CN108538631A - 溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用 - Google Patents

溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用 Download PDF

Info

Publication number
CN108538631A
CN108538631A CN201810323844.8A CN201810323844A CN108538631A CN 108538631 A CN108538631 A CN 108538631A CN 201810323844 A CN201810323844 A CN 201810323844A CN 108538631 A CN108538631 A CN 108538631A
Authority
CN
China
Prior art keywords
electrode material
cobalt acid
acid magnesium
combination electrode
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810323844.8A
Other languages
English (en)
Inventor
高海文
王刚虎
王晓红
洪健凯
郝臣
周赛赛
黄成相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201810323844.8A priority Critical patent/CN108538631A/zh
Publication of CN108538631A publication Critical patent/CN108538631A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于复合电极材料制备技术领域,涉及纳米复合电极材料的合成,尤其涉及溶剂热‑原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用。本发明所述方法包括:以尿素作为沉淀剂,以镁盐、钴盐、吡咯、对甲苯磺酸和过硫酸铵为原料,经水热沉淀,通过调节沉淀剂及镁盐、钴盐的含量以及其他变量,煅烧后制得海胆状钴酸镁;再经原位氧化聚合,高温烘干后制得海胆状钴酸镁复合电极材料。聚吡咯作为导电高分子,增加材料的导电性,降低内阻。本发明采用水热法和原位氧化聚合法,成本低,操作简单,所制产物颗粒分布均匀,颗粒性能高,分散体系相对稳定,粒径分散性良好,形貌较好。可应用于超级电容器电极材料,电化学性能优异,适合工业化生产。

