CN108546992A - 一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用 - Google Patents

一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用 Download PDF

Info

Publication number
CN108546992A
CN108546992A CN201810319170.4A CN201810319170A CN108546992A CN 108546992 A CN108546992 A CN 108546992A CN 201810319170 A CN201810319170 A CN 201810319170A CN 108546992 A CN108546992 A CN 108546992A
Authority
CN
China
Prior art keywords
crystal
magneto
optical crystal
sillenite
type magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810319170.4A
Other languages
English (en)
Other versions
CN108546992B (zh
Inventor
庄乃锋
吴璇
吴功辉
刘海鹏
陈新
胡晓琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201810319170.4A priority Critical patent/CN108546992B/zh
Publication of CN108546992A publication Critical patent/CN108546992A/zh
Application granted granted Critical
Publication of CN108546992B publication Critical patent/CN108546992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glass Compositions (AREA)

Abstract

本发明公开了一种软铋矿型磁光晶体及其制备方法与应用,该磁光晶体的化学通式为Bi26‑x‑yCoxFeyO40(x=0‑3.5,y=0‑3.5,1<x+y≤7),属立方晶系,I23空间群,可采用水热法进行制备,工艺简单。该晶体材料具有较高的热稳定性和较强的磁性,并具有强磁光效应,有望在磁光学领域获得应用。

Description

一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用
技术领域
本发明属于磁光材料技术领域,具体涉及一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用。
背景技术
软铋矿材料具有非中心对称的立方晶体结构,空间群为I23。软铋矿材料不仅具有压电效应、电光效应和高光折变灵敏度,同时还具有光电导、声光、磁光、旋光等。如Bi12SiO20 (BSO)、Bi12TiO20 (BTO)和Bi12GeO20 (BGO)单晶表现出很高的光敏感性,还具有较快的响应速度、较低的超声波传递速度、显著的压电效应等,因此被广泛地应用到谐振器、表面波放大器以及相位空间光调制器的全息记录与再现。但是对于软铋矿的研究主要集中在声光、旋光、电光等方面性质,在磁光性能方面的研究还是很少。
在结构上,软铋矿材料的理想结构表达式为Bi12MO20(M=Al、Zn、Fe、Mn、Ge、Ti、Si等)。在理想的软铋矿结构中,Bi3+占据24f格位,与周围的氧原子组成扭曲的金字塔结构。M离子占据2a格位,与周围四个氧原子形成[MO4]的四面体结构。当M为Fe离子时,2a格位上会有一半的M离子位置被Bi3+占据。2a格位中存在部分Bi3+会挤占Fe3+的位置,导致化合物的磁性减弱。如Chen等人用水热法合成的Bi25FeO40晶体磁性很弱,几乎为零(Chen Y., Wu Q.,Zhao J., Selective synthesis on structures and morphologies of BixFeyOz,nanomaterials with disparate magnetism through time control. Journal ofAlloys and Compounds, 2009(487):599-604.)。要想获得较好的磁光晶体,首先要提高样品的磁性。钴离子本身具有磁性,而且其离子尺寸与Fe3+相差不大。因此,通过在Bi25FeO40晶体中掺入Co3+,可替代2a格位中的Bi3+,甚至取代24f格位中的Bi3+,以提高晶体的磁性和磁光特性。
2015年,Ray等人(Ray J., Biswal A. K., Kuila S., et al., Magnetic anddielectric studies of Fe substituted sillenite phase bismuth cobaltitenanoparticles. Journal of Alloys and Compounds, 2015(633):370-376.)采用溶胶凝胶自燃烧法合成(Bi13Co5.5Fe6.5)CoO40纳米粉体,其饱和磁化强度可达到5.816μB/f.u.,但由于制备方法所限,未能获得高纯的晶体样品,其磁性、成分、结构都有待进一步确认,也未涉及该物质的磁光性能。本专利首次采用水热法制备出高纯的Bi26-x-yCoxFeyO40晶体样品,并采用电感耦合等离子体原子发射光谱仪(ICP-OES)测定了晶体样品成分,采用Rietveld法精修晶体结构,并分别采用振动样品磁强计和磁圆二色(MCD)光谱仪测定了晶体的磁性和MCD光谱,发现所制备的Bi26-x-yCoxFeyO40具有手性非心结构、较强的磁性和磁光性能,有望开发新型的磁光器件。
发明内容
本发明的目的在于提供一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用,该晶体颗粒较大,具有物化性能优良、磁性强、MCD信号强等优点,有希望应用于磁光隔离器、环形器、磁光调制器以及其他新型磁光器件中。
为实现上述目的,本发明采用如下技术方案:
一种钴铁掺杂的软铋矿型磁光晶体,其属立方晶系,I23空间群,化学通式为Bi26-x- yCoxFeyO40,其中x=0-3.5,y=0-3.7,1<x+y≤7。
所述软铋矿型磁光晶体的晶胞参数随着掺杂比例的变化而有所不同,具体地,其分子式为Bi20.2Co2.1Fe3.7O40、Bi20.6Co2.6Fe2.8O40、Bi19.8Co3.0Fe3.2O40或Bi19.0Co3.5Fe3.5O40,晶胞参数分别为a=10.1714、10.184、10.1815 和10.1835
所述钴铁掺杂的软铋矿型磁光晶体的制备方法包括如下步骤:
