CN108531555A - 短片段dna序列特异性传感检测方法及基于该方法的检测系统 - Google Patents

短片段dna序列特异性传感检测方法及基于该方法的检测系统 Download PDF

Info

Publication number
CN108531555A
CN108531555A CN201810161233.8A CN201810161233A CN108531555A CN 108531555 A CN108531555 A CN 108531555A CN 201810161233 A CN201810161233 A CN 201810161233A CN 108531555 A CN108531555 A CN 108531555A
Authority
CN
China
Prior art keywords
dna
nano
pore
dna sequence
short segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810161233.8A
Other languages
English (en)
Inventor
谭生伟
刘全俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201810161233.8A priority Critical patent/CN108531555A/zh
Publication of CN108531555A publication Critical patent/CN108531555A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及DNA分子测序技术领域,特别涉及短片段DNA序列特异性传感检测方法及基于该方法的检测系统。其对DNA探针与目标DNA链在纳尺度下特异性识别时空信号、分子运动规律进行研究,以进行DNA序列识别。短片段DNA序列特异性传感检测方法包括以下步骤:S1:功能化纳米孔,将DNA探针偶联在纳米孔内壁,得到功能化纳米孔;S2:DNA特异性检测,使目标DNA链穿过功能化纳米孔进行特异性识别,即已知序列的DNA探针与目标DNA链杂交;S3:信号提取及分析,对DNA探针与目标DNA链杂交过程中的时空信号进行提取、分析。

Description

短片段DNA序列特异性传感检测方法及基于该方法的检测 系统
技术领域
本发明涉及DNA分子测序技术领域,特别涉及短片段DNA序列特异性传感检测方法及基于该方法的检测系统。
背景技术
纳米孔自1996年一经提出就被认为是一种快速高通量、超高读长、无标记、无扩增、单分子检测技术之一,更重要的是它可以在不损失任何结构和动力学上的有用信息的前提下准确地分析DNA。相比于前面三代测序技术,第四代纳米孔测序技术将是完全摆脱了洗脱过程、PCR扩增过程,从光学检测到电子传导检测的双重跨越单分子测序方法,也是将来最有希望实现1000美元基因组甚至100美元基因组的测序技术。
现有技术中有使用树枝状大分子改性纳米管,通过改性前后整流特性的变化为基础,制备了DNA杂交传感器,但制备复杂且灵敏性不高。也有学者通过气相沉积法在氮化硅纳米孔上修饰一层氨基硅烷,然后使用化学交联剂将氨基DNA共价固定到纳米孔上,但是没有对实现对DNA的特异性识别,信号无法区分。国外有研究者使用含有6bp骨干区域、20bp长的发夹环DNA探针对氧化硅纳米孔功能化修饰提高其选择性,检测样品中加入了固定探针的主干形成区域具有错配位点的ssDNA,但是该系统未实现对于单碱基不匹配和多碱基不匹配的区分。
高精度、快速、无扩增、非标记、低成本、多功能的第四代纳米孔单分子DNA的特异性识别的实现具有重要的科学意义。
发明内容
本发明的第一目的是提供一种短片段DNA序列特异性传感检测方法,其能够利用纳米孔非标记,无扩增、高灵敏的离子电流检测技术,研究DNA探针与目标DNA链在纳尺度下特异性识别时空信号、分子运动规律以及动力学机制,以进行DNA序列识别。
本发明的上述技术目的是通过以下技术方案得以实现的:
短片段DNA序列特异性传感检测方法,包括以下步骤:S1:功能化纳米孔,将DNA探针偶联在纳米孔内壁,得到功能化纳米孔;S2:DNA特异性检测,使目标DNA链穿过功能化纳米孔进行特异性识别,即已知序列的DNA探针与目标DNA链杂交;S3:信号提取及分析,对DNA探针与目标DNA链杂交过程中的时空信号进行提取、分析。
通过采用上述技术方案,在对目标DNA链进行序列检测时,将DNA探针偶联在纳米孔内壁,以得到功能化纳米孔,从而可以使目标DNA链穿过功能化纳米孔的过程中与已知序列的DNA探针进行特异性识别,即互补形成DNA双链,并对识别过程中时空信号的改变进行提取分析,以了解其规律,从而帮助对DNA序列进行判断,以及实现实时在线检测。
进一步的,还包括S1’:对纳米孔及功能化纳米孔进行表征,以确认DNA探针是否有效固定,其中S1’位于S1与S2之间。
通过采用上述技术方案,在制备功能化纳米孔后,进行DNA特异性检测前对功能化纳米孔进行表征,以判断DNA探针是否有效固定在纳米孔内壁,从而避免在DNA探针固定失败的情况下继续进行后续实验操作,浪费实验材料及时间。
进一步的,S1中采用原位法或非原位法、利用硅烷化处理对纳米孔表面和内壁进行差异化修饰改性;通过硅烷偶联分子将DNA探针偶联在纳米孔内壁。
进一步的,S2中通过电压反馈控制目标DNA链,使所述目标DNA链穿过功能化纳米孔,并进行特异性识别。
进一步的,S3中通过数字滤波器或小波变换技术提高DNA探针与目标DNA链杂交过程中,功能化纳米孔本底噪声的信噪比,并对产生的电流信号进行提取、分析。
进一步的,S1’中,利用SEM、TEM或AFM技术对纳米孔形态结构进行表征;利用接触角测量仪、伏安电流曲线、SEM或TEM技术对纳米孔修饰改性进行表征;利用SEM或AFM技术对DNA探针取向、空间位置进行表征,利用分子力谱、FRET荧光标记DNA探针等技术判断DNA探针是否有效固定。
本发明的第二目的是提供一种纳米孔的制备方法,首先对硅晶圆进行清洗;之后,在所述硅晶圆的两面分别沉积一层二氧化硅薄膜;然后,在所述硅晶圆的两面,位于所述二氧化硅薄膜背离所述硅晶圆的一侧,分别沉积一层氮化硅薄膜;然后,在所述硅晶圆的其中一面,位于相应所述氮化硅薄膜背离所述硅晶圆的一侧覆盖一层光刻胶,形成一窗口;最后,通过该窗口依次对氮化硅薄膜及二氧化硅薄膜进行腐蚀,并利用FEI Strata 201FIB系统的稼粒子束通过所述窗口对所述硅晶圆进行轰击,得到纳米孔芯片,纳米孔制备完成。
进一步的,所述氮化硅薄膜通过低压气相化学沉积技术沉积于所述二氧化硅薄膜背离所述硅晶圆的一侧,且其中一面氮化硅薄膜的厚度为100nm,另一面为500nm,所述光刻胶位于厚度为500nm的所述氮化硅薄膜背离所述硅晶圆的一侧。
进一步的,所述氮化硅薄膜通过等离子刻蚀技术进行腐蚀,所述二氧化硅薄膜通过氟化氢进行腐蚀。
本发明的第三目的是提供一种短片段DNA序列特异性传感检测方法的短片段DNA序列检测系统,包括纳米孔,所述纳米孔内偶联有DNA探针;还包括能够将DNA序列特异性识别过程中产生的时空信号转换为可测量的电输出信号的数字转换器。。
综上所述,本发明具有以下有益效果:
1.在纳米孔内表面通过非原位的方法或原位方法将硅烷通过共价修饰到固态纳米孔上;
2.在硅烷修饰的基础上进一步通过化学偶联剂将DNA探针固定在纳米孔内;
对DNA探针与目标DNA链识别过程中时空信号的改变进行提取分析,以了解其规律,从而帮助对DNA序列进行判断。
附图说明
图1为本发明提供的不同电压下的特异性互补序列易位信号图;
图2为本发明提供的电压与阻塞电流(A)和易位持续事件(B)的函数关系图;
图3为本发明提供的短片段DNA序列检测系统整体图。
具体实施方式
以下结合附图1-3对本发明作进一步详细说明。
本发明披露了一种短片段DNA序列特异性传感检测方法,具体包括以下步骤。
实施例:
S1:功能化纳米孔。
本实施例中,在纳米孔内表面通过原位方法或非原位方法将甲基硅烷、三氟硅烷及羧基硅烷通过共价修饰到纳米孔上,实现纳米孔表面和内壁的差异化修饰改性。并进一步通过调控溶液的pH来调控纳米孔表面的电荷,当然也可以将梳状接枝共聚物,如poly-L-lysine-graft-poly(ethylene glycol),通过共价或者非共价的方式修饰在纳米孔表面,以屏蔽纳米孔表面所带的电荷。
在硅烷修饰的基础上,进一步通过化学偶联剂,采用硅烷偶联分子如氨基硅烷、对苯二异硫氰酸酯、EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)、NHS(N-羟基琥珀酰亚胺)实现纳米孔内壁DNA探针的固定与定点组装,从而将DNA探针固定在纳米孔内,得到功能化纳米孔。DNA探针可以根据实际需要设计为不同的序列,在实际使用时可以选择将不同的DNA探针固定在纳米孔内壁,本实施例中所用为42-mer寡核苷酸探针分子。
S1’:对纳米孔及功能化纳米孔进行表征,以确认DNA探针是否有效固定。
通过SEM、TEM、AFM等对纳米孔形态结构进行表征,接触角测量仪、伏安电流曲线、SEM、TEM等技术手段对纳米孔化学修饰改性进行表征(如羧基硅烷亲水修饰,三氟硅烷疏水修饰等)。借助纳米孔内电流信号变化判断孔内DNA探针是否有效固定。用扫描电镜或原子力显微镜对DNA探针取向、空间位置进行表征,用分子力谱、FRET荧光标记探针等评估DNA探针是否有效固定化。
S2:DNA特异性检测,使目标DNA链穿过功能化纳米孔进行特异性识别,即已知序列的DNA探针与目标DNA链杂交;
通过电压反馈控制单个碱基和多个碱基突变的目标DNA链穿过功能化纳米孔,并进行特异性识别。
S3:信号提取及分析,对DNA探针与目标DNA链杂交过程中的时空信号进行提取、分析。
已知序列的DNA探针分子与未知的目标DNA链杂交,DNA探针的核苷酸序列通过杂交互补实现识别目标DNA链;通过数字滤波器或小波变换等技术提高DNA探针与目标DNA链杂交过程中,功能化纳米孔本底噪声的信噪比,并对杂交形成双链过程中产生的电流信号进行分析,研究DNA探针与目标DNA链在纳尺度下特异性识别分子运动规律。
本实施例研究了DNA探针识别单个碱基突变时的离子电流特征,并对该过程中发生的特异性互补易位事件进行分析,结果如附图1和附图2所示。
附图1为不同电压下的特异性互补序列易位信号图,根据该图可知,随着电压的增大从150mV到300mV,L3到L1这个小的平台逐渐消失,直到400mV时这个小的平台L0彻底消失,这个小的平台就是特异性互补易位事件,在较小的电压下,解链时间较长,在150mV的电压下的解链时间大约是3.6ms,随着电压的增加解链时间加快,直到在400mV的电压下,解链时间平台消失。
附图2为电压与阻塞电流(A)和易位持续事件(B)的函数关系图,根据该图可知,电压与特异性互补易位事件的阻塞电流呈线性增长,与易位时间成指数衰减的关系。
通过对DNA探针与目标DNA链在纳尺度下特异性识别过程中的电输出信号规律进行探索研究,那么后续可以通过测量特异性互补后离子电流的变化来分析DNA序列。
本发明还披露了一种基于上述的短片段DNA序列特异性传感检测方法的短片段DNA序列检测系统,可用于短片段DNA特异性序列分析以及碱基突变检测。如附图3所示,具有单碱基突变、两个碱基突变或者三个碱基突变的目标DNA链与偶联在纳米孔内壁的DNA探针进行特异性识别,并对识别过程中产生的时空信号进行提取,通过数字转换器将其转换为可测量的电输出信号,并对该信号的规律进行研究,以用于辅助推断目标DNA链的序列。其在医学诊断检测方面可以给医生提供强大、高效、精准的手段对于疾病(尤其癌症)的预警具有重要的意义;为研制固态纳米孔测序仪奠定基础,同时将推动功能基因组学、精准个体化医学以及个体化药学的发展;开辟生物分子的无标记检测、生物化学和生物物理学研究的新平台。
本发明还披露了一种纳米孔的制备方法,具体为一种固态纳米孔的制备方法。
首先清洗硅晶圆,本实施例中所用硅晶圆为单晶<100>型双面剖光的硅晶圆,其直径为100nm,厚度为300μm;其次,通过热氧化法在硅晶圆的两面分别沉积一层100nm厚的二氧化硅薄膜;然后,通过低压气相化学沉积技术在其中一面二氧化硅薄膜背离硅晶圆的一侧沉积一层100nm厚的氮化硅薄膜,另一面二氧化硅薄膜背离硅晶圆的一侧沉积一层500nm厚的氮化硅薄膜;接着,利用甩胶机在已沉积500nm厚的氮化硅薄膜背离硅晶圆的一侧均匀地覆盖一层光刻胶,基片上形成一个500μm×500μm的正方形窗口;之后,采用等离子刻蚀技术对氮化硅薄膜进行垂直腐蚀,利用氟化氢腐蚀二氧化硅薄膜至硅基底终止;利用FEIStrata 201FIB系统的稼粒子束对硅晶圆进行轰击,得到纳米孔芯片,完成纳米孔的制备。当然,其他实施例中也开始利用聚焦电子束、聚焦Ga离子束以及聚焦He离子束等大型加工平台制备多种尺寸及形状的纳米孔,只要能够根据实际需要完成纳米孔的制备即可。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.短片段DNA序列特异性传感检测方法,其特征在于:包括以下步骤:
S1:功能化纳米孔,将DNA探针偶联在纳米孔内壁,得到功能化纳米孔;
S2:DNA特异性检测,使目标DNA链穿过功能化纳米孔进行特异性识别,即已知序列的DNA探针与目标DNA链杂交;
S3:信号提取及分析,对DNA探针与目标DNA链杂交过程中的时空信号进行提取、分析。
2.根据权利要求1所述的短片段DNA序列特异性传感检测方法,其特征在于:还包括步骤S1’:对纳米孔及功能化纳米孔进行表征,以确认DNA探针是否有效固定,其中S1’位于S1与S2之间。
3.根据权利要求1所述的短片段DNA序列特异性传感检测方法,其特征在于:S1中采用原位法或非原位法、利用硅烷化处理对纳米孔表面和内壁进行差异化修饰改性;通过硅烷偶联分子将DNA探针偶联在纳米孔内壁。
4.根据权利要求1所述的短片段DNA序列特异性传感检测方法,其特征在于:S2中通过电压反馈控制目标DNA链,使所述目标DNA链穿过功能化纳米孔,并进行特异性识别。
5.根据权利要求4所述的短片段DNA序列特异性传感检测方法,其特征在于:S3中通过数字滤波器或小波变换技术提高DNA探针与目标DNA链杂交过程中,功能化纳米孔本底噪声的信噪比,并对产生的电流信号进行提取、分析。
6.根据权利要求2所述的短片段DNA序列特异性传感检测方法,其特征在于:S1’中,利用SEM、TEM或AFM技术对纳米孔形态结构进行表征;利用接触角测量仪、伏安电流曲线、SEM或TEM技术对纳米孔修饰改性进行表征;利用SEM或AFM技术对DNA探针取向、空间位置进行表征,利用分子力谱、FRET荧光标记DNA探针等技术判断DNA探针是否有效固定。
7.如权利要求2所述的短片段DNA序列特异性传感检测方法中的一种纳米孔的制备方法,其特征在于:首先对硅晶圆进行清洗;之后,在所述硅晶圆的两面分别沉积一层二氧化硅薄膜;然后,在所述硅晶圆的两面,位于所述二氧化硅薄膜的背离所述硅晶圆的一侧,分别沉积一层氮化硅薄膜;然后,在所述硅晶圆的其中一面,位于相应所述氮化硅薄膜的背离所述硅晶圆的一侧覆盖一层光刻胶,形成一窗口;最后,通过该窗口依次对氮化硅薄膜及二氧化硅薄膜进行腐蚀,并利用FEI Strata 201 FIB系统的稼粒子束通过所述窗口对所述硅晶圆进行轰击,得到纳米孔芯片,纳米孔制备完成。
8.根据权利要求7所述的一种纳米孔的制备方法,其特征在于:所述氮化硅薄膜通过低压气相化学沉积技术沉积于所述二氧化硅薄膜背离所述硅晶圆的一侧,且其中一面氮化硅薄膜的厚度为100nm,另一面为500nm,所述光刻胶位于厚度为500nm的所述氮化硅薄膜背离所述硅晶圆的一侧。
9.根据权利要求7所述的一种纳米孔的制备方法,其特征在于:所述氮化硅薄膜通过等离子刻蚀技术进行腐蚀,所述二氧化硅薄膜通过氟化氢进行腐蚀。
10.一种短片段DNA序列检测系统,其特征在于:包括纳米孔,所述纳米孔内偶联有DNA探针;还包括能够将DNA序列特异性识别过程中产生的时空信号转换为可测量的电输出信号的数字转换器。
CN201810161233.8A 2018-02-27 2018-02-27 短片段dna序列特异性传感检测方法及基于该方法的检测系统 Pending CN108531555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810161233.8A CN108531555A (zh) 2018-02-27 2018-02-27 短片段dna序列特异性传感检测方法及基于该方法的检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810161233.8A CN108531555A (zh) 2018-02-27 2018-02-27 短片段dna序列特异性传感检测方法及基于该方法的检测系统

Publications (1)

Publication Number Publication Date
CN108531555A true CN108531555A (zh) 2018-09-14

Family

ID=63485821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810161233.8A Pending CN108531555A (zh) 2018-02-27 2018-02-27 短片段dna序列特异性传感检测方法及基于该方法的检测系统

Country Status (1)

Country Link
CN (1) CN108531555A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132921A (zh) * 2019-05-16 2019-08-16 中国科学院重庆绿色智能技术研究院 一种基于针尖纳米孔单分子检测技术的实时监控酶切反应的方法
CN114686577A (zh) * 2020-12-31 2022-07-01 苏州罗岛纳米科技有限公司 一种dna序列检测方法及dna序列检测设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423636A (zh) * 2011-10-15 2012-04-25 东南大学 一种用化学修饰固态纳米孔阵列分离溶液中杂质的方法
CN107727705A (zh) * 2017-09-28 2018-02-23 东南大学 一种酶反应检测纳米孔电学传感器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423636A (zh) * 2011-10-15 2012-04-25 东南大学 一种用化学修饰固态纳米孔阵列分离溶液中杂质的方法
CN107727705A (zh) * 2017-09-28 2018-02-23 东南大学 一种酶反应检测纳米孔电学传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SAMIR M. IQBAL等: "Solid-state nanopore channels with DNA selectivity", 《NATURE NANOTECHNOLOGY》 *
曾向阳 著: "《智能水中目标识别》", 31 March 2016 *
韩晓军 著: "《生物功能化界面》", 30 January 2017, 哈尔滨工业大学出版社 *
马建: "基于固态纳米孔基因测序的关键技术研究", 《中国博士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132921A (zh) * 2019-05-16 2019-08-16 中国科学院重庆绿色智能技术研究院 一种基于针尖纳米孔单分子检测技术的实时监控酶切反应的方法
CN110132921B (zh) * 2019-05-16 2021-09-14 中国科学院重庆绿色智能技术研究院 一种基于针尖纳米孔单分子检测技术的实时监控酶切反应的方法
CN114686577A (zh) * 2020-12-31 2022-07-01 苏州罗岛纳米科技有限公司 一种dna序列检测方法及dna序列检测设备

Similar Documents

Publication Publication Date Title
EP2019309B1 (en) Nucleic acid analysis device and nucleic acid analyzer using the same
US7381529B2 (en) Methods and compositions for detecting nucleic acids using scanning probe microscopy and nanocodes
US7531726B2 (en) Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading
JP4697852B2 (ja) 分子構造を検出および同定するための走査型プローブ顕微鏡像のモデルを用いた融合
US10266403B2 (en) Heterogeneous microarray based hybrid upconversion nanoprobe/nanoporous membrane system
US20070238096A1 (en) Hybrid energy transfer for nucleic acid detection
Mussi et al. “DNA-Dressed NAnopore” for complementary sequence detection
US11034998B2 (en) Method for label-free single-molecule DNA sequencing and device for implementing same
CN105308062A (zh) 用于基于纳米结构的核酸测序的方法和组合物
CN108531555A (zh) 短片段dna序列特异性传感检测方法及基于该方法的检测系统
Squires et al. Single-molecule characterization of DNA–protein interactions using nanopore biosensors
He et al. Sub-5 nm nanogap electrodes towards single-molecular biosensing
Sülzle et al. Label-free imaging of DNA interactions with 2D materials
US9759842B2 (en) Functionalized surfaces and methods related thereto
Cervantes et al. Robust deposition of lambda DNA on mica for imaging by AFM in air
Zahid et al. Helium ion microscope fabrication of solid-state nanopore devices for biomolecule analysis
Howell et al. Thymine/adenine diblock-oligonucleotide monolayers and hybrid brushes on gold: a spectroscopic study
JP5412207B2 (ja) 生体分子固定基板及びその製造方法
Wang et al. Selective DNA detection at Zeptomole level based on coulometric measurement of gold nanoparticle-mediated electron transfer across a self-assembled monolayer
US7642086B2 (en) Labeled probe bound object, method for producing the same and method for using the same
CN102640000B (zh) 采用次级离子质谱法(sims)高灵敏度检测和定量生物分子的改进方法
JP2009085607A (ja) 生体分子検出素子及び生体分子検出素子の製造方法
TWI718053B (zh) 生物探針之連接子
Panday et al. Scanning Ion Conductance Microscopy for Single Cell Imaging and Analysis
Kececi et al. Recent Applications of Resistive-pulse Sensing Using 2D Nanopores

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180914

RJ01 Rejection of invention patent application after publication