Description

溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方 法及应用
技术领域
本发明属于复合电极材料制备技术领域,涉及纳米复合电极材料的合成,尤其涉及一种溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用。
背景技术
随着经济的发展和社会的进步,人们对能源的需求越来越大。传统能源,如煤、石油、天然气等化石燃料已经满足不了日益增长的发展需要。同时,传统能源在促进经济发展的过程中,带来了严重的环境污染等问题,对人类的生存环境产生严重的压力,这已经引起了人们的广泛关注。为了解决这类问题,研究人员成功开发出一种新型的能源装置:超级电容器,它是一种绿色环保、安全、高效的储能装置,具有充电时间短、循环稳定好、使用寿命长等优点。超级电容器由集流体、电极材料、电解质和隔膜组成,其中电极材料是影响其性能的主要因素,因此人们重点对它进行了研究。
钴酸镁(MgCo2O4)为氧化镁合三氧化二钴的产物,常温下为黑色粉末。钴酸镁属于等轴晶系,空间群Fd3m,其晶体场稳定性能比较好,晶格常数α=8.123Å。因其成本低、来源广、电化学性能好、对环境友好,在催化工业中得到了广泛应用;作为电化学电容器的活性电极材料也具有很大的应用前景。而且,由于水热合成的非均相成核和均相成核机理与固相反应的扩散机理不同,可以制备出其它方法无法合成的新材料、新化合物,特点是产物分散性好、纯度高、颗粒较易控制。通过水热合成法己经能够制备出不同纳米结构的钴酸镁,如纳米片状、海胆球状、纳米棒状等。
聚吡咯(polypyrrole)是一种常见的导电聚合物(杂环共轭型导电高分子)。在空气中稳定性好,由吡咯单体聚合而成,其具有共轭链氧化、对应阴离子掺杂结构,电导率可达102~103 S/cm,拉伸强度可达50~100MPa,及很好的电化学氧化-还原可逆性。聚吡咯可用于生物、离子检测、超级电容器及防静电材料及光电化学电池的修饰电极、蓄电池的电极材料。将钴酸镁和聚吡咯进行复合可以得到具有协同效应的纳米电极材料,在很大程度上可以改善充放电性能、电容容量和循环稳定性等。本发明通过溶剂热法和原位氧化聚合法制备出钴酸镁复合电极材料,并对形貌进行可控调节。
发明内容
为了解决上述存在的问题,本发明的一个目的是先以尿素作为沉淀剂通过水热法制备出前驱体纳米钴酸镁电极材料,再经原位氧化聚合得到钴酸镁复合电极材料。
技术方案:以尿素作为沉淀剂,以镁盐、钴盐、吡咯、对甲苯磺酸和过硫酸铵为原料,经水热沉淀,通过调节沉淀剂及镁盐、钴盐的含量以及其他变量,高温煅烧后制得海胆状钴酸镁;再经原位氧化聚合,通过调节吡咯的含量以及其他变量,高温烘干后制得海胆状钴酸镁复合电极材料。
具体的,一种溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法,包括如下步骤:
A、 泡沫镍的预处理:将经裁剪的泡沫镍依次放入1 mol/L 盐酸溶液、丙酮和去离子水中,超声清洗;
B、 载有前驱体钴酸镁的泡沫镍的制备:
B1、分别称取镁盐、钴盐和尿素,加入溶剂,磁力搅拌使其均匀溶解,其中所述镁盐、钴盐、尿素与溶剂的摩尔、体积比为1~4 mmol:2~7 mmol:6~16 mmol:60~90 mL,优选2mmol:4 mmol:12 mmol:80 mL;将混合溶液和预处理过的泡沫镍转移到聚四氟乙烯内衬的反应釜中,100~180℃加热2~8h,优选120℃加热6h;
B2、冷却至室温后取出泡沫镍,分别用去离子水和无水乙醇清洗至洗脱液pH值中性,60~90℃烘16~28h,优选80℃烘24h;
B3、将烘干后的泡沫镍置于马弗炉中以5℃/min的升温速率于300~450℃煅烧1h~3h,优选350℃煅烧2h,冷却后即得;
C、 镍基钴酸镁复合电极材料的制备:
C1、称取对甲苯磺酸于反应容器中,加入去离子水、吡咯和载有前驱体钴酸镁的泡沫镍,置于冰水浴中搅拌均匀,其中所述对甲苯磺酸、去离子水和吡咯的质量、体积比为0.2749 g~0.5498 g:50~90 mL:50~200 μL,优选0.2749 g:60 mL:100 μL;
C2、称取过硫酸铵加入去离子水,搅拌均匀溶解,再逐滴加入上述反应容器中,控制成滴不成线滴加并持续搅拌,其中所过硫酸铵和去离子水的质量、体积比为0.3302~0.6604g:10~30 mL,优选0.3302 g:20 mL;反应2~6h后,停止反应,取出载有钴酸镁复合材料的泡沫镍,分别用去离子水和无水乙醇清洗至洗脱液pH值中性,于60~90℃烘16~28h,优选反应4h,80℃烘24h,冷却后即得。
本发明的一个较优公开例中,步骤A所述裁剪的泡沫镍尺寸为1×1 cm。
本发明的一个较优公开例中,步骤B1所述镁盐是六水合氯化镁、六水合硝酸镁或四水合乙酸镁中的任意一种时,所述溶剂为去离子水或无水乙醇。
本发明的一个较优公开例中,步骤B1所述镁盐是七水合硫酸镁(有毒)时,所述溶剂为去离子水。
本发明的一个较优公开例中,步骤B1所述钴盐是六水合氯化钴、六水合硝酸钴或四水合乙酸钴中的任意一种时,所述溶剂为去离子水或无水乙醇。
本发明的一个较优公开例中,步骤B1所述钴盐是七水合硫酸钴(有毒)时,所述溶剂为去离子水。
本发明先以尿素为沉淀剂并利用水热法,通过改变原料的配比和反应条件合成前驱体钴酸镁。在沉淀过程中添加不同含量的尿素可以起到空间位阻作用,减少粒子间直接接触,降低表面张力,减少表面能,从而降低分散系因氢键或范德华力的作用而导致聚集的程度,保持分散体系相对稳定,有效地对纳米粒子的大小和整体的形貌进行调控。接下来,利用原位氧化聚合法,通过改变原料的配比和反应条件在前驱体钴酸镁上合成聚吡咯。在合成聚吡咯的过程中,不断优化合成条件,从而改善整体材料的电化学性能;同时,合成之后的聚吡咯牢牢锁住钴酸镁,可以防止钴酸镁脱落,并增加了整体材料的活性位点,从而提高了电极材料的电容量。
根据本发明所述方法制备出的镍基钴酸镁复合电极材料,形貌为海胆状,颗粒分布均匀,直径为14~17μm,有一层明显的聚吡咯负载在钴酸镁上,使钴酸镁与泡沫镍基底紧密联系,不易脱落。
根据本发明所述方法制备出的镍基钴酸镁复合电极材料,其纯度高、晶型好、杂质含量少、形貌好、颗粒分布均匀、粒径分散性良好。
本发明的另外一个目的,根据本发明所述方法制备出的镍基钴酸镁复合电极材料,将其作为超级电容器的电极,可应用于组装全固态非对称超级电容器的电极材料,具有比电容高、循环稳定好、寿命长、工作温度范围宽等优点。
本发明所用的试剂皆为分析纯,均为市售。
有益效果
本发明采用水热法和原位氧化聚合法在泡沫镍上合成钴酸镁复合电极材料(MgCo2O4@PPy/NF),制备工艺路线简单、成本低、操作容易控制、合成效率高,同时增加了参加电极反应的活性位点,从而增加了电容量;另外,聚吡咯作为导电高分子材料,其进一步增加了整体材料的导电性,降低了电极的内阻,使材料整体表现出更好的电化学性能。本发明所制电极材料纯度高、晶型好、杂质含量少、形貌好、颗粒分布均匀、粒径分散性良好,易于实现工业化;得益于特殊的物理化学结构(海胆状),可以满足未来能源需要,有望发挥出巨大作用。
附图说明
图1为傅里叶变换红外光谱(FTIR),其中,
a为本发明所制备的前驱体钴酸镁电极材料,
b为本发明所制备的镍基钴酸镁复合电极材料。
图2为X射线衍射图谱(XRD),其中,
a为本发明所制备的前驱体钴酸镁电极材料,
b为本发明所制备的镍基钴酸镁复合电极材料。
图3为本发明所制备的镍基钴酸镁复合电极材料扫描电镜(SEM)图。
具体实施方式
下面结合具体实施实例对本发明做进一步说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
实施例1
室温下分别称取2 mmol六水合氯化镁、4 mmol六水合氯化钴和12 mmol尿素于烧杯中,再加入80 mL去离子水,磁力搅拌使其均匀溶解;然后将混合溶液和处理好的泡沫镍转移到聚四氟乙烯内衬的反应釜中,将反应釜放入烘箱中于120℃温度下反应6h后洗涤,于80℃恒温烘箱中烘24h,之后在马弗炉中以5℃/min的升温速率于350℃温度下煅烧2h,得到前驱体钴酸镁(MgCo2O4/NF),其FTIR如图1中a所示,XRD图谱如图2中a所示,该XRD曲线符合钴酸镁的XRD标准卡片(JCPDS NO. 02-1073, α=8.123 Å),说明成功制备出钴酸镁。以MgCo2O4/NF直接作为工作电极,在三电极体系下进行恒电流充放电,其比电容为783.6 F g-1,循环1000次后比电容仅衰减14 %。之后对前驱体钴酸镁进行负载,先称取0.2749 g对甲苯磺酸于三口烧瓶中,再加入60 mL去离子水、100 μL吡咯和载有前驱体钴酸镁的泡沫镍,并将三口烧瓶置于冰水浴中,机械搅拌使其混合均匀,再称取0.3302 g过硫酸铵于烧杯中,再加入20mL去离子水,磁力搅拌使其均匀溶解并逐滴加入三口烧瓶中,反应4h后洗涤,于80℃恒温烘箱中烘24h,得到钴酸镁复合电极材料(MgCo2O4@PPy/NF),其FTIR如图1中b所示,XRD图谱如图2中b所示,SEM如图3所示。以MgCo2O4@PPy/NF直接作为工作电极,在三电极体系下进行恒电流充放电,其比电容为1079.6 F g-1,循环1000次后比电容仅衰减2.6 %。
实施例2
室温下分别称取1 mmol六水合硝酸镁、2 mmol六水合硝酸钴和6 mmol尿素于烧杯中,再加入60 mL去离子水,磁力搅拌使其均匀溶解;然后将混合溶液和处理好的泡沫镍转移到聚四氟乙烯内衬的反应釜中,将反应釜放入烘箱中于100℃温度下反应8h后洗涤,于60℃恒温烘箱中烘28h,之后在马弗炉中以5℃/min的升温速率于300℃温度下煅烧3h,得到前驱体钴酸镁(MgCo2O4/NF),其FTIR如图1中a所示,XRD图谱如图2中a所示,该XRD曲线符合钴酸镁的XRD标准卡片(JCPDS NO. 02-1073, α=8.123 Å),说明成功制备出钴酸镁。之后对前驱体钴酸镁进行负载,先称取0.1241 g对甲苯磺酸于三口烧瓶中,再加入80 mL去离子水、150 μL吡咯和载有前驱体钴酸镁的泡沫镍,并将三口烧瓶置于冰水浴中,机械搅拌使其混合均匀,再称取0.1646 g过硫酸铵于烧杯中,再加入30 mL去离子水,磁力搅拌使其均匀溶解并逐滴加入三口烧瓶中,反应6h后洗涤,于60℃恒温烘箱中烘28h,得到钴酸镁复合电极材料(MgCo2O4@PPy/NF),其FTIR如图1中b所示,XRD图谱如图2中b所示。以MgCo2O4@PPy/NF直接作为工作电极,在三电极体系下进行恒电流充放电,其比电容为901.4 F g-1,循环1000次后比电容仅衰减6.5%。
实施例3
室温下分别称取4 mmol四水合乙酸镁、6 mmol六水合氯化钴和16 mmol尿素于烧杯中,再加入70 mL去离子水,磁力搅拌使其均匀溶解;然后将混合溶液和处理好的泡沫镍转移到聚四氟乙烯内衬的反应釜中,将反应釜放入烘箱中于150℃温度下反应4h后洗涤,于90℃恒温烘箱中烘16h,之后在马弗炉中以5℃/min的升温速率于400℃温度下煅烧2h,得到前驱体钴酸镁(MgCo2O4/NF),其FTIR如图1中a所示,XRD图谱如图2中a所示,该XRD曲线符合钴酸镁的XRD标准卡片(JCPDS NO. 02-1073, α=8.123 Å),说明成功制备出钴酸镁。之后对前驱体钴酸镁进行负载,先称取0.2482 g对甲苯磺酸于三口烧瓶中,再加入50 mL去离子水、200 μL吡咯和载有前驱体钴酸镁的泡沫镍,并将三口烧瓶置于冰水浴中,机械搅拌使其混合均匀,再称取0.3272 g过硫酸铵于烧杯中,再加入15 mL去离子水,磁力搅拌使其均匀溶解并逐滴加入三口烧瓶中,反应3h后洗涤,于90℃恒温烘箱中烘16h,得到钴酸镁复合电极材料(MgCo2O4@PPy/NF),其FTIR如图1中b所示,XRD图谱如图2中b所示。以MgCo2O4@PPy/NF直接作为工作电极,在三电极体系下进行恒电流充放电,其比电容为821.2 F g-1,循环1000次后比电容仅衰减5.7 %。
实施例4
室温下分别称取2 mmol七水合硫酸镁、3 mmol七水合硫酸钴和8 mmol尿素于烧杯中,再加入70 mL无水乙醇,磁力搅拌使其均匀溶解;然后将混合溶液和处理好的泡沫镍转移到聚四氟乙烯内衬的反应釜中,将反应釜放入烘箱中于130℃温度下反应3h后洗涤,于70℃恒温烘箱中烘20h,之后在马弗炉中以5℃/min的升温速率于350℃温度下煅烧1h,得到前驱体钴酸镁(MgCo2O4/NF),其FTIR如图1中a所示,XRD图谱如图2中a所示,该XRD曲线符合钴酸镁的XRD标准卡片(JCPDS NO. 02-1073, α=8.123 Å),说明成功制备出钴酸镁。之后对前驱体钴酸镁进行负载,先称取0.2482 g对甲苯磺酸于三口烧瓶中,再加入70 mL去离子水、50 μL吡咯和载有前驱体钴酸镁的泡沫镍,并将三口烧瓶置于冰水浴中,机械搅拌使其混合均匀,再称取0.1646 g过硫酸铵于烧杯中,再加入10 mL去离子水,磁力搅拌使其均匀溶解并逐滴加入三口烧瓶中,反应2h后洗涤,于70℃恒温烘箱中烘20h,得到钴酸镁复合电极材料(MgCo2O4@PPy/NF),其FTIR如图1中b所示,XRD图谱如图2中b所示。以MgCo2O4@PPy/NF直接作为工作电极,在三电极体系下进行恒电流充放电,其比电容为925.1 F g-1,循环1000次后比电容仅衰减7.8 %。
实施例5
室温下分别称取3 mmol六水合氯化镁、7 mmol六水合氯化钴和10 mmol尿素于烧杯中,再加入90 mL去离子水,磁力搅拌使其均匀溶解;然后将混合溶液和处理好的泡沫镍转移到聚四氟乙烯内衬的反应釜中,将反应釜放入烘箱中于180℃温度下反应2h后洗涤,于80℃恒温烘箱中烘18h,之后在马弗炉中以5℃/min的升温速率于450℃温度下煅烧1h,得到前驱体钴酸镁(MgCo2O4/NF),其FTIR如图1中a所示,XRD图谱如图2中a所示,该XRD曲线符合钴酸镁的XRD标准卡片(JCPDS NO. 02-1073, α=8.123 Å),说明成功制备出钴酸镁。之后对前驱体钴酸镁进行负载,先称取0.5498 g对甲苯磺酸于三口烧瓶中,再加入90 mL去离子水、150 μL吡咯和载有前驱体钴酸镁的泡沫镍,并将三口烧瓶置于冰水浴中,机械搅拌使其混合均匀,再称取0.6604 g过硫酸铵于烧杯中,再加入30 mL去离子水,磁力搅拌使其均匀溶解并逐滴加入三口烧瓶中,反应3h后洗涤,于80℃恒温烘箱中烘18h,得到钴酸镁复合电极材料(MgCo2O4@PPy/NF),其FTIR如图1中b所示,XRD图谱如图2中b所示。以MgCo2O4@PPy/NF直接作为工作电极,在三电极体系下进行恒电流充放电,其比电容为852.7 F g-1,循环1000次后比电容仅衰减3.9 %。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法,其特征在于,包括如下步骤:
泡沫镍的预处理:将经裁剪的泡沫镍依次放入1 mol/L 盐酸溶液、丙酮和去离子水中,超声清洗;
载有前驱体钴酸镁的泡沫镍的制备:
B1、分别称取镁盐、钴盐和尿素,加入溶剂,磁力搅拌使其均匀溶解,其中所述镁盐、钴盐、尿素与溶剂的摩尔、体积比为1~4 mmol:2~7 mmol:6~16 mmol:60~90 mL,优选2mmol:4 mmol:12 mmol:80 mL;将混合溶液和预处理过的泡沫镍转移到聚四氟乙烯内衬的反应釜中,100~180℃加热2~8h,优选120℃加热6h;
B2、冷却至室温后取出泡沫镍,分别用去离子水和无水乙醇清洗至洗脱液pH值中性,60~90℃烘16~28h,优选80℃烘24h;
B3、将烘干后的泡沫镍置于马弗炉中以5℃/min的升温速率于300~450℃煅烧1h~3h,优选350℃煅烧2h,冷却后即得;
镍基钴酸镁复合电极材料的制备:
C1、称取对甲苯磺酸于反应容器中,加入去离子水、吡咯和载有前驱体钴酸镁的泡沫镍,置于冰水浴中搅拌均匀,其中所述对甲苯磺酸、去离子水和吡咯的质量、体积比为0.2749 g~0.5498 g:50~90 mL:50~200 μL,优选0.2749 g:60 mL:100 μL;
C2、称取过硫酸铵加入去离子水,搅拌均匀溶解,再逐滴加入上述反应容器中,控制成滴不成线滴加并持续搅拌,其中所过硫酸铵和去离子水的质量、体积比为0.3302~0.6604g:10~30 mL,优选0.3302 g:20 mL;反应2~6h后,停止反应,取出载有钴酸镁复合材料的泡沫镍,分别用去离子水和无水乙醇清洗至洗脱液pH值中性,于60~90℃烘16~28h,优选反应4h,80℃烘24h,冷却后即得。
2.根据权利要求1所述溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法,其特征在于:步骤A所述裁剪的泡沫镍尺寸为1×1 cm。
3.根据权利要求1所述溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法,其特征在于:步骤B1所述镁盐是六水合氯化镁、六水合硝酸镁或四水合乙酸镁中的任意一种时,所述溶剂为去离子水或无水乙醇。
4.根据权利要求1所述溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法,其特征在于:步骤B1所述镁盐是七水合硫酸镁时,所述溶剂为去离子水。
5.根据权利要求1所述溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法,其特征在于:步骤B1所述钴盐是六水合氯化钴、六水合硝酸钴或四水合乙酸钴中的任意一种时,所述溶剂为去离子水或无水乙醇。
6.根据权利要求1所述溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法,其特征在于:步骤B1所述钴盐是七水合硫酸钴时,所述溶剂为去离子水。
7.根据权利要求1-6任意所述方法制得的镍基钴酸镁复合电极材料。
8.根据权利要求7所述的镍基钴酸镁复合电极材料,其特征在于:所述材料形貌为海胆状,颗粒分布均匀,直径为14~17μm。
9.一种如权利要求7或8所述镍基钴酸镁复合电极材料的应用,其特征在于:作为电极用于全固态非对称超级电容器的组装。
CN201810323844.8A 2018-04-12 2018-04-12 溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用 Pending CN108538631A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810323844.8A CN108538631A (zh) 2018-04-12 2018-04-12 溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810323844.8A CN108538631A (zh) 2018-04-12 2018-04-12 溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用

Publications (1)

Publication Number Publication Date
CN108538631A true CN108538631A (zh) 2018-09-14

Family

ID=63479659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810323844.8A Pending CN108538631A (zh) 2018-04-12 2018-04-12 溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用

Country Status (1)

Country Link
CN (1) CN108538631A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244192A (zh) * 2015-10-27 2016-01-13 渤海大学 一种钴酸镁多孔纳米线阵列/泡沫镍复合电极材料的制备方法
CN105271438A (zh) * 2015-10-27 2016-01-27 渤海大学 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法
CN106299289A (zh) * 2016-09-10 2017-01-04 天津大学 一种钴酸锌/瓜尔多胶/聚吡咯复合材料的制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244192A (zh) * 2015-10-27 2016-01-13 渤海大学 一种钴酸镁多孔纳米线阵列/泡沫镍复合电极材料的制备方法
CN105271438A (zh) * 2015-10-27 2016-01-27 渤海大学 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法
CN106299289A (zh) * 2016-09-10 2017-01-04 天津大学 一种钴酸锌/瓜尔多胶/聚吡咯复合材料的制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO-BIN ZHONG等: "Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries", 《JOURNAL OF POWER SOURCES》 *

Similar Documents

Publication Publication Date Title
Xie et al. Three-dimensional graphene surface-mounted nickel-based metal organic framework for oxygen evolution reaction
CN1283014C (zh) 锂离子电池正极材料高密度球形镍钴锰酸锂的制备方法
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
CN106564967B (zh) 富锂锰基正极材料前驱体、正极材料及其制备方法
CN103170324B (zh) 一种金属氧化物/氮掺杂碳纳米管及其制备方法和应用
Hu et al. Evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells
CN110853937A (zh) 一种超级电容器用镍钴双金属硒化物/碳复合物的制备方法
CN109119646B (zh) 一种高性能Co3O4-CeO2/Co-N-C复合催化剂及其制备方法和应用
Hu et al. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance
Wei et al. Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries
CN105552331B (zh) 铁钴氧化物/石墨烯复合材料及其制备方法和应用
CN109650464A (zh) 四氧化三钴纳米线阵列的制备方法及其产品和应用
Seo et al. Fast growth of the precursor particles of Li (Ni0. 8Co0. 16Al0. 04) O2 via a carbonate co-precipitation route and its electrochemical performance
CN108777302B (zh) NiCo2O4及其制备方法及应用
CN107739058A (zh) 自组装菱形花簇四氧化三钴纳米材料的制备方法及其产品和应用
CN102013481A (zh) 一种球形梯度富锂正极材料的合成方法
Zhu et al. Facile synthesis Zn-Ni bimetallic MOF with enhanced crystallinity for high power density supercapacitor applications
Chen et al. Cation-exchange induced high power electrochemical properties of core–shell Ni (OH) 2@ CoOOH
CN107256964A (zh) 一种高电压锂电池正极材料棒状镍锰酸锂的制备方法
CN109192526A (zh) 一种多孔碳/金属氧化物复合结构材料及其制备方法和应用
Heydariyan et al. EuMnO3/EuMn2O5/MWCNT nanocomposites: Insights into synthesis and application as potential materials for development of hydrogen storage capacity
CN109768260A (zh) 一种磷化二钴/碳复合材料及其制备方法和用途
CN109904000A (zh) 一种纳米线状镍基配合物电极材料的制备方法及其应用
CN111584837A (zh) 铁酸镍金属有机框架衍生物纳米材料及其制备方法与应用
Sun et al. Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous Nickel-Zinc battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180914