CN108566108B (zh) 2018-04-20 2018-04-20 一种基于桥式多电平开关电容模块的两级式九电平逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810365361.4A CN108566108B (zh) 2018-04-20 2018-04-20 一种基于桥式多电平开关电容模块的两级式九电平逆变器

Publications (2)

Publication Number Publication Date
CN108566108A CN108566108A (zh) 2018-09-21
CN108566108B true CN108566108B (zh) 2019-10-22

Family

ID=63536325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810365361.4A Active CN108566108B (zh) 2018-04-20 2018-04-20 一种基于桥式多电平开关电容模块的两级式九电平逆变器

Country Status (1)

Country Link
CN (1) CN108566108B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11336203B2 (en) 2018-09-07 2022-05-17 Socovar S.E.C. Multilevel electric power converter
CN110138005B (zh) * 2019-05-13 2023-02-03 郑州大学 一种级联多模态光伏并网逆变器及其调制方法
CN110048629B (zh) * 2019-05-14 2020-10-27 郑州大学 一种单输入开关电容多电平逆变器及其调制方法
CN110868093B (zh) * 2019-11-28 2021-08-27 广东工业大学 一种高压输出的多电平逆变电路
CN112039363B (zh) * 2020-09-18 2022-04-26 常州大学 一种升压型无电压跌落开关电容逆变器
CN112564527B (zh) * 2020-12-09 2023-07-21 广东工业大学 一种升压型九电平逆变器
CN112803812B (zh) * 2021-03-20 2022-04-01 河北鹏远光电股份有限公司 一种动车组电源及其控制方法
CN113037109B (zh) * 2021-03-28 2022-05-03 哈尔滨理工大学 一种九电平逆变器及九电平有源滤波器
CN113381632B (zh) * 2021-05-31 2022-08-26 郑州大学 一种非桥式模块化逆变器及其控制方法
CN113659846A (zh) * 2021-08-20 2021-11-16 南京工程学院 一种t型交-直-交九电平变换器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201830164U (zh) * 2009-06-02 2011-05-11 Abb研究有限公司 单相逆变器
CN103618462A (zh) * 2013-12-16 2014-03-05 厦门大学 一种多相谐振型桥式模块化多电平开关电容变换器
CN104753377A (zh) * 2015-04-22 2015-07-01 厦门大学 一种基于桥式模块化开关电容的多电平逆变器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602388B (zh) * 2016-03-10 2017-10-11 盈正豫順電子股份有限公司 雙向隔離式多階直流-直流電能轉換裝置及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201830164U (zh) * 2009-06-02 2011-05-11 Abb研究有限公司 单相逆变器
CN103618462A (zh) * 2013-12-16 2014-03-05 厦门大学 一种多相谐振型桥式模块化多电平开关电容变换器
CN104753377A (zh) * 2015-04-22 2015-07-01 厦门大学 一种基于桥式模块化开关电容的多电平逆变器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Multi-carrier PWM Control Method of a Novel Asymmetrical Multilevel Inverter;Xingtao Sun等;《2010 Third International Conference on Intelligent Networks and Intelligent Systems》;20101103;第556-559页 *

Also Published As

Publication number Publication date
CN108566108A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
CN108566108B (zh) 一种基于桥式多电平开关电容模块的两级式九电平逆变器
CN102185514B (zh) 一种单相三电平逆变器
CN101917133B (zh) 一种五电平逆变器
Nayanasiri et al. Half-wave cycloconverter-based photovoltaic microinverter topology with phase-shift power modulation
CN110138250B (zh) 一种开关电容n电平逆变器及其调制方法
CN101931337A (zh) 一种光伏发电用斩波逆变电路及其控制方法
CN105576982A (zh) 非隔离型直流变压器
CN102005957A (zh) 单电源级联多电平变流器
CN108599604B (zh) 一种单相七电平逆变电器及其pwm信号调制方法
CN105305843A (zh) 一种三相串联半h桥型模块化多电平直流换流器及其控制方法
CN110048629A (zh) 一种单输入开关电容多电平逆变器及其调制方法
CN101567567A (zh) 载波移相逆变大功率光伏并网系统及其控制方法
US20230017288A1 (en) Topology of series-connected mmc with a small number of modules
CN103326606A (zh) 一种单相五电平逆变器
CN102957167A (zh) 基于模块化多电平变流器的风力发电与并网系统
CN203675000U (zh) 一种光伏并网微逆变器
CN106452144A (zh) 一种基于Zeta的升降压型三电平逆变器
CN108448923A (zh) 一种实现三相逆变器软开关的变频控制方法
CN106208131B (zh) 用于新能源接入和主动配电网的多电平变流器拓扑结构
CN108134405A (zh) 一种适用于光伏发电应用的双有源桥电路调制策略
CN117200602A (zh) 一种双模无漏电流非隔离型五电平单级升压并网逆变器
CN202334357U (zh) 三电平半桥光伏并网逆变器
CN111404409A (zh) 基于mmc的多端口电力电子变压器拓扑及其控制方法
CN109842311A (zh) 一种带功率解耦电路的三端口反激式光伏并网微逆变器及调制方法
CN202488359U (zh) 一种矩阵式交-交高压变频器拓扑结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant