CN108562561B - 一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法 - Google Patents
一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法 Download PDFInfo
- Publication number
- CN108562561B CN108562561B CN201810190269.9A CN201810190269A CN108562561B CN 108562561 B CN108562561 B CN 108562561B CN 201810190269 A CN201810190269 A CN 201810190269A CN 108562561 B CN108562561 B CN 108562561B
- Authority
- CN
- China
- Prior art keywords
- solution
- dopamine
- organic fluorescent
- aqueous solution
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/0666—Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
- C08G73/0672—Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- External Artificial Organs (AREA)
Abstract
本发明涉及一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法,其中制备方法包括如下步骤:S1.将多巴胺溶解于水中得多巴胺水溶液;S2.向多巴胺水溶液中加入铝盐水溶液和双氧水并充分混合得反应液;S3.反应液于室温下反应5‑8h,然后装入截留分子量为100‑500Da的透析袋中,透析36‑48h,即得。有益效果是:加入铝离子后,只需要使用双氧水一步氧化即可得到具有荧光特性的聚多巴胺纳米粒子,制备方法相对更简单;该有机荧光聚多巴胺纳米粒子溶液对Fe2+和Fe3+有显著的荧光效应且在一定范围内待测离子浓度增加与溶液荧光强度增加有正相关性,可用于检测溶液中的Fe2+和Fe3+。
Description
技术领域
本发明属于化学及生物科学技术领域,具体涉及一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法。
背景技术
有机荧光纳米材料在生物降解、生物兼容性和光稳定性等方面具有突出的优势。多巴胺是一种神经传导物质,用来帮助细胞传送脉冲的化学物质,在人体内广泛存在。多巴胺是一种在氧气条件下很容易发生自聚的小分子,用它来制备有机荧光纳米材料是一种很具吸引力及应用前景的材料。
目前为止,关于荧光聚多巴胺纳米材料的合成相关的报道还比较少。所报道的文献中一般是采用两步法进行合成。第一步:多巴胺在碱性条件下被水中的氧气氧化成大的聚多巴胺纳米粒子;第二步:加入大量的H2O2,将大的聚多巴胺纳米粒子蚀刻成小的具有荧光性能的荧光聚多巴胺纳米粒子[X.Zhang,S.Wang,L.Xu,L.Feng,Y.Ji,L.Tao,S.Li andY.Wei,Nanoscale,2012,4,5581-5584]。其不足之处在于,以氧气对多巴胺进行氧化聚合时聚合程度很难控制,故现有技术中所合成的荧光聚多巴胺纳米材料均是由不同聚合程度组成的混合物[A.Yildirim and M.Bayindir,Anal.Chem.,2014,86,5508-5512..J.-H.Lin,C.-J.Yu,Y.-C.Yang and W.-L.Tseng,Phys.Chem.Chem.Phys.,2015,17,15124-15130]。
发明内容
本发明提供一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法,旨在提供一种制备有机荧光聚多巴胺纳米粒子溶液的新方法并拓展其应用。
本发明解决上述技术问题的技术方案如下:一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液的制备方法,其包括如下步骤:
S1.将多巴胺溶解于水中得多巴胺水溶液;
S2.向多巴胺水溶液中加入铝盐水溶液和双氧水并充分混合得反应液,反应液中多巴胺、Al3+和H2O2的物质的量之比为2:0.005-0.02:0.5-1.2;
S3.反应液于室温下反应5-8h,然后装入截留分子量为100-500Da的透析袋中,透析36-48h,即得。
在上述技术方案的基础上,本发明还可以做如下进一步的具体选择或最佳选择。
具体的,S1中多巴胺水溶液的浓度为10-50mM。
具体的,S2中铝盐水溶液的浓度为5-20mM。
具体的,S2中的铝盐为氯化铝或硫酸铝。
具体的,S2中的双氧水的浓度为0.5-1.5M。
最佳的,S2的反应液中多巴胺、Al3+和H2O2的物质的量之比为2:0.01:1。
此外,本发明还提供了一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液,其通过上述方法制备得到。
与现有技术相比,本发明的有益效果是:
在多巴胺水溶液中加入铝离子后,只需要使用适量的双氧水一步氧化即可得到具有荧光特性的聚多巴胺纳米粒子,制备方法相对更简单;本发明制备的有机荧光聚多巴胺纳米粒子溶液对Fe2+和Fe3+有显著的荧光效应且在Fe2+和Fe3+的浓度较低时浓度增加与荧光强度增加有较好的正相关性,可用于检测溶液中的Fe2+和Fe3+。
附图说明
图1为本发明实施例1中用到的原料及制得的聚多巴胺纳米粒子溶液的激发图和发射图,其中a为聚多巴胺纳米粒子溶液的激发图(Ex.=342nm)、b为聚多巴胺纳米粒子溶液的发射图(Em.=453nm)、c为原料多巴胺水溶液和铝盐水溶液混合且室温静置6h后在342nm激发下的发射图,d为原料多巴胺水溶液和双氧水混合且室温静置6h后在342nm激发下的的发射图;
图2为本发明实施例1得到的聚多巴胺纳米粒子溶液的透射电镜图;
图3为本发明实施例1得到的聚多巴胺纳米粒子溶液的对不同金属离子的荧光响应情况;
图4为本发明实施例1得到的聚多巴胺纳米粒子溶液作为荧光探针测定Fe3+时,荧光强度与Fe3+浓度的变化关系;
图5为本发明实施例1得到的聚多巴胺纳米粒子溶液作为荧光探针测定Fe2+时,荧光强度与Fe2+浓度的变化关系;
具体实施方式
以下结合附图及具体实施例对本发明提供的技术方案作进一步的详细描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
以下实施例中用到的药品若无特别说明则均为市售产品,用到的方法若无特别说明则均为本领域技术人员使用的常规方法。
实施例1
一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液,其通过如下步骤制备得到:
S1.将多巴胺溶解于水中得多巴胺水溶液,多巴胺水溶液的浓度为0.005g/mL,也即32mM;
S2.向600μL多巴胺水溶液中加入10μL浓度为10mM的氯化铝水溶液和10μL浓度为1M的双氧水并充分混合得反应液,反应液中多巴胺、Al3+和H2O2的物质的量之比约为2:0.01:1;
S3.反应液于室温下反应6h,然后装入截留分子量为100-500Da的透析袋中,透析40h,即得。
实施例2
一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液,其通过如下步骤制备得到:
S1.将多巴胺溶解于水中得多巴胺水溶液,多巴胺水溶液的浓度为10mM;
S2.向2000μL多巴胺水溶液中加入10μL浓度为20mM的氯化铝水溶液和10μL浓度为1.2M的双氧水并充分混合得反应液,反应液中多巴胺、Al3+和H2O2的物质的量之比约为2:0.02:1.2;
S3.反应液于室温下反应8h,然后装入截留分子量为100-500Da的透析袋中,透析36h,即得。
实施例3
一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液,其通过如下步骤制备得到:
S1.将多巴胺溶解于水中得多巴胺水溶液,多巴胺水溶液的浓度为50mM;
S2.向400μL多巴胺水溶液中加入10μL浓度为5mM的氯化铝水溶液和10μL浓度为0.5M的双氧水并充分混合得反应液,反应液中多巴胺、Al3+和H2O2的物质的量之比约为2:0.005:0.5;
S3.反应液于室温下反应5h,然后装入截留分子量为100-500Da的透析袋中,透析48h,即得。
分别以实施例1至3制得的可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液为测试样品,经检测各样品均具有明显的荧光效应并且能够用于对溶液中亚铁及铁离子进行检测。以实施例1制得的有机荧光聚多巴胺纳米粒子溶液为代表,测试了其荧光效应如图1所示,从图1中可知本发明成功合成了聚多巴胺纳米粒子且其具有荧光效应(a和b有明显的激发峰和发射峰,作为对比的c和d无发射峰);从图2可知,本发明实施例1制备的聚多巴胺纳米粒子样品具有纳米尺寸且其尺寸相对比较均一;从图3可知,本发明实施例1制备的聚多巴胺纳米粒子溶液对亚铁及铁离子具有明显强于其他金属离子的荧光效应,故其可用于检测亚铁和铁离子;从图4和图5可知,当亚铁及铁离子的浓度相对较低时,检测时聚多巴胺纳米粒子溶液的荧光强度随相应的检测离子的浓度增加而增强,相关性较好,即其不仅可以对亚铁及铁离子进行定性检测而且还可以进行定量检测。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (7)
1.一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液的制备方法,其特征在于,包括如下步骤:
S1.将多巴胺溶解于水中得多巴胺水溶液;
S2.向多巴胺水溶液中加入铝盐水溶液和双氧水并充分混合得反应液,反应液中多巴胺、Al3+和H2O2的物质的量之比为2:0.005-0.02:0.5-1.2;
S3.反应液于室温下反应5-8h,然后装入截留分子量为100-500Da的透析袋中,透析36-48h,即得。
2.根据权利要求1所述的一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液的制备方法,其特征在于,S1中多巴胺水溶液的浓度为10-50mM。
3.根据权利要求1所述的一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液的制备方法,其特征在于,S2中铝盐水溶液的浓度为5-20mM。
4.根据权利要求1所述的一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液的制备方法,其特征在于,S2中的铝盐为氯化铝或硫酸铝。
5.根据权利要求1所述的一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液的制备方法,其特征在于,S2中的双氧水的浓度为0.5-1.5M。
6.根据权利要求1所述的一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液的制备方法,其特征在于,S2的反应液中多巴胺、Al3+和H2O2的物质的量之比为2:0.01:1。
7.一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液,其特征在于,通过如权利要求1至6任一项所述的方法制备得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810190269.9A CN108562561B (zh) | 2018-03-08 | 2018-03-08 | 一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810190269.9A CN108562561B (zh) | 2018-03-08 | 2018-03-08 | 一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108562561A CN108562561A (zh) | 2018-09-21 |
CN108562561B true CN108562561B (zh) | 2020-12-29 |
Family
ID=63532484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810190269.9A Expired - Fee Related CN108562561B (zh) | 2018-03-08 | 2018-03-08 | 一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108562561B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103884838A (zh) * | 2014-03-31 | 2014-06-25 | 南京大学 | 聚多巴胺纳米球生物传感器 |
CN104892937A (zh) * | 2015-06-25 | 2015-09-09 | 中国科学技术大学 | 聚多巴胺氮掺杂碳纳米管与功能化聚多巴胺氮掺杂碳纳米管的制备方法 |
CN105067687A (zh) * | 2015-08-14 | 2015-11-18 | 首都师范大学 | 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用 |
CN107216882A (zh) * | 2017-07-21 | 2017-09-29 | 安徽师范大学 | 一种AgNPs@PDA‑CdSe量子点纳米组装体的制备和应用 |
CN107402198A (zh) * | 2017-06-30 | 2017-11-28 | 中国科学院福建物质结构研究所 | 一种基于多巴胺聚合反应调控的上转换荧光共振能量传递检测组合物及检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9943487B2 (en) * | 2015-05-26 | 2018-04-17 | The Board Of Trustees Of The University Of Illinois | Polydopamine-coated capsules |
-
2018
- 2018-03-08 CN CN201810190269.9A patent/CN108562561B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103884838A (zh) * | 2014-03-31 | 2014-06-25 | 南京大学 | 聚多巴胺纳米球生物传感器 |
CN104892937A (zh) * | 2015-06-25 | 2015-09-09 | 中国科学技术大学 | 聚多巴胺氮掺杂碳纳米管与功能化聚多巴胺氮掺杂碳纳米管的制备方法 |
CN105067687A (zh) * | 2015-08-14 | 2015-11-18 | 首都师范大学 | 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用 |
CN107402198A (zh) * | 2017-06-30 | 2017-11-28 | 中国科学院福建物质结构研究所 | 一种基于多巴胺聚合反应调控的上转换荧光共振能量传递检测组合物及检测方法 |
CN107216882A (zh) * | 2017-07-21 | 2017-09-29 | 安徽师范大学 | 一种AgNPs@PDA‑CdSe量子点纳米组装体的制备和应用 |
Non-Patent Citations (5)
Title |
---|
Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging;Zhang xiaoyong等;《Nanoscale》;20120725;第4卷(第18期);第5581-5584页 * |
CoOOH-induced synthesis of fluorescent polydopamine nanoparticles for the detection of ascorbic acid;Zhao Yan-Yan等;《Analytical Methods》;20170817;第9卷(第37期);第5518-5524页 * |
CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability;Zhang Chao等;《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》;20160128;第55卷(第9期);第3054-3057页 * |
Effect of aluminum (III) on the conversion of dopachrome in the melanin synthesis pathway;Di Junwei等;《Spectrochimica Acta Part A》;20030227;第59卷(第8期);第1689-1696页 * |
聚多巴胺基功能材料的制备与研究;韩睿;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140515(第5期);第B016-74页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108562561A (zh) | 2018-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively | |
Cao et al. | Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging | |
CN108548799B (zh) | 一种有机荧光聚多巴胺纳米粒子溶液及其制备方法和应用 | |
Shuai et al. | Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide–gold nanoparticles hybrids coupling with enzyme signal amplification | |