(1)晶体生长:按Bi、Co、Fe的摩尔比为2:1:1、1:2:2、1:3:3或1:5:5分别称取NaBiO3、Co(NO3)2·6H2O和Fe(NO3)3·9H2O,将其置于反应釜内衬中,缓慢滴入KOH溶液,直至达反应釜内衬容积的60%~70%;然后磁力搅拌40min,再于200℃下恒温反应4天,程序降至室温;
(2)分离提纯:将反应釜内的反应物搅拌均匀后倒入玻璃烧杯中,加入去离子水超声震荡,使质量较大的晶体沉于烧杯底部,然后倒去上层溶液,反复多次至溶液无色后,将所得沉淀于80℃下烘干5h得到初产物;将烘干的初产物用磁铁分离出不同磁性的物质,然后在光学显微镜下将杂质剔除,即获得纯净的软铋矿型磁光晶体。
其中,当Bi、Co、Fe的配比为2:1:1时,采用饱和KOH溶液作为矿化剂,可制得Bi20.2Co2.1Fe3.7O40;当Bi、Co、Fe的配比为1:2:2、1:3:3和1:5:5时,采用14mol/L KOH溶液作为矿化剂,可分别制得Bi20.6Co2.6Fe2.8O40、Bi19.8Co3.0Fe3.2O40、Bi19.0Co3.5Fe3.5O40
本发明的显著优点:
(1)本发明软铋矿型磁光晶体属立方晶系,I23空间群,可采用水热法进行制备,工艺简单。其磁光性能明显优于钇铁石榴石(Y3Fe5O12,YIG),其在327~389nm和550~800nm波段下的MCD信号分别约为YIG的2.5倍和6.5倍,有望应用于磁光隔离器、环形器、磁光调制器以及其他新型磁光器件的制备。
(2)通过调节Bi、Fe和Co的比例可以调控该晶体材料的磁性强弱和MCD信号强度。该晶体材料的磁性随着Fe和Co含量的增加而增加。
附图说明
图1为实施例3所得晶体样品的单胞结构示意图;
图2为实施例1-4所得晶体样品的X射线粉末衍射图;
图3为实施例1-4所得晶体样品的Rietveld精修图;
图4为实施例1-4所得晶体样品的磁滞回线;其中插图为矫顽力的变化趋势图。
图5为YIG、Bi25FeO40与实施例1-4所得晶体样品的磁圆二色曲线。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1 Bi20.2Co2.09Fe3.73O40晶体的制备
(1)按Bi、Co、Fe的摩尔比为2:1:1分别称取NaBiO3、Co(NO3)2·6H2O和Fe(NO3)3·9H2O于反应釜内衬中,缓慢滴入饱和KOH溶液,直至达反应釜内衬容积的60%~70%;然后磁力搅拌40min,于200℃下恒温反应96小时,再以2℃/h的速度降至室温;
(2)将反应釜内的反应物搅拌均匀后倒入玻璃烧杯中,加入去离子水超声震荡,使质量较大的晶体沉于烧杯底部,然后倒去上层溶液,反复多次至溶液无色后,将所得沉淀于80℃下烘干5h得到初产物;将烘干的初产物用磁铁分离出不同磁性的物质,然后在光学显微镜下将杂质剔除,即获得纯净的软铋矿型磁光晶体。
实施例2 Bi20.6Co2.6Fe2.8O40晶体的制备
(1)按Bi、Co、Fe的摩尔比为1:2:2分别称取NaBiO3、Co(NO3)2·6H2O和Fe(NO3)3·9H2O于反应釜内衬中,缓慢滴入14mol/L KOH溶液,直至达反应釜内衬容积的60%~70%;然后磁力搅拌40min,于200℃下恒温反应96小时,再以2℃/h的速度降至室温;
(2)将反应釜内的反应物搅拌均匀后倒入玻璃烧杯中,加入去离子水超声震荡,使质量较大的晶体沉于烧杯底部,然后倒去上层溶液,反复多次至溶液无色后,将所得沉淀于80℃下烘干5h得到初产物;将烘干的初产物用磁铁分离出不同磁性的物质,然后在光学显微镜下将杂质剔除,即获得纯净的软铋矿型磁光晶体。
实施例3 Bi19.8Co3.01Fe3.18O40晶体的制备
(1)按Bi、Co、Fe的摩尔比为1:3:3分别称取NaBiO3、Co(NO3)2·6H2O和Fe(NO3)3·9H2O于反应釜内衬中,缓慢滴入14mol/L KOH溶液,直至达反应釜内衬容积的60%~70%;然后磁力搅拌40min,于200℃下恒温反应96小时,再以4℃/h的速度降至室温;
(2)将反应釜内的反应物搅拌均匀后倒入玻璃烧杯中,加入去离子水超声震荡,使质量较大的晶体沉于烧杯底部,然后倒去上层溶液,反复多次至溶液无色后,将所得沉淀于80℃下烘干5h得到初产物;将烘干的初产物用磁铁分离出不同磁性的物质,然后在光学显微镜下将杂质剔除,即获得纯净的软铋矿型磁光晶体。
图1为实施例3所得晶体样品的单胞结构示意图。
实施例4 Bi19.0Co3.5Fe3.5O40晶体的制备
