CN108529574B - 一种超薄氮化硼纳米片及其分散液的制备方法 - Google Patents

一种超薄氮化硼纳米片及其分散液的制备方法 Download PDF

Info

Publication number
CN108529574B
CN108529574B CN201810774746.6A CN201810774746A CN108529574B CN 108529574 B CN108529574 B CN 108529574B CN 201810774746 A CN201810774746 A CN 201810774746A CN 108529574 B CN108529574 B CN 108529574B
Authority
CN
China
Prior art keywords
boron nitride
ultra
ultrathin
preparation
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810774746.6A
Other languages
English (en)
Other versions
CN108529574A (zh
Inventor
刘敬权
刘丙萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201810774746.6A priority Critical patent/CN108529574B/zh
Publication of CN108529574A publication Critical patent/CN108529574A/zh
Application granted granted Critical
Publication of CN108529574B publication Critical patent/CN108529574B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于纳米材料技术领域,涉及一种超薄氮化硼纳米片及其分散液的制备方法,采用一步水热法在实验室制备超薄氮化硼纳米片,以廉价的硼酸与氨水为原料,水热反应一定时间后,制备得到氨基和羟基同时修饰的氮化硼量子点溶液;然后冷却,室温条件下放置一周,经过滤,洗涤,即可得到白色透明的氮化硼晶体;最后将其加入超纯水中,缓慢加热至60~80℃,氮化硼晶体逐渐溶解,得到无色透明的溶液,即为超薄氮化硼纳米片的分散液,该分散液经过冷冻干燥,即可得到超薄氮化硼纳米片粉末。本发明所述方法具有成本低、工艺简单、易于产业化生产等优点,获得的超薄氮化硼纳米片尺寸分布均匀、结晶度高且在水溶液中分散性好。