Yue et al. | Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode | |
Xuan et al. | D-penicillamine-functionalized graphene quantum dots for fluorescent detection of Fe3+ in iron supplement oral liquids | |
Li et al. | Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow | |
Gholivand et al. | The fabrication of a new electrochemical sensor based on electropolymerization of nanocomposite gold nanoparticle-molecularly imprinted polymer for determination of valganciclovir | |
Zhang et al. | An enzyme-free hydrogen peroxide sensor based on Ag/FeOOH nanocomposites | |
Hu et al. | Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide | |
Dong et al. | Molybdenum disulfides nanoflowers anchoring iron-based metal organic framework: A synergetic catalyst with superior peroxidase-mimicking activity for biosensing | |
Baek et al. | Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster | |
Chen et al. | A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine | |
Han et al. | Determination of chloropropanol with an imprinted electrochemical sensor based on multi-walled carbon nanotubes/metal–organic framework composites | |
Guo et al. | 2D/3D Copper-based metal-organic frameworks for electrochemical detection of hydrogen peroxide | |
Ou et al. | A cathodic luminol-based electrochemiluminescence biosensor for detecting cholesterol using 3D-MoS 2–PANI nanoflowers and Ag nanocubes for signal enhancement | |
Xu et al. | Janus applications: A mutifunctional nano-platform with integrated visual detection and photodegradation of tetracyclines | |
Fazlali et al. | Electrochemiluminescent biosensor for ultrasensitive detection of lymphoma at the early stage using CD20 markers as B cell-specific antigens | |
CN108362669B (zh) | 用于检测Al3+的有机荧光聚多巴胺纳米粒子溶液及其制备方法 | |
Amini et al. | Layered double hydroxide nanoparticles embedded in a biopolymer: a novel platform for electroanalytical determination of diazepam | |
Zou et al. | Microwave-prepared surface imprinted magnetic nanoparticles based electrochemical sensor for adsorption and determination of ketamine in sewage | |
Mardani et al. | Design and construction of a carbon paste electrode modified with molecularly imprinted polymer-grafted nanocomposites for the determination of thyroxin in biological samples | |
Xu et al. | A detachable and recyclable electrochemical sensor for high-performance detection of glucose based on boronate affinity | |
Hua-Xiang et al. | Facile synthesis of Cu@ Cu2O aerogel for an effective electrochemical hydrogen peroxide sensor | |
CN108562561B (zh) | 一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201229 |