(1)按Bi、Co、Fe的摩尔比为1:5:5分别称取NaBiO3、Co(NO3)2·6H2O和Fe(NO3)3·9H2O于反应釜内衬中,缓慢滴入14mol/L KOH溶液,直至达反应釜内衬容积的60%~70%;然后磁力搅拌40min,于200℃下恒温反应96小时,再以4℃/h的速度降至室温;
(2)将反应釜内的反应物搅拌均匀后倒入玻璃烧杯中,加入去离子水超声震荡,使质量较大的晶体沉于烧杯底部,然后倒去上层溶液,反复多次至溶液无色后,将所得沉淀于80℃下烘干5h得到初产物;将烘干的初产物用磁铁分离出不同磁性的物质,然后在光学显微镜下将杂质剔除,即获得纯净的软铋矿型磁光晶体。
图2、图3分别为实施例1-4所得晶体样品的X射线粉末衍射图及Rietveld精修图。从图中可见,晶体的X射线粉末衍射谱无杂相峰,说明所得晶体相纯度高。
采用振动样品磁强计测试实施例1-4所得晶体样品的磁滞回线,结果如图4所示。由图4可见,随着钴铁投料的增加,晶体磁化强度也随之增加,Bi19.8Co3.01Fe3.18O40晶体和Bi19.0Co3.5Fe3.5O40晶体在10KOe的外加磁场下的磁化强度分别为0.91 emu/g和0.98emu/g。其中矫顽力的变化趋势与磁性变化趋势一致。
将实施例1-4所得晶体样品与Bi25FeO40、YIG晶体磨成颗粒均匀的粉末,分别与KCl以1:50的浓度进行混合,研磨均匀,压制成约0.2mm的透明薄片,然后测试薄膜磁圆二色向性(MCD),表征晶体的磁光性能,结果见图5。由图5可以看出,Bi26-x-yCoxFeyO40晶体的MCD信号强度明显强于Bi25FeO40晶体,且在327~389和550~800nm波段范围也比YIG(钇铁石榴石,Y3Fe5O12)强很多,这证明Bi26-x-yCoxFeyO40晶体具有较强磁光性能,有望应用于磁光器件中。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种钴铁掺杂的软铋矿型磁光晶体,其特征在于:所述软铋矿型磁光晶体属立方晶系,空间群为I23,其化学通式为Bi26-x-yCoxFeyO40,其中x=0-3.5,y=0-3.7,1<x+y≤7。
2. 根据权利要求1所述的钴铁掺杂的软铋矿型磁光晶体,其特征在于:所述软铋矿型磁光晶体的具体分子式为Bi20.2Co2.1Fe3.7O40、Bi20.6Co2.6Fe2.8O40、Bi19.8Co3.0Fe3.2O40或Bi19.0Co3.5Fe3.5O40,其晶胞参数分别为a=10.1714、10.184 、10.1815 和10.1835
3.一种如权利要求1所述的钴铁掺杂的软铋矿型磁光晶体的制备方法,其特征在于:包括如下步骤:
(1)晶体生长:按Bi、Co、Fe的摩尔比为2:1:1、1:2:2、1:3:3或1:5:5分别称取NaBiO3、Co(NO3)2·6H2O和Fe(NO3)3·9H2O,将其置于反应釜内衬中,缓慢滴入KOH溶液,直至达反应釜内衬容积的60%~70%;然后磁力搅拌40min,再于200℃下恒温反应4天,程序降至室温;
(2)分离提纯:将反应物搅拌均匀后倒入玻璃烧杯中,反复加入去离子水超声震荡清洗,至溶液无色后,将所得沉淀于80℃下烘干5h得到初产物;将烘干的初产物用磁铁分离出不同磁性的物质,然后在光学显微镜下将杂质剔除,即获得纯净的软铋矿型磁光晶体。
4.一种如权利要求1所述的钴铁掺杂的软铋矿型磁光晶体在制备磁光器件中的应用,其特征在于:所述磁光器件包括光隔离器、光环形器或磁光调制器。
CN201810319170.4A 2018-04-11 2018-04-11 一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用 Active CN108546992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810319170.4A CN108546992B (zh) 2018-04-11 2018-04-11 一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810319170.4A CN108546992B (zh) 2018-04-11 2018-04-11 一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN108546992A true CN108546992A (zh) 2018-09-18
CN108546992B CN108546992B (zh) 2019-08-09