Description

一种超薄氮化硼纳米片及其分散液的制备方法
技术领域
本发明属于纳米材料技术领域,涉及一种超薄氮化硼纳米片及其分散液的制备方法。
背景技术
六方氮化硼是一种类石墨烯材料,由于其结构与石墨烯类似,六方氮化硼纳米片又被称为白石墨烯。六方氮化硼的带隙较宽(大约5.7eV),导热性很好,具有超稳定的化学性质,无毒,高机械强度,强绝缘性等优点,六方氮化硼纳米片已被广泛用于化妆品、润滑油、陶瓷添加剂等领域。目前六方氮化硼纳米片的制备方法主要有两种:自上而下的剥离法和自下而上的化学合成法。
自上而下的剥离方法是把庞大的块状化合物剥离成为单层和几层的二维纳米材料,根据剥离方法不同,可分为机械剥离、液体剥离和化学氧化刻蚀法剥离。但与其它二维材料的结构不同,氮化硼在同一层内B和N之间通过B-N强共价键结合,B原子上存在一个空轨道,N原子上有一对孤对电子,层与层之间原子叠放时,B原子在N原子之上,两者形成另一种配位键的形式,因此B-N化学键之间的极性很大,氮化硼层与层之间的相互作用力比较强。所以,采用剥离法制备六方氮化硼纳米片时,难度更大,所需要的剥离时间更长。并且,氮化硼的化学稳定性很好,边缘没有羧基等活性高的含氧官能团,因此不宜采用化学氧化刻蚀法进行剥离。
自下而上的化学合成法主要是通过前驱体之间的化学反应,制备得到所需的超薄二维纳米材料,目前制备超薄六方氮化硼纳米片的方法主要采用的是化学气相沉积法(CVD)。在典型的CVD过程中,将诸如Cu箔,Ni箔或硅晶片的衬底放入管式炉中,并在惰性气体保护下,高温通入前驱体,这个过程中,前驱体在衬底表面上先分解后反应形成单层或几层2D超薄纳米材料。纳米材料的质量,尺寸和厚度可以通过调整实验条件进行有效控制。比如,Kong等人首次采用环硼氮烷为原料,在多晶Ni的表面,低压、氮气环境下大规模生长了多层六方氮化硼,反应温度低至400℃,并且合成的六方氮化硼的厚度可以通过调节环硼氮烷的流量进行调节,当流量由2sccm/h增大至10sccm/h时,六方氮化硼的厚度由5nm增大至50nm。所得超薄氮化硼纳米片可以通过湿刻蚀法转移至其它底物进行进一步表征或应用。为了制备单层六方氮化硼,继续对反应条件进行优化,结果通过设置两个反应温度区域,首先在130℃的区域对环硼氮烷进行预加热,然后再使其在1000℃的温度下生长成单层六方氮化硼。Guo等人以氨硼烷为原料,先在55~80℃条件下预热使其转化成气体,随后与氢气一起通入反应器,1035℃反应50min后即可得到单层六方氮化硼。化学气相沉积法的突出优点是可以制备大规模的超薄六方氮化硼,并且可以精确控制氮化硼纳米片的厚度,但该方法存在三个缺点:(1)反应底物必须超级光滑,否则影响六方氮化硼晶体的生长,因此需要采用浓磷酸、氢氟酸等强酸进行反复清洗,不仅耗费时间,而且所需化学品具有强腐蚀性。(2)反应温度高。目前为止,CVD法所需的温度一般都在1000℃左右,最低温度为400℃。(3)反应过程需要在惰性环境或氢气环境下进行。(4)形成的超薄材料紧紧附着在衬底上,不容易转移,这些缺点严重限制了CVD法广泛用于实验室。
目前国内外还没有在温和条件下合成超薄氮化硼纳米片的报道。因此,本发明的目的是设计一种操作简单的化学合成方法,在实验室条件下制备超薄氮化硼纳米片,对于其性能研究和应用推广具有重要的理论和现实意义。
发明内容
本发明的目的在于克服现有技术的不足,寻求设计一种前处理和后处理等操作简单、反应条件温和的化学合成方法,采用一步水热法在实验室制备超薄氮化硼纳米片及其分散液,以廉价的硼酸与氨水为原料。本发明所述方法具有成本低、工艺简单、易于产业化生产等优点,可获得尺寸分布均匀、结晶度高的超薄氮化硼纳米片。
为了实现上述目的,本发明提供一种超薄氮化硼纳米片分散液的制备方法,包括以下步骤:
(1)氮化硼量子点的制备
将硼酸粉末加入聚四氟乙烯不锈钢高压釜,然后在通风橱内加入浓氨水,超声20~60min后,放入鼓风干燥箱加热至160~200℃,反应10~24h,制备得到氨基和羟基同时修饰的氮化硼量子点溶液;
(2)氮化硼晶体的制备
待氮化硼量子点溶液冷却至室温后,倒入100mL的玻璃瓶中密封保存一个星期,可观察到无色透明的晶体出现在小瓶底部,经普通过滤,再用超纯水洗涤3次,放入60~80℃的烘箱中干燥2~3小时后制备得到氮化硼晶体;
(3)超薄氮化硼纳米片分散液的制备
把氮化硼晶体加入超纯水中,缓慢加热至60~80℃,氮化硼晶体逐渐溶解,得到无色透明的溶液,即为超薄氮化硼纳米片的分散液。
本发明所述步骤(1)中硼酸粉末的用量为1~10g,所述浓氨水的用量为40~100mL,优选硼酸粉末的用量为2~6g,所述浓氨水的用量为50~70ml,更优选为硼酸粉末的用量为3g,浓氨水的用量为60ml。
本发明还提供一种超薄氮化硼纳米片的制备方法,通过冷冻干燥上述方法制备得到的超薄氮化硼纳米片分散液得到。
本发明的另一目的还在于提供一种由上述方法制备得到的超薄氮化硼纳米片。本发明还提供了上述超薄氮化硼纳米片在散热材料、催化剂载体、聚合物填充材料中的应用。
通过透射电子显微镜(TEM)测试表明本发明在不同反应条件下得到了氮化硼量子点之后,通过步骤(2)和步骤(3)均可以得到超薄氮化硼纳米片分散液,进一步冷冻干燥得到超薄氮化硼纳米片,呈粉末状。在本发明中,氮化硼量子点的形成主要是为形成超薄氮化硼纳米片晶体提供晶种。通过本发明的制备方法得到的超薄氮化硼纳米片的高度主要集中在1.5~4nm之间,对应的氮化硼的层数为2~4层。
与现有技术相比,本发明具有以下优点和显著进步:
(1)性能优异且水溶液中的分散性好:本发明制备的超薄氮化硼纳米片尺寸分布均匀、结晶度高,无色透明氮化硼晶体溶解在水中后,可形成无色透明的分散液;
(2)工艺简单可控:本发明相对化学气相沉积法制备工艺具有操作简单的优点,同时缩短制备时间,无前处理过程,后处理也简单易行;
(3)费用成本低:本发明使用的原料价格低廉,制备工艺简单,对设备的要求低,因此操作费用很低;
(4)易于批量生产:由于水热反应釜可以按照工业化生产的规模放大,可以用于工业批量生产且环境友好。
附图说明
图1是实施例1制备的氮化硼量子点和超薄氮化硼纳米片的透射电子显微镜(TEM)图片,其中a:氮化硼量子点的TEM图;b:氮化硼纳米片的TEM图。
图2是实施例1制备的超薄氮化硼纳米片(BNNSs)的傅里叶变换红外光谱(FTIR)。
图3是实施例1制备的超薄氮化硼纳米片(BNNSs)的X-射线光电子光谱(XPS),其中a)XPS全能谱;b)N1s的XPS谱图和c)B1s的XPS谱图。
图4是实施例1制备的超薄氮化硼纳米片(BNNSs)的X-射线电子衍射图(XRD)。
图5是实施例1制备的超薄氮化硼纳米片(BNNSs)的高度测试图。其中a:氮化硼纳米片(BNNSs)的原子力显微镜图(AFM);b:图a中白色线上对应的氮化硼纳米片(BNNSs)的高度分布图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。
本发明对所得氮化硼晶体采用不同的技术进行表征,如透射电子显微镜(TEM),原子力显微镜(AFM),X-射线光电子光谱(XPS)和傅里叶变换红外光谱(FTIR)和X-射线衍射光谱(XRD)。
实施例1
(1)氮化硼量子点的制备
3g硼酸粉末加入聚四氟乙烯不锈钢高压釜,然后在通风橱内加入60mL浓氨水,超声30min后,放入鼓风干燥箱加热至200℃,反应24h,制备得到氨基和羟基同时修饰的氮化硼量子点(BNQD)溶液;
(2)氮化硼晶体的制备
待氮化硼量子点溶液冷却后,倒入100mL的玻璃瓶,密封保存一个星期,可观察到无色透明的晶体出现在小瓶底部,经普通过滤,再用超纯水洗涤3次,放入70℃的烘箱中干燥2.5小时后制备得到氮化硼晶体;
(3)超薄氮化硼纳米片分散液的制备
把氮化硼晶体加入超纯水中,缓慢加热至70℃,氮化硼晶体逐渐溶解,得到无色透明的溶液,即为超薄氮化硼纳米片的分散液。
通过常规条件的冷冻干燥上述步骤所得的分散液,即可得到超薄氮化硼纳米片粉末。
对本发明实施例1得到的超薄氮化硼纳米片的重要性质进行测定:通过透射电子显微镜图像分析可知,所得材料为圆形片状材料,在水溶液中呈分散状态,材料的直径主要分布在70~100nm。另外,为了确定氮化硼纳米片的化学组成和结构,采用傅里叶变换红外光谱(FTIR)、X-射线光电子光谱(XPS)和X-射线电子衍射图(XRD)对所得晶体进行深入分析。FTIR光谱中有两组明显的特征吸收峰,一组位于786cm-1处,该强吸收峰主要是B-N基团弯曲振动模式引起,另一组位于1351cm-1处,对应B-N基团的伸缩振动模式。X-射线光电子光谱(XPS)全能光谱图,其中观察到401.6和191.26eV处的两个峰,表明存在N和B两种元素。图3(b)和3(c)显示了N1s和B1s的高分辨率谱图。在图3(b)中N1s的谱图可以分解成398.3,399.5和401.0eV三个拟合峰,这主要归因于sp2杂化的B-N,N-C和N-H键。在图3(c)中,B1s谱图可以拟合出190.5,192.2和193.2eV三个峰,这归因于氮化硼纳米片中的B-N和B-O化学键,以及B2O3中的B-O键。图4的X-射线电子衍射图(XRD)显示,2q=24.5和43.0处存在两个峰,分别对应BN(002)和BN(100)晶面。如上所述,FTIR、XPS和XRD结果证实了所得片状材料是氮化硼纳米片。通过原子力显微镜(AFM)测定了氮化硼纳米片的厚度(见图5),结果显示制备的氮化硼纳米片高度主要集中在1.5~4nm之间,根据文献报道,该厚度对应的氮化硼的层数为2~4层。
实施例2
(1)氮化硼量子点的制备
5g硼酸粉末加入聚四氟乙烯不锈钢高压釜,然后在通风橱内加入65mL浓氨水,超声30min后,放入鼓风干燥箱加热至180℃,反应24h,制备得到氨基和羟基同时修饰的氮化硼量子点(BNQD)溶液;
(2)氮化硼晶体的制备
待氮化硼量子点溶液冷却后,倒入100mL的玻璃瓶,密封保存一个星期,可观察到无色透明的晶体出现在小瓶底部,经普通过滤,再用超纯水洗涤3次,放入80℃的烘箱中干燥3小时后制备得到氮化硼晶体;
(3)超薄氮化硼纳米片分散液的制备
把氮化硼晶体加入超纯水中,缓慢加热至70℃,氮化硼晶体逐渐溶解,得到无色透明的溶液,即为超薄氮化硼纳米片的分散液。
通过冷冻干燥上述步骤所得的分散液,即可得到超薄氮化硼纳米片粉末。
实施例3
(1)氮化硼量子点的制备
4g硼酸粉末加入聚四氟乙烯不锈钢高压釜,然后在通风橱内加入55mL浓氨水,超声30min后,放入鼓风干燥箱加热至160℃,反应24h,制备得到氨基和羟基同时修饰的氮化硼量子点(BNQD)溶液;
(2)氮化硼晶体的制备
待氮化硼量子点溶液冷却后,倒入100mL的玻璃瓶,密封保存一个星期,可观察到无色透明的晶体出现在小瓶底部,经普通过滤,再用超纯水洗涤3次,放入65℃的烘箱中干燥2.5小时后制备得到氮化硼晶体;
(3)超薄氮化硼纳米片分散液的制备
把氮化硼晶体加入超纯水中,缓慢加热至70℃,氮化硼晶体逐渐溶解,得到无色透明的溶液,即为超薄氮化硼纳米片的分散液。
通过冷冻干燥上述步骤所得的分散液,即可得到超薄氮化硼纳米片粉末。

Claims (8)

1.一种超薄氮化硼纳米片分散液的制备方法,其特征在于,包括以下步骤:
(1)氮化硼量子点的制备
将硼酸粉末加入聚四氟乙烯不锈钢高压釜,然后在通风橱内加入浓氨水,超声20~60min后,放入鼓风干燥箱加热至160~200 ℃,反应10~24 h,制备得到氨基和羟基同时修饰的氮化硼量子点溶液;
(2)氮化硼晶体的制备
待氮化硼量子点溶液冷却至室温后,倒入100 mL的玻璃瓶中密封保存一个星期,可观察到无色透明的晶体出现在小瓶底部,经普通过滤,再用超纯水洗涤3次,放入60~80℃的烘箱中干燥2~3小时后制备得到氮化硼晶体;
(3)超薄氮化硼纳米片分散液的制备
把氮化硼晶体加入超纯水中,缓慢加热至60~80℃,氮化硼晶体逐渐溶解,得到无色透明的溶液,即为超薄氮化硼纳米片的分散液。
2.根据权利要求1所述的一种超薄氮化硼纳米片分散液的制备方法,其特征在于,所述步骤(1)中硼酸粉末用量为1~10 g,所述浓氨水的用量为40~100 mL。
3. 根据权利要求2所述的一种超薄氮化硼纳米片分散液的制备方法,其特征在于,所述步骤(1)中硼酸粉末用量为2~6 g,所述浓氨水的用量为50~70ml。
4.根据权利要求3所述的一种超薄氮化硼纳米片分散液的制备方法,其特征在于,所述步骤(1)中硼酸粉末用量为3g,浓氨水用量为60ml。
5.一种超薄氮化硼纳米片的制备方法,其特征在于,冷冻干燥由权利要求1~4任一项所述方法制备得到的超薄氮化硼纳米片分散液。
6.一种由权利要求5所述方法制备得到的超薄氮化硼纳米片。
7.根据权利要求6所述的一种超薄氮化硼纳米片,其特征在于,所述超薄氮化硼纳米片的高度主要集中在1.5~4 nm之间,对应的氮化硼的层数为2~4层。
8.权利要求6或7所述的一种超薄氮化硼纳米片在散热材料、催化剂载体、聚合物填充材料中的应用。
CN201810774746.6A 2018-07-16 2018-07-16 一种超薄氮化硼纳米片及其分散液的制备方法 Expired - Fee Related CN108529574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810774746.6A CN108529574B (zh) 2018-07-16 2018-07-16 一种超薄氮化硼纳米片及其分散液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810774746.6A CN108529574B (zh) 2018-07-16 2018-07-16 一种超薄氮化硼纳米片及其分散液的制备方法

Publications (2)

Publication Number Publication Date
CN108529574A CN108529574A (zh) 2018-09-14
CN108529574B true CN108529574B (zh) 2021-03-23

Family

ID=63488116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810774746.6A Expired - Fee Related CN108529574B (zh) 2018-07-16 2018-07-16 一种超薄氮化硼纳米片及其分散液的制备方法

Country Status (1)

Country Link
CN (1) CN108529574B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109573965A (zh) * 2018-12-26 2019-04-05 合肥学院 一种羟基改性氮化硼纳米片分散液的制备方法
CN111234429A (zh) * 2020-03-18 2020-06-05 衢州市中通化工有限公司 一种ptfe/氮化硼复合材料及其制备方法
CN112938911A (zh) * 2021-03-24 2021-06-11 云南华谱量子材料有限公司 一种氮化硼纳米片的制备方法
CN113337280B (zh) * 2021-05-31 2022-03-08 东南大学 一种可控全光谱发光氮化硼量子点的制备方法
KR102657683B1 (ko) * 2021-09-17 2024-04-17 한국기초과학지원연구원 히드록실화된 보론 나이트라이드의 제조방법 및 이를 포함하는 열전도성 조성물
CN117143594A (zh) * 2023-07-20 2023-12-01 三峡国际招标有限责任公司 金属有机骨架富集氮化硼量子点的电致发光材料及其制备的传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531349A (zh) * 2009-04-01 2009-09-16 武汉工程大学 圆片状六方氮化硼多晶微粉的制备方法
CN104528670A (zh) * 2015-01-16 2015-04-22 福州大学 一种石墨相氮化硼纳米圆片及其胶体的制备方法
CN105060262A (zh) * 2015-07-03 2015-11-18 复旦大学 一种水溶性氮化硼量子点及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531349A (zh) * 2009-04-01 2009-09-16 武汉工程大学 圆片状六方氮化硼多晶微粉的制备方法
CN104528670A (zh) * 2015-01-16 2015-04-22 福州大学 一种石墨相氮化硼纳米圆片及其胶体的制备方法
CN105060262A (zh) * 2015-07-03 2015-11-18 复旦大学 一种水溶性氮化硼量子点及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots;Liangxu Lin et al.;《Small》;20130710;第10卷(第1期);第60-65页 *
One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology;Bingping Liu et al.;《Chemistry A European Journal》;20161129;第22卷;第18899-18907页 *

Also Published As

Publication number Publication date
CN108529574A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN108529574B (zh) 一种超薄氮化硼纳米片及其分散液的制备方法
Xiao et al. Topochemical synthesis of 2D materials
Zhu et al. Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments
Sun et al. Synthesis of wafer‐scale graphene with chemical vapor deposition for electronic device applications
Shen et al. One step hydrothermal synthesis of TiO 2-reduced graphene oxide sheets
Wang et al. Synthesis strategies about 2D materials
CN114057219A (zh) 一种纳米金属氧化物的制备方法
US20220402768A1 (en) Method for preparing gamma-gallium oxide nanomaterial
Ye et al. One-pot synthesis of two-dimensional multilayered graphitic carbon nanosheets by low-temperature hydrothermal carbonization using the in situ formed copper as a template and catalyst
Wang et al. Surface-diffusion mechanism for synthesis of substrate-free and catalyst-free boron nitride nanosheets
Zhang et al. Synthesis of nanosized ultrathin MoS2 on montmorillonite nanosheets by CVD method
Fan et al. Phase-controlled synthesis of nickel silicide nanostructures
CN112661123B (zh) 一种双层带状氮化硼分级结构的制备方法及产品
Soomro et al. Controllable Growth of Hexagonal BN Monolayer Sheets on Cu Foil by LPCVD
CN114538390A (zh) 一种片层定向覆盖形成管壁的氮化硼空心管及其制备方法
CN110817814B (zh) 一种一维分级结构薄壁bn微米管的制备方法及产品
Wang et al. Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation
Ding et al. A general solution synthesis route to ZnO-based nanorod arrays on ceramic/silicon/quartz glass/metal substrates
Yu et al. A facile method for synthesis of novel coral-like boron nitride nanostructures
CN110592658A (zh) 通过晶格对称性匹配二维材料模板实现金属有机框架表面外延生长的制备方法
CN112174100B (zh) 一种多层鸡蛋卷状复合超硬相c3n4纳米管及其制备方法
CN111470485B (zh) 一种磷化金纳米片及其可控制备方法与应用
Li et al. Self-assembly synthesis of high-density platinum nanoparticles on chemically reduced graphene sheets
Zhang et al. Hydrothermal synthesis of β-nickel hydroxide nanocrystalline thin film and growth of oriented carbon nanofibers
Yu et al. Synthesis of rose-like boron nitride particles with a high specific surface area

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210323

CF01 Termination of patent right due to non-payment of annual fee