Family

ID=63514471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810319170.4A Active CN108546992B (zh) 2018-04-11 2018-04-11 一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN108546992B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547078A (zh) * 2020-12-03 2021-03-26 江南大学 一种低温溶剂热制备纳米级钴基软铋矿高效光催化剂的方法
CN112547077A (zh) * 2020-12-03 2021-03-26 江南大学 一种宽光谱响应软铋矿基高效光催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687821A (zh) * 2005-04-19 2005-10-26 浙江大学 磁光晶体/磁光薄膜复合型结构法拉第旋转器
CN102485975A (zh) * 2010-12-02 2012-06-06 元亮科技有限公司 一种掺杂铽镓石榴石晶体的生长方法
CN105133015A (zh) * 2015-08-06 2015-12-09 中国科学院理化技术研究所 一种掺杂钒酸铽磁光晶体、生长方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687821A (zh) * 2005-04-19 2005-10-26 浙江大学 磁光晶体/磁光薄膜复合型结构法拉第旋转器
CN102485975A (zh) * 2010-12-02 2012-06-06 元亮科技有限公司 一种掺杂铽镓石榴石晶体的生长方法
CN105133015A (zh) * 2015-08-06 2015-12-09 中国科学院理化技术研究所 一种掺杂钒酸铽磁光晶体、生长方法及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547078A (zh) * 2020-12-03 2021-03-26 江南大学 一种低温溶剂热制备纳米级钴基软铋矿高效光催化剂的方法
CN112547077A (zh) * 2020-12-03 2021-03-26 江南大学 一种宽光谱响应软铋矿基高效光催化剂及其制备方法
CN112547077B (zh) * 2020-12-03 2021-12-03 江南大学 一种宽光谱响应软铋矿基高效光催化剂及其制备方法
CN112547078B (zh) * 2020-12-03 2022-02-01 江南大学 一种低温溶剂热制备纳米级钴基软铋矿高效光催化剂的方法

Also Published As

Publication number Publication date
CN108546992B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
Zubair et al. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites
Huixia et al. Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation
Sabale et al. Superparamagnetic MFe 2 O 4 (M= Ni, Co, Zn, Mn) nanoparticles: Synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications
Drofenik et al. Hydrothermal synthesis of Ba‐hexaferrite nanoparticles
Mahhouti et al. Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles
Li et al. Rhombic dodecahedral Fe3O4: ionic liquid-modulated and microwave-assisted synthesis and their magnetic properties
US20160167978A1 (en) A permanent magnetic material
CN108546992B (zh) 一种钴铁掺杂的软铋矿型磁光晶体及其制备方法与应用
Eikeland et al. Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe 12 O 19
Trần et al. Structure and magnetic properties of SrFe12O19/CoFe2O4 nanocomposite ferrite
CN110028960A (zh) 一种三价铁掺杂单晶硅酸盐铌酸锂相化合物及制备方法
CN110451575A (zh) 一种基于尺寸效应增强铁酸铋纳米粉末磁性的方法
Yu et al. Structural, morphological and magnetic properties of Ni–Cu–Co ferrites by the Sm 3+ ions substitution
Yue et al. Effect of Al-substitution on phase formation and magnetic properties of barium hexaferrite synthesized with sol-gel auto-combustion method
KR20080055485A (ko) 바륨 페라이트와 니켈아연 페라이트 나노복합분말의 제조방법
WO2023188809A1 (ja) 磁歪材料及びそれを含む素子
Yamauchi et al. Magnetic core/shell-type composites composed of coarse FePt particles coated with finely powdered iron nitride
CN102863027B (zh) 一种晶体结构的氧化物磁性材料Li1+xFe1-xO2
RU2769592C1 (ru) Способ получения наноструктурированного магнитного порошка феррита-граната самария
Xu et al. Magnetic properties of Ce, Dy‐substituted yttrium iron garnet ferrite powders fabricated using a sol–gel method
Zhang et al. Structural and magnetic studies of Cr 3+ ion-doped Ni–Ba–Co ferrite
Deshmukh et al. Magnetisation in ternary spinel ferrites
Danchevskaya et al. Hydrothermal synthesis of barium hexaferrite
Kose et al. Study of Single Crystal Fe2TiO4 by the Measurement of Magnetization and Mössbauer Spectra
Streckova et al. Imaging of Magnetic Domain Structure in FeSi/Mn_0.8Zn_0.2Fe_2O_4 Composite using Magnetic Force Microscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant