CN108521275B - Logic gate based on magnetic siganmin - Google Patents

Logic gate based on magnetic siganmin Download PDF

Info

Publication number
CN108521275B
CN108521275B CN201810290782.5A CN201810290782A CN108521275B CN 108521275 B CN108521275 B CN 108521275B CN 201810290782 A CN201810290782 A CN 201810290782A CN 108521275 B CN108521275 B CN 108521275B
Authority
CN
China
Prior art keywords
track
magnetic
input
skyrmions
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810290782.5A
Other languages
Chinese (zh)
Other versions
CN108521275A (en
Inventor
杨欢欢
汪晨
王小凡
曹云姗
严鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810290782.5A priority Critical patent/CN108521275B/en
Publication of CN108521275A publication Critical patent/CN108521275A/en
Application granted granted Critical
Publication of CN108521275B publication Critical patent/CN108521275B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/185Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using dielectric elements with variable dielectric constant, e.g. ferro-electric capacitors
    • H03K19/19Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using dielectric elements with variable dielectric constant, e.g. ferro-electric capacitors using ferro-resonant devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种基于磁性斯格明子的逻辑门,属于磁性器件技术领域。利用极性相反的磁性斯格明子表示逻辑1和0,改善了信息丢失和误读的问题;仅通过改变电压控制磁各向异性区域门的电压源连接端口就可以实现与非门和或非门的转换,极大地优化了制作工艺;本发明利用扭曲磁性斯格明子能沿着反铁磁边界运动,两个扭曲磁性斯格明子能够融合为一个扭曲磁性斯格明子或传统的磁性斯格明子,以及在电流的驱动下,拓扑荷为+1或‑1的磁性斯格明子能够和扭曲磁性斯格明子相互转换的特性,实现了基于磁性斯格明子的逻辑运算;利用磁性斯格明子在反铁磁耦合边界极性翻转的原理实现逻辑非门;本发明的逻辑门具有体积小、功耗低、稳定性高、运算速度快等特点。

Figure 201810290782

A logic gate based on magnetic skyrmions belongs to the technical field of magnetic devices. The use of magnetic skyrmions with opposite polarities to represent logical 1s and 0s improves the problem of information loss and misreading; NAND gates and NORs can be realized only by changing the voltage source connection port of the voltage-controlled magnetic anisotropic region gate The conversion of the gate greatly optimizes the manufacturing process; the invention utilizes the twisted magnetic skyrmion to move along the antiferromagnetic boundary, and the two twisted magnetic skyrmions can be merged into a twisted magnetic skyrmion or a traditional magnetic skyrmion The magnetic skyrmions and the magnetic skyrmions with a topological charge of +1 or -1 can be converted to each other with the twisted magnetic skyrmions under the driving of electric current, realizing the logical operation based on the magnetic skyrmions; using the magnetic skyrmions The logic NOT gate is realized on the principle of polarity reversal at the antiferromagnetic coupling boundary; the logic gate of the present invention has the characteristics of small size, low power consumption, high stability, fast operation speed and the like.

Figure 201810290782

Description

一种基于磁性斯格明子的逻辑门A logic gate based on magnetic skyrmions

技术领域technical field

本发明属于磁性器件技术领域,具体涉及一种基于磁性斯格明子实现与非门、或非门和非门的逻辑门。The invention belongs to the technical field of magnetic devices, and in particular relates to a logic gate for realizing NAND gate, NOR gate and NAND gate based on magnetic skyrmions.

背景技术Background technique

逻辑门是现代电子信息技术的基石,在数字电路中,通常使用高低电平来表示逻辑“1”和“0”,利用不同的逻辑门可以实现不同的布尔函数,与非门、或非门和非门都是基本的逻辑门,与非门、或非门和或非门对应的真值表如下:Logic gates are the cornerstone of modern electronic information technology. In digital circuits, high and low levels are usually used to represent logic "1" and "0". Different logic gates can be used to implement different Boolean functions, NAND gates, and NOR gates. NAND gates are all basic logic gates. The truth table corresponding to NAND gates, NOR gates and NOR gates is as follows:

输入AEnter A 输入BEnter B 输出Foutput F 00 00 11 00 11 11 11 00 11 11 11 00

表1:逻辑与非门的真值表Table 1: Truth Table for Logic NAND Gate

输入AEnter A 输入BEnter B 输出Foutput F 00 00 11 00 11 00 11 00 00 11 11 00

表2:逻辑或非门的真值表Table 2: Truth table for a logical NOR gate

输入enter 输出output 00 11 11 00

表3:逻辑非门的真值表Table 3: Truth Table for Logic NOT Gate

传统CMOS结构制作的逻辑门体积大、功耗高,而且焦耳热限制了它高密度地集成。The logic gate made by traditional CMOS structure is bulky, high power consumption, and Joule heating limits its high-density integration.

磁性斯格明子是一种受拓扑保护的磁结构,具有稳定性高、尺寸小、操控方式多样等特点。磁性斯格明子的不同状态被用作“比特”以实现信息存储和制作逻辑器件。传统应用中通常以磁性斯格明子的有和无来表示逻辑“1”和“0”,实现基本的逻辑运算(X.Zhanget.al,Magnetic skyrmion logic gates:conversion,duplication and merging ofskyrmions)。Magnetic skyrmions are topologically protected magnetic structures with high stability, small size, and diverse manipulation methods. The different states of magnetic skyrmions are used as "bits" to enable information storage and make logic devices. In traditional applications, the presence and absence of magnetic skyrmions are usually used to represent logical "1" and "0" to realize basic logical operations (X.Zhanget.al, Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions).

扭曲的斯格明子是存在于两个反铁磁耦合的磁畴边界一种新型的稳定的斯格明子状态(Huanhuan Yang et.al,Twisted skyrmion at domain boundaries and themethod of image)。扭曲的斯格明子和传统的斯格明子之间可以相互转化,并且两个扭曲的斯格明子可以实现融合。Twisted skyrmion is a new type of stable skyrmion state existing at the boundary of two antiferromagnetically coupled domains (Huanhuan Yang et.al, Twisted skyrmion at domain boundaries and the method of image). The twisted skyrmions and the traditional skyrmions can be transformed into each other, and the two twisted skyrmions can be fused.

研究发现,电流可以用来驱动磁性斯格明子在磁性纳米带中运动(Xichao Zhanget.al,Magnetic bilayer-skyrmions without skyrmion Hall effect)。此外,电压控制磁各向异性(VCMA)技术(Wang Kang et.al,Voltage Controlled Magnetic SkyrmionMotion for Racetrack Memory)可以用来改变磁性纳米带的各向异性能,进而改变磁性斯格明子的运动状态。磁性隧道结(MTJ)(Jares,H et.al,Angular dependence of thetunnel magnetoresistance in transition-metal-based junctions)可以用于读取磁斯格明子的状态。以上技术手段均已经被实验或理论所证实,将被运用于本发明之中。The study found that electric current can be used to drive magnetic skyrmions to move in magnetic nanoribbons (Xichao Zhang et.al, Magnetic bilayer-skyrmions without skyrmion Hall effect). In addition, the voltage-controlled magnetic anisotropy (VCMA) technique (Wang Kang et.al, Voltage Controlled Magnetic SkyrmionMotion for Racetrack Memory) can be used to change the anisotropic energy of magnetic nanoribbons, thereby changing the motion state of magnetic skyrmion. Magnetic tunnel junctions (MTJs) (Jares, H et.al, Angular dependence of the tunnel magnetoresistance in transition-metal-based junctions) can be used to read the states of magnetic skyrmions. The above technical means have been confirmed by experiments or theories, and will be used in the present invention.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提出一种基于磁性斯格明子的新型的逻辑与非门、逻辑或非门和逻辑非门,通过简单的改变电压控制磁各向异性门的位置可实现与非门和或非门的转换,利用磁性斯格明子在反铁磁耦合边界极性翻转的原理实现逻辑非门。The purpose of the present invention is to propose a new type of logical NAND gate, logical NOR gate and logical NOT gate based on magnetic skyrmions. The NAND gate and OR can be realized by simply changing the position of the magnetic anisotropic gate by changing the voltage. The conversion of the NOT gate uses the principle that the polarity of magnetic skyrmions is reversed at the antiferromagnetic coupling boundary to realize the logic NOT gate.

本发明的技术方案为:The technical scheme of the present invention is:

一种基于磁性斯格明子的逻辑门,包括:A magnetic skyrmion-based logic gate comprising:

第一输入端和第二输入端,所述第一输入端包括并行设置且反铁磁耦合的第一输入轨道11和第二输入轨道12,所述第二输入端包括并行设置且反铁磁耦合的第三输入轨道13和第四输入轨道14;a first input comprising a first input rail 11 and a second input rail 12 arranged in parallel and antiferromagnetically coupled, and a second input comprising a parallel arranged and antiferromagnetically coupled coupled third input rail 13 and fourth input rail 14;

输出端,包括第一输出轨道21和第二输出轨道22;The output terminal includes a first output track 21 and a second output track 22;

第一连接通路,包括并行设置且反铁磁耦合的第一连接轨道31和第二连接轨道32;a first connection path, comprising a first connection track 31 and a second connection track 32 arranged in parallel and antiferromagnetically coupled;

第二连接通路,包括并行设置且反铁磁耦合的第三连接轨道33和第四连接轨道34;The second connecting path includes a third connecting track 33 and a fourth connecting track 34 that are arranged in parallel and are antiferromagnetically coupled;

第三连接通路,包括并行设置且反铁磁耦合的第五连接轨道35和第六连接轨道36;a third connection path, comprising a fifth connection track 35 and a sixth connection track 36 arranged in parallel and antiferromagnetically coupled;

第四连接通路,包括并行设置且反铁磁耦合的第七连接轨道37和第八连接轨道38;the fourth connection path, including the seventh connection track 37 and the eighth connection track 38 arranged in parallel and antiferromagnetically coupled;

第五连接通路,包括第九连接轨道39和第十连接轨道310;the fifth connecting passage, including the ninth connecting track 39 and the tenth connecting track 310;

第一脱离通路,包括并行设置且反铁磁耦合的第一脱离轨道41和第二脱离轨道42;a first escape path, comprising a first escape track 41 and a second escape track 42 arranged in parallel and antiferromagnetically coupled;

第二脱离通路,包括并行设置且反铁磁耦合的第三脱离轨道43和第四脱离轨道44;a second escape path, comprising a third escape track 43 and a fourth escape track 44 arranged in parallel and antiferromagnetically coupled;

所述第一连接轨道31的一端与所述第一输入轨道11反铁磁耦合,另一端与所述第一脱离轨道41的一端铁磁耦合;One end of the first connecting track 31 is antiferromagnetically coupled to the first input track 11 , and the other end is ferromagnetically coupled to one end of the first escape track 41 ;

所述第二连接轨道32的一端与所述第一输入轨道11铁磁耦合;One end of the second connecting track 32 is ferromagnetically coupled to the first input track 11;

所述第三连接轨道33的一端与所述第三输入轨道13铁磁耦合,另一端与所述第二脱离轨道42的一端铁磁耦合;One end of the third connecting track 33 is ferromagnetically coupled with the third input track 13, and the other end is ferromagnetically coupled with one end of the second escape track 42;

所述第四连接轨道34的一端与所述第三输入轨道13反铁磁耦合,另一端与所述第二连接轨道32的另一端反铁磁耦合;One end of the fourth connecting track 34 is antiferromagnetically coupled to the third input track 13, and the other end is antiferromagnetically coupled to the other end of the second connecting track 32;

所述第九连接轨道39的一端与所述第一脱离轨道41的另一端反铁磁耦合,与所述第二脱离轨道42的另一端铁磁耦合,其另一端与所述第一输出轨道21反铁磁耦合;One end of the ninth connecting track 39 is antiferromagnetically coupled to the other end of the first escape track 41 , ferromagnetically coupled to the other end of the second escape track 42 , and the other end of the ninth connecting track 39 is ferromagnetically coupled to the first output track 21 antiferromagnetic coupling;

所述第五连接轨道35的一端与所述第二输入轨道12铁磁耦合;One end of the fifth connecting track 35 is ferromagnetically coupled to the second input track 12;

所述第六连接轨道36的一端与所述第二输入轨道12反铁磁耦合,另一端与所述第三脱离轨道43的一端铁磁耦合;One end of the sixth connecting track 36 is antiferromagnetically coupled to the second input track 12, and the other end is ferromagnetically coupled to one end of the third escape track 43;

所述第七连接轨道37的一端与所述第四输入轨道14反铁磁耦合,另一端与所述第五连接轨道35的另一端反铁磁耦合;One end of the seventh connecting track 37 is antiferromagnetically coupled to the fourth input track 14, and the other end is antiferromagnetically coupled to the other end of the fifth connecting track 35;

所述第八连接轨道38的一端与所述第四输入轨道14铁磁耦合,另一端与所述第四脱离轨道44铁磁耦合;One end of the eighth connecting track 38 is ferromagnetically coupled to the fourth input track 14, and the other end is ferromagnetically coupled to the fourth escape track 44;

所述第十连接轨道310的一端与所述第三脱离轨道43的另一端反铁磁耦合,与所述第四脱离轨道44的另一端铁磁耦合,其另一端与所述第二输出轨道22反铁磁耦合;One end of the tenth connecting track 310 is anti-ferromagnetically coupled to the other end of the third escape track 43 , ferromagnetically coupled to the other end of the fourth escape track 44 , and the other end is coupled to the second output track 22 antiferromagnetic coupling;

所述第一输出轨道21和第二输出轨道22内均设置有磁性隧道结,用于读取所述磁性斯格明子的状态;Magnetic tunnel junctions are arranged in the first output track 21 and the second output track 22 for reading the state of the magnetic skyrmions;

所述第一输入轨道11的磁性材料的磁矩方向为垂直于所述第一输入轨道11表面向外。The direction of the magnetic moment of the magnetic material of the first input track 11 is perpendicular to the surface of the first input track 11 and outward.

具体的,所述第九连接轨道39内还设置有电压控制磁各向异性门,此时逻辑门为与非门。Specifically, the ninth connection track 39 is further provided with a voltage-controlled magnetic anisotropy gate, and the logic gate is a NAND gate at this time.

具体的,所述第十连接轨道310内还设置有电压控制磁各向异性门,此时逻辑门为或非门。Specifically, the tenth connection track 310 is further provided with a voltage-controlled magnetic anisotropy gate, and the logic gate is a NOR gate at this time.

具体的,利用极性为+1的磁性斯格明子表示逻辑1,从所述第一输入轨道11和第三输入轨道13进入;利用极性为-1的磁性斯格明子表示逻辑0,从所述第二输入轨道12和第四输入轨道14进入。Specifically, a magnetic skyrmion with a polarity of +1 is used to represent a logical 1, entering from the first input track 11 and the third input track 13; a magnetic skyrmion with a polarity of -1 is used to represent a logical 0, from The second input rail 12 and the fourth input rail 14 enter.

具体的,所述磁性斯格明子在电流的驱动下能够转变为扭曲磁性斯格明子,所述扭曲磁性斯格明子存在于反铁磁边界并能沿着反铁磁边界运动,所述扭曲磁性斯格明子和拓扑荷为+1或-1的磁性斯格明子能够相互转化。Specifically, the magnetic skyrmions can be converted into twisted magnetic skyrmions under the driving of current, and the twisted magnetic skyrmions exist in the antiferromagnetic boundary and can move along the antiferromagnetic boundary, the twisted magnetic skyrmions Skyrmions and magnetic skyrmions with topological charges of +1 or -1 can be converted into each other.

具体的,还包括控制电路,所述控制电路包括第一电压源V1、第二电压源V2和第三电压源V3,所述电压控制磁各向异性门包括第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2,所述第一电压控制磁各向异性门C1连接所述第一电压源V1和所述第二电压源V2,所述第二电压控制磁各向异性门C2连接所述第一电压源V1和所述第三电压源V3。Specifically, it also includes a control circuit, the control circuit includes a first voltage source V1, a second voltage source V2 and a third voltage source V3, and the voltage-controlled magnetic anisotropy gate includes a first voltage-controlled magnetic anisotropy gate C1 and a second voltage controlled magnetic anisotropy gate C2, the first voltage controlled magnetic anisotropy gate C1 is connected to the first voltage source V1 and the second voltage source V2, the second voltage controlled magnetic Anisotropic gate C2 connects the first voltage source V1 and the third voltage source V3.

具体的,所述第一输入端和第二输入端内均设置有磁性隧道结,用于检测是否有磁性斯格明子存在;所述第一输入端内的磁性隧道结用于控制所述第三电压源V3,所述第二输入端内的磁性隧道结用于控制所述第二电压源V2。Specifically, both the first input end and the second input end are provided with a magnetic tunnel junction to detect whether there is a magnetic skyrmion; the magnetic tunnel junction in the first input end is used to control the first input end. Three voltage sources V3, the magnetic tunnel junction in the second input terminal is used to control the second voltage source V2.

具体的,通过面内电流驱动所述磁性斯格明子运动,所述面内电流的通电装置为电极,所述第一输入端和第二输入端连接负电极,所述输出端连接正电极。Specifically, the magnetic skyrmions are driven to move by an in-plane current, the energizing device of the in-plane current is an electrode, the first input end and the second input end are connected to a negative electrode, and the output end is connected to a positive electrode.

具体的,所述第一输出轨道21和第二输出轨道22反铁磁耦合。Specifically, the first output track 21 and the second output track 22 are antiferromagnetically coupled.

一种基于磁性斯格明子的逻辑非门,包括输入端和输出端,所述输入端包括反铁磁耦合的第五输入轨道15和第六输入轨道16,所述输出端包括反铁磁耦合的第三输出轨道23和第四输出轨道24,所述第五输入轨道15和所述第三输出轨道23反铁磁耦合,所述第六输入轨道16和所述第四输出轨道24反铁磁耦合。A logical NOT gate based on magnetic skyrmions, comprising an input end and an output end, the input end including an antiferromagnetically coupled fifth input track 15 and a sixth input track 16, and the output end including an antiferromagnetically coupled The third output track 23 and the fourth output track 24, the fifth input track 15 and the third output track 23 are antiferromagnetically coupled, the sixth input track 16 and the fourth output track 24 are antiferromagnetically coupled Magnetic coupling.

本发明的有益效果为:The beneficial effects of the present invention are:

(1)传统的基于磁性斯格明子的逻辑门电路都是使用“有”和“无”磁性斯格明子来表示逻辑“1”和“0”(或者相反的方式),因此两个磁性斯格明子之间的相互运动会产生误读或者信息丢失,而在现有的试验条件下保持所有的斯格明子同步运动实现条件十分苛刻。本发明用磁性斯格明子不同的极性来表示逻辑“1”和“0”,这种表示方法不要求所有的磁性斯格明子保持同步运动,极大地改善误读和信息丢失问题。(1) The traditional logic gate circuits based on magnetic skyrmions use "with" and "without" magnetic skyrmions to represent logic "1" and "0" (or the opposite way), so two magnetic skyrmions The mutual motion between skyrmions will cause misreading or information loss, and it is very demanding to keep all skyrmions synchronously moving under the existing experimental conditions. The present invention uses different polarities of magnetic skyrmions to represent logical "1" and "0", and this representation method does not require all magnetic skyrmions to keep synchronous movement, which greatly improves the problem of misreading and information loss.

(2)仅仅通过改变电压控制磁各向异性门电压源的连接端口,就可以实现与非门和或非门的转换,极大地优化了制作工艺。(2) The conversion of the NAND gate and the NOR gate can be realized only by changing the connection port of the voltage control magnetic anisotropic gate voltage source, which greatly optimizes the manufacturing process.

(3)利用磁性斯格明子穿过反铁磁耦合的边界极性改变的性质设计了逻辑非门,结构简单,实用性强。(3) The logical NOT gate is designed by utilizing the property of magnetic skyrmions passing through the boundary of antiferromagnetic coupling, which is simple in structure and strong in practicability.

(4)本发明利用一种新型的磁学结构:扭曲磁性斯格明子,它可以和传统的磁性斯格明子互相转换,在外加电流的驱动下,两个扭曲磁性斯格明子可以融合成一个扭曲磁性斯格明子,这提供了一种新的湮灭磁性斯格明子的思路。(4) The present invention utilizes a new type of magnetic structure: twisted magnetic skyrmions, which can be interconverted with traditional magnetic skyrmions, and driven by an applied current, two twisted magnetic skyrmions can be fused into one Twisted magnetic skyrmions, which provide a new way of annihilating magnetic skyrmions.

(5)本发明利用磁性斯格明子构成逻辑门,具有体积小、功耗低、稳定性高、运算速度快等特点。(5) The present invention uses magnetic skyrmions to form logic gates, and has the characteristics of small size, low power consumption, high stability, and fast operation speed.

附图说明Description of drawings

图1是实施例中逻辑与非门的结构示意图。FIG. 1 is a schematic structural diagram of a logic NAND gate in an embodiment.

图2是实施例中逻辑或非门的结构示意图。FIG. 2 is a schematic structural diagram of a logical NOR gate in an embodiment.

图3是实施例中逻辑非门的结构示意图。FIG. 3 is a schematic structural diagram of a logical NOT gate in an embodiment.

图4是逻辑与非门中磁性斯格明子的运动状态示意图。FIG. 4 is a schematic diagram of the motion state of the magnetic skyrmion in the logic NAND gate.

图5是逻辑或非门中磁性斯格明子的运动状态示意图。FIG. 5 is a schematic diagram of the motion state of the magnetic skyrmion in the logic NOR gate.

图6是逻辑非门中磁性斯格明子的运动状态示意图。FIG. 6 is a schematic diagram of the motion state of the magnetic skyrmion in the logic NOT gate.

具体实施方式Detailed ways

下面结合附图和具体实施例详细描述本发明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.

本发明中利用了一种新型的磁学结构:扭曲磁性斯格明子,扭曲磁性斯格明子存在于反铁磁边界并能沿着反铁磁边界运动,两个扭曲磁性斯格明子还能够融合为一个扭曲磁性斯格明子或传统的磁性斯格明子;在电流的驱动下,拓扑荷为+1或-1的磁性斯格明子能够转换为扭曲磁性斯格明子,扭曲磁性斯格明子也能够转化为拓扑荷为+1或-1的磁性斯格明子。A new type of magnetic structure is used in the present invention: twisted magnetic skyrmions, twisted magnetic skyrmions exist in the antiferromagnetic boundary and can move along the antiferromagnetic boundary, and two twisted magnetic skyrmions can also be fused It is a twisted magnetic skyrmion or a traditional magnetic skyrmion; driven by a current, a magnetic skyrmion with a topological charge of +1 or -1 can be converted into a twisted magnetic skyrmion, and the twisted magnetic skyrmion can also be Converted to magnetic skyrmions with topological charges of +1 or -1.

本发明提供的基于磁性斯格明子的逻辑与非门和或非门,包括第一输入端、第二输入端和输出端,其中第一输入端包括并行设置且反铁磁耦合的第一输入轨道11和第二输入轨道12,第二输入端包括并行设置且反铁磁耦合的第三输入轨道13和第四输入轨道14;输出端包括第一输出轨道21和第二输出轨道22,第一输出轨道21和第二输出轨道22也可以反铁磁耦合,便于逻辑门的级联。The magnetic skyrmion-based logical NAND gate and NOR gate provided by the present invention includes a first input end, a second input end and an output end, wherein the first input end includes a first input arranged in parallel and antiferromagnetically coupled track 11 and second input track 12, the second input end includes a third input track 13 and a fourth input track 14 arranged in parallel and antiferromagnetically coupled; the output end includes a first output track 21 and a second output track 22, the first An output rail 21 and a second output rail 22 can also be antiferromagnetically coupled to facilitate cascading of logic gates.

第一输入轨道11和第三输入轨道13的磁性材料的磁矩方向为垂直其表面且向外,由于磁性斯格明子一般存在于薄膜上,所以一些实施例中本发明提供的逻辑门是基于薄膜做成的,则第一输入轨道11和第三输入轨道13的磁性材料的磁矩方向是垂直薄膜向外的,那么第二输入轨道12和第四输入轨道14的磁性材料的磁矩方向是垂直薄膜向里的。The magnetic moment directions of the magnetic materials of the first input track 11 and the third input track 13 are perpendicular to their surfaces and outward. Since magnetic skyrmions generally exist on thin films, the logic gates provided by the present invention in some embodiments are based on The magnetic moment direction of the magnetic material of the first input track 11 and the third input track 13 is perpendicular to the film outward, then the magnetic moment direction of the magnetic material of the second input track 12 and the fourth input track 14 is perpendicular to the film inward.

本发明中利用极性为+1的磁性斯格明子表示逻辑1,从第一输入轨道11和第三输入轨道13进入逻辑门;利用极性为-1的磁性斯格明子表示逻辑0,从第二输入轨道12和第四输入轨道14进入逻辑门。In the present invention, a magnetic skyrmion with a polarity of +1 is used to represent a logical 1, and the logic gate is entered from the first input track 11 and the third input track 13; a magnetic skyrmion with a polarity of -1 is used to represent a logical 0, from The second input rail 12 and the fourth input rail 14 enter the logic gates.

本发明提供的逻辑门还包括第一连接通路、第二连接通路、第三连接通路、第四连接通路、第五连接通路、第一脱离通路和第二脱离通路,第一连接通路包括并行设置且反铁磁耦合的第一连接轨道31和第二连接轨道32,第二连接通路包括并行设置且反铁磁耦合的第三连接轨道33和第四连接轨道34,第五连接通路包括第九连接轨道39和第十连接轨道310,第一脱离通路包括并行设置且反铁磁耦合的第一脱离轨道41和第二脱离轨道42;第一连接轨道31的一端与第一输入轨道11反铁磁耦合,另一端与第一脱离轨道41的一端铁磁耦合;第二连接轨道32的一端与第一输入轨道11铁磁耦合;第三连接轨道33的一端与第三输入轨道13铁磁耦合,另一端与第二脱离轨道42的一端铁磁耦合;第四连接轨道34的一端与所述第三输入轨道13反铁磁耦合,另一端与第二连接轨道32的另一端反铁磁耦合;第九连接轨道的一端与第一脱离轨道41的另一端反铁磁耦合,与所述第二脱离轨道42的另一端铁磁耦合,第九连接轨道39的另一端与第一输出轨道21反铁磁耦合;第三连接通路包括并行设置且反铁磁耦合的第五连接轨道35和第六连接轨道36,第四连接通路包括并行设置且反铁磁耦合的第七连接轨道37和第八连接轨道38,第二脱离通路包括并行设置且反铁磁耦合的第三脱离轨道43和第四脱离轨道44,第五连接轨道35的一端与第二输入轨道12铁磁耦合;第六连接轨道36的一端与第二输入轨道12反铁磁耦合,另一端与所述第三脱离轨道43的一端铁磁耦合;第七连接轨道37的一端与第四输入轨道14反铁磁耦合,另一端与第五连接轨道35的另一端反铁磁耦合;第八连接轨道38的一端与第四输入轨道14铁磁耦合,另一端与第四脱离轨道44铁磁耦合;第十连接轨道310的一端与第三脱离轨道43的另一端反铁磁耦合,与第四脱离轨道44的另一端铁磁耦合,第十连接轨道310的另一端与第二输出轨道22反铁磁耦合;第一输出轨道21和第二输出轨道22内均设置有磁性隧道结用于读取磁性斯格明子的状态。The logic gate provided by the present invention further includes a first connection path, a second connection path, a third connection path, a fourth connection path, a fifth connection path, a first detachment path and a second detachment path, and the first connection path includes a parallel arrangement And the first connection track 31 and the second connection track 32 are antiferromagnetically coupled, the second connection path includes a third connection track 33 and a fourth connection track 34 that are arranged in parallel and are antiferromagnetically coupled, and the fifth connection path includes a ninth connection path. The connection rail 39 and the tenth connection rail 310, the first escape path includes a first escape rail 41 and a second escape rail 42 arranged in parallel and antiferromagnetically coupled; one end of the first connection rail 31 is antiferrous to the first input rail 11 Magnetic coupling, the other end is ferromagnetically coupled with one end of the first escape track 41; one end of the second connecting track 32 is ferromagnetically coupled with the first input track 11; one end of the third connecting track 33 is ferromagnetically coupled with the third input track 13 , the other end is ferromagnetically coupled with one end of the second escape track 42 ; one end of the fourth connecting track 34 is antiferromagnetically coupled with the third input track 13 , and the other end is antiferromagnetically coupled with the other end of the second connecting track 32 One end of the ninth connecting track is antiferromagnetically coupled with the other end of the first escaping track 41, and is ferromagnetically coupled with the other end of the second escaping track 42, and the other end of the ninth connecting track 39 is coupled with the first output track 21 Antiferromagnetic coupling; the third connection path includes a fifth connection track 35 and a sixth connection track 36 arranged in parallel and antiferromagnetically coupled, and the fourth connection path includes a seventh connection track 37 and a sixth connection track 37 arranged in parallel and antiferromagnetically coupled. Eight connection rails 38, the second escape path includes a third escape rail 43 and a fourth escape rail 44 arranged in parallel and antiferromagnetically coupled, one end of the fifth connection rail 35 is ferromagnetically coupled with the second input rail 12; the sixth connection One end of the track 36 is antiferromagnetically coupled with the second input track 12, and the other end is ferromagnetically coupled with one end of the third escape track 43; one end of the seventh connecting track 37 is antiferromagnetically coupled with the fourth input track 14, and the other One end is antiferromagnetically coupled with the other end of the fifth connecting track 35; one end of the eighth connecting track 38 is ferromagnetically coupled with the fourth input track 14, and the other end is ferromagnetically coupled with the fourth escape track 44; One end is antiferromagnetically coupled to the other end of the third escape track 43, ferromagnetically coupled to the other end of the fourth escape track 44, and the other end of the tenth connection track 310 is antiferromagnetically coupled to the second output track 22; the first output Magnetic tunnel junctions are provided in both the track 21 and the second output track 22 for reading the state of the magnetic skyrmions.

磁性斯格明子从输入端的双轨道的其中一个轨道进入逻辑门,在进入连接通路时转变为扭曲磁性斯格明子,然后依次沿着连接通路和脱离通路中的反铁磁边界运动,在离开脱离通路时又转换为拓扑荷为+1或-1的磁性斯格明子后通过第五连接通路并进入输出端,由于第二连接轨道32和第四连接轨道34的另一端离磁性斯格明子运动的轨道较远,对结果没有影响,所以在此不做限定。The magnetic skyrmion enters the logic gate from one of the two orbitals at the input, transforms into a twisted magnetic skyrmion when entering the connecting path, and then moves along the antiferromagnetic boundary in the connecting path and the disengaging path in turn, and then moves along the antiferromagnetic boundary in the connecting path and the disengaging path in turn. During the passage, it is converted into a magnetic skyrmion with a topological charge of +1 or -1, and then passes through the fifth connecting passage and enters the output end. Because the other ends of the second connecting track 32 and the fourth connecting track 34 move away from the magnetic skyrmion The orbit is far away and has no effect on the result, so it is not limited here.

一些实施例中还包括控制电路,控制电路包括第一电压源V1、第二电压源V2和第三电压源V3,电压控制磁各向异性门包括第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2,第一电压控制磁各向异性门C1连接第一电压源V1和第二电压源V2,第二电压控制磁各向异性门C2连接第一电压源V1和第三电压源V3。第一输入端和第二输入端内均设置有磁性隧道结,检测是否有磁性斯格明子存在,第一输入端内的磁性隧道结用于控制第三电压源V3,第二输入端内的磁性隧道结用于控制第二电压源V2,与非门中的磁性隧道结设置在第一输入轨道11和第三输入轨道13中,或非门中的磁性隧道结设置在第二输入轨道12和第四输入轨道14中。Some embodiments further include a control circuit, the control circuit includes a first voltage source V1, a second voltage source V2 and a third voltage source V3, and the voltage-controlled magnetic anisotropy gate includes a first voltage-controlled magnetic anisotropy gate C1 and a third voltage source V3. Two voltage-controlled magnetic anisotropy gates C2, the first voltage-controlled magnetic anisotropy gate C1 is connected to the first voltage source V1 and the second voltage source V2, and the second voltage-controlled magnetic anisotropy gate C2 is connected to the first voltage source V1 and the second voltage source V2 The third voltage source V3. Magnetic tunnel junctions are arranged in both the first input end and the second input end to detect whether there are magnetic skyrmions. The magnetic tunnel junction in the first input end is used to control the third voltage source V3, and the magnetic tunnel junction in the second input end is used to control the third voltage source V3. The magnetic tunnel junction is used to control the second voltage source V2, the magnetic tunnel junction in the NAND gate is arranged in the first input track 11 and the third input track 13, and the magnetic tunnel junction in the NOR gate is arranged in the second input track 12 and the fourth input track 14.

磁性斯格明子先通过第五连接通路中的电压控制磁各向异性门,再通过输出端,再由输出端内的磁性隧道结读取状态。电压控制磁各向异性门(VCMA)包括第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2。电压控制磁各向异性门可以单独设置在第一输出轨道21或第二输出轨道22中,也可以在第一输出轨道21和第二输出轨道22内均设置相同的电压控制磁各向异性门,通过改变电压控制磁各向异性门的电压源的连接端口达到与非门和或非门的转换,当第一电压源V1和第三电压源V3连接第一输出轨道21内的第一电压控制磁各向异性门C1,第一电压源V1和第二电压源V2连接第一输出轨道22内的第二电压控制磁各向异性门C2时,逻辑门为与非门,如图1所示;当第一电压源V1和第三电压源V3连接第二输出轨道22内的第一电压控制磁各向异性门C1,第一电压源V1和第二电压源V2连接第二输出轨道22内的第二电压控制磁各向异性门C2时,逻辑门为或非门,如图2所示。The magnetic skyrmion first controls the magnetic anisotropy gate through the voltage in the fifth connection path, then passes through the output terminal, and then reads the state by the magnetic tunnel junction in the output terminal. The voltage controlled magnetic anisotropy gate (VCMA) includes a first voltage controlled magnetic anisotropy gate C1 and a second voltage controlled magnetic anisotropy gate C2. The voltage-controlled magnetic anisotropy gate can be arranged in the first output rail 21 or the second output rail 22 independently, or the same voltage-controlled magnetic anisotropy gate can be arranged in both the first output rail 21 and the second output rail 22 , by changing the connection port of the voltage source of the voltage-controlled magnetic anisotropic gate to achieve the conversion of the NAND gate and the NOR gate, when the first voltage source V1 and the third voltage source V3 are connected to the first voltage in the first output track 21 When the magnetic anisotropy gate C1 is controlled, the first voltage source V1 and the second voltage source V2 are connected to the second voltage-controlled magnetic anisotropy gate C2 in the first output track 22, the logic gate is a NAND gate, as shown in FIG. 1 When the first voltage source V1 and the third voltage source V3 are connected to the first voltage-controlled magnetic anisotropy gate C1 in the second output rail 22, the first voltage source V1 and the second voltage source V2 are connected to the second output rail 22 When the second voltage inside controls the magnetic anisotropy gate C2, the logic gate is a NOR gate, as shown in FIG. 2 .

一些实施例中通过面内电流驱动磁性斯格明子运动,面内电流的通电装置为电极,第一输入端和第二输入端连接负电极,输出端连接正电极,磁性斯格明子的运动方向和面内电流的运动方向相反,以磁性斯格明子从第一输入轨道11进入逻辑门为例,面内电流的方向是依次通过第一输出轨道21、第五连接通路、第一脱离通路、第一连接通路和第一输入轨道11,而磁性斯格明子的运动轨迹为依次通过第一输入轨道11、第一连接通路中的反铁磁边界、第一脱离通路中的反铁磁边界、第五连接通路和第一输出轨道21。In some embodiments, the movement of the magnetic skyrmions is driven by an in-plane current, and the energization device of the in-plane current is an electrode, the first input terminal and the second input terminal are connected to a negative electrode, the output terminal is connected to a positive electrode, and the movement direction of the magnetic skyrmions is Contrary to the movement direction of the in-plane current, taking the magnetic skyrmions entering the logic gate from the first input track 11 as an example, the direction of the in-plane current is sequentially through the first output track 21, the fifth connection path, the first detachment path, The first connecting path and the first input track 11, and the motion trajectory of the magnetic skyrmions is sequentially passing through the first input track 11, the antiferromagnetic boundary in the first connecting path, the antiferromagnetic boundary in the first detaching path, The fifth connection path and the first output rail 21 .

一些实施例中,逻辑门利用磁性材料为哈斯勒型(Heusler-type)磁性形状记忆合金构造成的薄膜,哈斯勒型(Heusler-type)磁性形状记忆合金包括Ni-Mn-Ga,Ni-Mn-Z(In,Sn,Sb),Ni-Mn-Sn-Co等等。例如Ni-Mn-Sn-Co薄膜制备是在0.011毫帕的氩气氛围中,利用直流磁控溅射(功率为150W)沉积在热的(500摄氏度)MgO(001)单晶衬底上。薄膜的具体成分可由X射线能谱仪表征出来。逻辑与非门和或非门的尺寸可为:总长度为1000nm,宽度为600nm,厚度为1nm;输出端宽度为100nm;电压控制磁各向异性门VCMA为100nm*20nm,四个连接通路的轨道可为直线型或弧形轨道,优选的,四个连接通路的轨道构成一个正方形,逻辑门沿该正方形的对角线对称,各个连接轨道与输入输出端的夹角α=β=135°。逻辑非门的尺寸为长度400nm,宽度100nm。In some embodiments, the logic gate utilizes a thin film constructed of a magnetic material as a Heusler-type magnetic shape memory alloy including Ni-Mn-Ga, Ni -Mn-Z(In,Sn,Sb),Ni-Mn-Sn-Co etc. For example, Ni-Mn-Sn-Co thin films are prepared by DC magnetron sputtering (power 150W) deposited on a hot (500°C) MgO (001) single crystal substrate in an argon atmosphere of 0.011 mPa. The specific composition of the film can be characterized by X-ray energy spectrometer. The size of the logic NAND gate and NOR gate can be: the total length is 1000nm, the width is 600nm, and the thickness is 1nm; the output width is 100nm; the voltage-controlled magnetic anisotropy gate VCMA is 100nm*20nm, and the four connection paths are The track can be a straight or arc track. Preferably, the tracks of the four connecting passages form a square, the logic gates are symmetrical along the diagonal of the square, and the included angle between each connecting track and the input and output ends is α=β=135°. The size of the logic NOT gate is 400nm in length and 100nm in width.

如图3所示是与非门在输入为“1”+“1”=“0”、“1”+“0”=“1”和“0”+“0”=“1”这三种情况下时磁性斯格明子运动的三种状态,白色箭头表示面内电流(CIP)的流向。初始状态时,第一电压源V1控制第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2,使其所在区域的磁各向异性增强,此时第二电压源V2和第三电压源V3的电压值为0。As shown in Figure 3, the input of the NAND gate is "1" + "1" = "0", "1" + "0" = "1" and "0" + "0" = "1" these three The three states of the magnetic skyrmion motion under the condition of the white arrows indicate the flow of the in-plane current (CIP). In the initial state, the first voltage source V1 controls the first voltage-controlled magnetic anisotropy gate C1 and the second voltage-controlled magnetic anisotropy gate C2 to enhance the magnetic anisotropy in the region where they are located. At this time, the second voltage source V2 and the voltage value of the third voltage source V3 is 0.

“1”+“1”=“0”:当输入为“1”和“1”,即两个极性为+1的磁性斯格明子分别从第一输入轨道11和第三输入轨道13进入与非门,如图4中a1所示,第一输入端和第二输入端的磁性隧道结均检测到有极性为+1的磁性斯格明子存在时,第二电压源V2和第三电压源V3产生和第一电压源V1反向的电压,使得第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2的磁各向异性恢复正常。两个极性为+1的磁性斯格明子在分别进入第一连接通路和第二连接通路时转变为两个扭曲磁性斯格明子,如图4中a2所示,随后两个扭曲磁性斯格明子分别沿着第一连接通路和第二连接通路的反铁磁边界运动。第一连接通路和第二连接通路中的两个扭曲磁性斯格明子在进入第一脱离通路时相遇并融合成一个扭曲磁性斯格明子,如图3中a3所示。随后融合后的扭曲磁性斯格明子沿着第一脱离通路的反铁磁边界运动,如图4中a4所示。融合后的扭曲磁性斯格明子在离开第一脱离通路进入第九连接轨道39时又转换为极性为+1的斯格明子,如图4中a5所示,由于第九连接轨道39内的第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2的磁各向异性均正常,该转换后的斯格明子通过两个电压控制磁各向异性门后进入第一输出端21,在边界处转变为极性为-1的斯格明子后被第一输出端21内的磁性隧道结检测,如图4中a6所示,由于本发明用极性为+1的斯格明子表示逻辑“1”,用极性为-1的斯格明子表示逻辑“0”,与非门的第一输出轨道21输出逻辑“0”。"1"+"1"="0": When the input is "1" and "1", that is, two magnetic skyrmions with polarity +1 enter from the first input track 11 and the third input track 13 respectively NAND gate, as shown in a1 in Figure 4, when the magnetic tunnel junctions at the first input and the second input both detect the presence of magnetic skyrmions with a polarity of +1, the second voltage source V2 and the third voltage The source V3 generates a voltage opposite to the first voltage source V1, so that the magnetic anisotropy of the first voltage-controlled magnetic anisotropy gate C1 and the second voltage-controlled magnetic anisotropy gate C2 returns to normal. The two magnetic skyrmions with a polarity of +1 are transformed into two twisted magnetic skyrmions when they enter the first connection path and the second connection path, respectively, as shown in a2 in Fig. 4, and then two twisted magnetic skyrmions The brightons move along the antiferromagnetic boundaries of the first and second connecting paths, respectively. The two twisted magnetic skyrmions in the first connecting pathway and the second connecting pathway meet and fuse into one twisted magnetic skyrmion when entering the first detachment pathway, as shown in a3 in Fig. 3 . The fused twisted magnetic skyrmions then move along the antiferromagnetic boundary of the first escaping pathway, as shown in a4 in Fig. 4 . The fused twisted magnetic skyrmions are converted into skyrmions with a polarity of +1 when they leave the first detachment pathway and enter the ninth connecting orbit 39, as shown in a5 in Fig. 4. The magnetic anisotropy of the first voltage-controlled magnetic anisotropy gate C1 and the second voltage-controlled magnetic anisotropy gate C2 are normal, and the converted skyrmions enter the first voltage-controlled magnetic anisotropy gate through the two voltage-controlled magnetic anisotropy gates. The output terminal 21 is detected by the magnetic tunnel junction in the first output terminal 21 after being transformed into a skyrmion with a polarity of -1 at the boundary, as shown in a6 in FIG. The skyrmion represents a logical "1", and a skyrmion with a polarity of -1 represents a logical "0", and the first output track 21 of the NAND gate outputs a logical "0".

“1”+“0”=“1”,“0”+“1”=“1”:当输入为“1”、“0”或“0”、“1”时,即一个极性为+1的磁性斯格明子从第一输入轨道11进入与非门,一个极性为-1的磁性斯格明子从第四输入轨道14进入与非门,如图4中b1所示;或者一个极性为+1的磁性斯格明子从第三输入轨道13进入与非门,一个极性为-1的磁性斯格明子从第二输入轨道12进入与非门,此时第一输入端和第二输入端中的磁性隧道结仅检测到有一个极性为+1的磁性斯格明子存在,则第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2中仅有一个的磁各向异性为正常值,则第九连接轨道39相当于关闭状态,极性为+1的磁性斯格明子不会从第一输出轨道21输出,而极性为-1的磁性斯格明子在进入连接通路时转变为扭曲磁性斯格明子沿着第三连接通路或第四连接通路运动并从第二脱离通路输出到第十连接轨道310,如图4中b5所示,在第十连接轨道310和第二输出轨道22的连接处转变为极性为+1的斯格明子并被第二输出轨道22内的磁性隧道结检测,如图4中b6所示,此时与非门的第二输出端输出逻辑“1”。"1" + "0" = "1", "0" + "1" = "1": When the input is "1", "0" or "0", "1", that is, a polarity is + A magnetic skyrmion of 1 enters the NAND gate from the first input track 11, and a magnetic skyrmion with a polarity of -1 enters the NAND gate from the fourth input track 14, as shown by b1 in Figure 4; or a polar A magnetic skyrmion with a polarity of +1 enters the NAND gate from the third input track 13, and a magnetic skyrmion with a polarity of -1 enters the NAND gate from the second input track 12. The magnetic tunnel junction in the two input terminals only detects the existence of a magnetic skyrmion with a polarity of +1, then the first voltage-controlled magnetic anisotropy gate C1 and the second voltage-controlled magnetic anisotropy gate C2 have only one magnetic skyrmion. The magnetic anisotropy of one is a normal value, then the ninth connecting track 39 is equivalent to a closed state, the magnetic skyrmions with a polarity of +1 will not be output from the first output track 21, and the magnetic skyrmions with a polarity of -1 will not be output from the first output track 21. When entering the connecting path, the skyrmions are transformed into twisted magnetic skyrmions and move along the third connecting path or the fourth connecting path and output from the second disengaging path to the tenth connecting track 310, as shown in b5 in FIG. The connection between the ten connecting track 310 and the second output track 22 is transformed into a skyrmion with a polarity of +1 and detected by the magnetic tunnel junction in the second output track 22, as shown in b6 in FIG. A second output terminal of the gate outputs a logic "1".

“0”+“0”=“1”:当输入为“0”、“0”时,即两个极性为-1的磁性斯格明子分别从第二输入轨道12和第四输入轨道14进入与非门,如图4中c1所示,两个极性为-1的磁性斯格明子在进入连接通路时转变为扭曲磁性斯格明子,如图4中c2所示,之后两个扭曲磁性斯格明子分别沿着第三连接通路和第四连接通路运动并在进入第二脱离通路时相遇并融合成一个扭曲磁性斯格明子,如图4中c3所示,融合后的扭曲磁性斯格明子继续沿着第二脱离通路的反铁磁边界向第十连接轨道310运动,如图4中c4所示,在离开第二脱离通路进入第十连接轨道310时,扭曲磁性斯格明子又转换为极性为-1的斯格明子,如图4中c5所示,在第十连接轨道310和第二输出轨道22的交界面转变为极性为+1的斯格明子并被第二输出轨道22内的磁性隧道结检测,如图4中c6所示,此时与非门的第二输出轨道22输出逻辑“1”。"0" + "0" = "1": when the input is "0", "0", that is, two magnetic skyrmions with polarity -1 from the second input track 12 and the fourth input track 14 respectively Entering the NAND gate, as shown by c1 in Figure 4, two magnetic skyrmions with a polarity of -1 are transformed into twisted magnetic skyrmions when entering the connecting path, as shown by c2 in Figure 4, and then two twisted The magnetic skyrmions move along the third connection pathway and the fourth connection pathway respectively and meet and fuse into a twisted magnetic skyrmion when entering the second disengagement pathway, as shown in c3 in Figure 4, the fused twisted magnetic skyrmion The skyrmions continue to move toward the tenth connecting track 310 along the antiferromagnetic boundary of the second detachment path, as shown by c4 in FIG. Converted to a skyrmion with a polarity of -1, as shown by c5 in Figure 4, at the interface between the tenth connecting track 310 and the second output track 22, it is transformed into a skyrmion with a polarity of +1 and is converted into a skyrmion with a polarity of +1 and is converted into a skyrmion with a polarity of +1 by the second The magnetic tunnel junction in the output track 22 is detected, as shown by c6 in FIG. 4 , at this time, the second output track 22 of the NAND gate outputs a logic "1".

如图5所示是或非门在输入为“1”+“1”=“0”、“1”+“0”=“0”和“0”+“0”=“1”这三种情况下时磁性斯格明子运动的三种状态,白色箭头表示面内电流(CIP)的流向。初始状态时,第一电压源V1控制第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2,使其所在区域的磁各向异性增强,此时第二电压源V2和第三电压源V3的电压值为0。As shown in Figure 5, the input of the NOR gate is "1" + "1" = "0", "1" + "0" = "0" and "0" + "0" = "1" The three states of the magnetic skyrmion motion under the condition of the white arrows indicate the flow of the in-plane current (CIP). In the initial state, the first voltage source V1 controls the first voltage-controlled magnetic anisotropy gate C1 and the second voltage-controlled magnetic anisotropy gate C2 to enhance the magnetic anisotropy in the region where they are located. At this time, the second voltage source V2 and the voltage value of the third voltage source V3 is 0.

“1”+“1”=“0”:当输入为“1”和“1”,即两个极性为+1的磁性斯格明子分别从第一输入轨道11和第三输入轨道13进入或非门,如图5中a1所示。两个极性为+1的磁性斯格明子在分别进入第一连接通路和第二连接通路时转变为两个扭曲磁性斯格明子,如图5中a2所示,随后两个扭曲磁性斯格明子分别沿着第一连接通路和第二连接通路的反铁磁边界运动。第一连接通路和第二连接通路中的两个扭曲磁性斯格明子在进入第一脱离通路时相遇并融合成一个扭曲磁性斯格明子,如图5中a3所示。随后融合后的扭曲磁性斯格明子沿着第一脱离通路的反铁磁边界运动,如图5中a4所示。融合后的扭曲磁性斯格明子在离开第一脱离通路进入第九连接轨道39时又转换为极性为+1的斯格明子,如图5中a5所示,在第九连接轨道39和第一输出轨道21的交界面转变为极性为-1的斯格明子并被第一输出轨道21内的磁性隧道结检测,如图5中a6所示,此时或非门的第一输出轨道11输出逻辑“0”。"1"+"1"="0": When the input is "1" and "1", that is, two magnetic skyrmions with polarity +1 enter from the first input track 11 and the third input track 13 respectively NOR gate, as shown in a1 in Figure 5. The two magnetic skyrmions with a polarity of +1 are transformed into two twisted magnetic skyrmions when they enter the first connection path and the second connection path, respectively, as shown in a2 in Fig. 5, and then two twisted magnetic skyrmions The brightons move along the antiferromagnetic boundaries of the first and second connecting paths, respectively. The two twisted magnetic skyrmions in the first connecting pathway and the second connecting pathway meet and fuse into one twisted magnetic skyrmion when entering the first detachment pathway, as shown in a3 in Fig. 5 . The fused twisted magnetic skyrmions then move along the antiferromagnetic boundary of the first escape pathway, as shown in a4 in Fig. 5. The fused twisted magnetic skyrmions are converted into skyrmions with a polarity of +1 when they leave the first detachment pathway and enter the ninth connecting orbital 39, as shown in a5 in Fig. 5. The interface of an output track 21 is transformed into a skyrmion with a polarity of -1 and detected by the magnetic tunnel junction in the first output track 21, as shown in a6 in FIG. 5, at this time the first output track of the NOR gate 11 Output logic "0".

“1”+“0”=“0”,“0”+“1”=“0”:当输入为“1”、“0”或“0”、“1”时,即一个极性为+1的磁性斯格明子从第一输入轨道11进入或非门,一个极性为-1的磁性斯格明子从第四输入轨道14进入或非门,如图5中b1所示;或者一个极性为+1的磁性斯格明子从第三输入轨道13进入或非门,一个极性为-1的磁性斯格明子从第二输入轨道12进入或非门,此时第一输入端和第二输入端中的磁性隧道结仅检测到有一个极性为-1的磁性斯格明子存在,则第二连接轨道22内的第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2中仅有一个的磁各向异性为正常值,则第二输出轨道22相当于关闭状态,极性为-1的磁性斯格明子不会从第二输出轨道22输出,而极性为+1的磁性斯格明子在进入连接通路时转变为扭曲磁性斯格明子沿着第一连接通路或第二连接通路运动并从第一脱离通路输出到第九连接轨道39,如图5中b5所示,在第九连接轨道39和第一输出轨道21的交界面转变为极性为-1的斯格明子并被第一输出轨道21内的磁性隧道结检测,如图5中b6所示,此时或非门的第一输出端输出逻辑“0”。"1" + "0" = "0", "0" + "1" = "0": When the input is "1", "0" or "0", "1", that is, a polarity is + A magnetic skyrmion of 1 enters the NOR gate from the first input track 11, and a magnetic skyrmion with a polarity of -1 enters the NOR gate from the fourth input track 14, as shown by b1 in Figure 5; or a polar A magnetic skyrmion with a polarity of +1 enters the NOR gate from the third input track 13, and a magnetic skyrmion with a polarity of -1 enters the NOR gate from the second input track 12. The magnetic tunnel junction in the two input terminals only detects the existence of a magnetic skyrmion with a polarity of -1, then the first voltage-controlled magnetic anisotropy gate C1 and the second voltage-controlled magnetic anisotropy gate C1 in the second connection track 22 The magnetic anisotropy of only one of the anisotropic gates C2 is a normal value, then the second output track 22 is equivalent to a closed state, and the magnetic skyrmions with a polarity of -1 will not be output from the second output track 22, while the polar The magnetic skyrmions with a property of +1 are transformed into twisted magnetic skyrmions when they enter the connecting path, and move along the first connecting path or the second connecting path and output from the first disengaging path to the ninth connecting track 39, as shown in Figure 5 As shown in b5, at the interface between the ninth connecting track 39 and the first output track 21, the skyrmion with polarity -1 is transformed into a skyrmion and detected by the magnetic tunnel junction in the first output track 21, as shown in b6 in Fig. 5 As shown, the first output terminal of the NOR gate outputs a logic "0" at this time.

“0”+“0”=“1”:当输入为“0”、“0”时,即两个极性为-1的磁性斯格明子分别从第二输入轨道12和第四输入轨道14进入或非门,如图5中c1所示,此时第一输入端和第二输入端的磁性隧道结均检测到极性为-1的磁性斯格明子,第二电压源V2和第三电压源V3产生和第一电压源V1反向的电压,使得第一电压控制磁各向异性门C1和第二电压控制磁各向异性门C2的磁各向异性恢复正常;两个极性为-1的磁性斯格明子在进入连接通路时转变为扭曲磁性斯格明子,如图5中c2所示,之后两个扭曲磁性斯格明子分别沿着第三连接通路和第四连接通路运动并在进入第二脱离通路时相遇并融合成一个扭曲磁性斯格明子,如图5中c3所示,融合后的扭曲磁性斯格明子继续沿着第二脱离通路的反铁磁边界向第十连接轨道310运动,如图5中c4所示,在离开第二脱离通路进入第十连接轨道310时,扭曲磁性斯格明子又转换为极性为-1的斯格明子,如图5中c5所示,第十连接轨道310内的斯格明子通过两个电压控制磁各向异性门后进入第二输出轨道22,在边界处转变为极性为+1的斯格明子后被第二输出轨道22内的磁性隧道结检测,如图5中c6所示,此时或非门的第二输出轨道22输出逻辑“1”。"0" + "0" = "1": when the input is "0", "0", that is, two magnetic skyrmions with polarity -1 from the second input track 12 and the fourth input track 14 respectively Entering the NOR gate, as shown in c1 in Figure 5, at this time, the magnetic tunnel junctions of the first input and the second input both detect the magnetic skyrmion with a polarity of -1, the second voltage source V2 and the third voltage The source V3 generates a voltage opposite to the first voltage source V1, so that the magnetic anisotropy of the first voltage-controlled magnetic anisotropy gate C1 and the second voltage-controlled magnetic anisotropy gate C2 returns to normal; the two polarities are - The magnetic skyrmion of 1 transforms into a twisted magnetic skyrmion when it enters the connecting pathway, as shown in c2 in Fig. 5, and then the two twisted magnetic skyrmions move along the third connecting pathway and the fourth connecting pathway, respectively, and at When entering the second escape pathway, they meet and fuse into a twisted magnetic skyrmion, as shown in c3 in Fig. 5, the fused twisted magnetic skyrmion continues along the antiferromagnetic boundary of the second escape pathway to the tenth connecting orbit 310 moves, as shown by c4 in Figure 5, when leaving the second detachment path and entering the tenth connecting orbit 310, the twisted magnetic skyrmions are converted into skyrmions with a polarity of -1, as shown by c5 in Figure 5 , the skyrmion in the tenth connection track 310 enters the second output track 22 after passing through two voltage-controlled magnetic anisotropy gates, and is transformed into a skyrmion with a polarity of +1 at the boundary, and is transported by the second output track 22 The inner magnetic tunnel junction is detected, as shown by c6 in FIG. 5 , at this time, the second output track 22 of the NOR gate outputs a logic “1”.

本实施例中的逻辑非门,其第五输入轨道15的磁性材料的磁矩方向为垂直其表面且向外,由于磁性斯格明子一般存在于薄膜上,所以一些实施例中本发明提供的逻辑非门是基于薄膜做成的,则第五输入轨道15和第四输出轨道24的磁性材料的磁矩方向是垂直薄膜向外的,那么第六输入轨道16和第三输出轨道23的磁性材料的磁矩方向是垂直薄膜向里的。In the logic NOT gate in this embodiment, the magnetic moment direction of the magnetic material of the fifth input track 15 is perpendicular to its surface and outward. Since magnetic skyrmions generally exist on thin films, in some embodiments, the magnetic moment provided by the present invention The logic NOT gate is made of thin films, then the magnetic moment direction of the magnetic material of the fifth input track 15 and the fourth output track 24 is perpendicular to the film outward, then the magnetic properties of the sixth input track 16 and the third output track 23 The direction of the magnetic moment of the material is perpendicular to the film inward.

如图6所示为本实施例中逻辑非门在输入为“1”输出为“0”时磁性斯格明子运动的状态,白色箭头表示面内电流(CIP)的流向。Figure 6 shows the state of the magnetic skyrmion motion of the logic NOT gate in this embodiment when the input is "1" and the output is "0", and the white arrows indicate the flow of the in-plane current (CIP).

图6(a)为非门将输入的逻辑“1”转换为输出的“0”的整体示意图,输入为“1”时,如图6(b)所示,极性为+1的磁性斯格明子从第五输入轨道15进入非门,在面内电流的驱动下沿着第五输入轨道15运动并进入第三输出轨道23,在交界处实现极性翻转,转变为极性为-1的斯格明子,如图6(c)所示,转变之后的斯格明子继续沿着第三输出轨道运动,如图6(d)所示,此时非门输出逻辑“0”。非门在将输入的逻辑“0”转变为输出的逻辑“1”的过程同上。Figure 6(a) is the overall schematic diagram of the NOT gate converting the input logic "1" into the output "0". When the input is "1", as shown in Figure 6(b), the magnetic sigma with the polarity of +1 The bright son enters the NOT gate from the fifth input track 15, moves along the fifth input track 15 and enters the third output track 23 under the drive of the in-plane current, and realizes the polarity reversal at the junction, turning it into a polarity of -1. The skyrmion, as shown in Fig. 6(c), after the transformation, the skyrmion continues to move along the third output track, as shown in Fig. 6(d), and the NOT gate outputs a logic "0" at this time. The process of the NOT gate converting the input logic "0" into the output logic "1" is the same as above.

本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art can make various other specific modifications and combinations without departing from the essence of the present invention according to the technical teaching disclosed in the present invention, and these modifications and combinations still fall within the protection scope of the present invention.

Claims (10)

1.一种基于磁性斯格明子的逻辑门,其特征在于,包括:1. a logic gate based on magnetic skyrmions, is characterized in that, comprises: 第一输入端和第二输入端,所述第一输入端包括并行设置且反铁磁耦合的第一输入轨道(11)和第二输入轨道(12),所述第二输入端包括并行设置且反铁磁耦合的第三输入轨道(13)和第四输入轨道(14);A first input comprising a first input rail (11) and a second input rail (12) arranged in parallel and antiferromagnetically coupled, and a second input comprising a parallel arrangement and antiferromagnetically coupled third input track (13) and fourth input track (14); 输出端,包括第一输出轨道(21)和第二输出轨道(22);an output end, comprising a first output track (21) and a second output track (22); 第一连接通路,包括并行设置且反铁磁耦合的第一连接轨道(31)和第二连接轨道(32);a first connection path, comprising a first connection track (31) and a second connection track (32) arranged in parallel and antiferromagnetically coupled; 第二连接通路,包括并行设置且反铁磁耦合的第三连接轨道(33)和第四连接轨道(34);a second connection path, comprising a third connection track (33) and a fourth connection track (34) arranged in parallel and antiferromagnetically coupled; 第三连接通路,包括并行设置且反铁磁耦合的第五连接轨道(35)和第六连接轨道(36);a third connection path, comprising a fifth connection track (35) and a sixth connection track (36) arranged in parallel and antiferromagnetically coupled; 第四连接通路,包括并行设置且反铁磁耦合的第七连接轨道(37)和第八连接轨道(38);a fourth connection path, comprising a seventh connection track (37) and an eighth connection track (38) arranged in parallel and antiferromagnetically coupled; 第五连接通路,包括第九连接轨道(39)和第十连接轨道(310);a fifth connection passage, comprising a ninth connection track (39) and a tenth connection track (310); 第一脱离通路,包括并行设置且反铁磁耦合的第一脱离轨道(41)和第二脱离轨道(42);a first escape path, comprising a first escape track (41) and a second escape track (42) arranged in parallel and antiferromagnetically coupled; 第二脱离通路,包括并行设置且反铁磁耦合的第三脱离轨道(43)和第四脱离轨道(44);a second escape path comprising a third escape track (43) and a fourth escape track (44) arranged in parallel and antiferromagnetically coupled; 所述第一连接轨道(31)的一端与所述第一输入轨道(11)反铁磁耦合,另一端与所述第一脱离轨道(41)的一端铁磁耦合;One end of the first connecting track (31) is anti-ferromagnetically coupled to the first input track (11), and the other end is ferromagnetically coupled to one end of the first escape track (41); 所述第二连接轨道(32)的一端与所述第一输入轨道(11)铁磁耦合;One end of the second connecting track (32) is ferromagnetically coupled to the first input track (11); 所述第三连接轨道(33)的一端与所述第三输入轨道(13)铁磁耦合,另一端与所述第二脱离轨道(42)的一端铁磁耦合;One end of the third connection track (33) is ferromagnetically coupled with the third input track (13), and the other end is ferromagnetically coupled with one end of the second escape track (42); 所述第四连接轨道(34)的一端与所述第三输入轨道(13)反铁磁耦合,另一端与所述第二连接轨道(32)的另一端反铁磁耦合;One end of the fourth connecting track (34) is antiferromagnetically coupled to the third input track (13), and the other end is antiferromagnetically coupled to the other end of the second connecting track (32); 所述第九连接轨道(39)的一端与所述第一脱离轨道(41)的另一端反铁磁耦合,与所述第二脱离轨道(42)的另一端铁磁耦合,其另一端与所述第一输出轨道(21)反铁磁耦合;One end of the ninth connecting track (39) is antiferromagnetically coupled to the other end of the first escape track (41), ferromagnetically coupled to the other end of the second escape track (42), and the other end is ferromagnetically coupled to the second escape track (42). The first output track (21) is antiferromagnetically coupled; 所述第五连接轨道(35)的一端与所述第二输入轨道(12)铁磁耦合;One end of the fifth connecting track (35) is ferromagnetically coupled to the second input track (12); 所述第六连接轨道(36)的一端与所述第二输入轨道(12)反铁磁耦合,另一端与所述第三脱离轨道(43)的一端铁磁耦合;One end of the sixth connecting track (36) is antiferromagnetically coupled with the second input track (12), and the other end is ferromagnetically coupled with one end of the third escape track (43); 所述第七连接轨道(37)的一端与所述第四输入轨道(14)反铁磁耦合,另一端与所述第五连接轨道(35)的另一端反铁磁耦合;One end of the seventh connecting track (37) is antiferromagnetically coupled to the fourth input track (14), and the other end is antiferromagnetically coupled to the other end of the fifth connecting track (35); 所述第八连接轨道(38)的一端与所述第四输入轨道(14)铁磁耦合,另一端与所述第四脱离轨道(44)铁磁耦合;One end of the eighth connecting track (38) is ferromagnetically coupled with the fourth input track (14), and the other end is ferromagnetically coupled with the fourth escape track (44); 所述第十连接轨道(310)的一端与所述第三脱离轨道(43)的另一端反铁磁耦合,与所述第四脱离轨道(44)的另一端铁磁耦合,其另一端与所述第二输出轨道(22)反铁磁耦合;One end of the tenth connecting track (310) is antiferromagnetically coupled to the other end of the third escape track (43), and ferromagnetically coupled to the other end of the fourth escape track (44), and the other end is ferromagnetically coupled to the other end of the fourth escape track (44). The second output track (22) is antiferromagnetically coupled; 所述第一输出轨道(21)和第二输出轨道(22)内均设置有磁性隧道结,用于读取所述磁性斯格明子的状态;Magnetic tunnel junctions are provided in both the first output track (21) and the second output track (22) for reading the state of the magnetic skyrmions; 所述第一输入轨道(11)的磁性材料的磁矩方向为垂直于所述第一输入轨道(11)表面向外。The direction of the magnetic moment of the magnetic material of the first input track (11) is perpendicular to the surface of the first input track (11) and outward. 2.根据权利要求1所述的基于磁性斯格明子的逻辑门,其特征在于,所述第九连接轨道(39)内还设置有电压控制磁各向异性门,此时逻辑门为与非门。2. the logic gate based on magnetic skyrmions according to claim 1, is characterized in that, is also provided with voltage control magnetic anisotropy gate in described ninth connection track (39), and logic gate is NAND at this moment Door. 3.根据权利要求1所述的基于磁性斯格明子的逻辑门,其特征在于,所述第十连接轨道(310)内还设置有电压控制磁各向异性门,此时逻辑门为或非门。3. The logic gate based on magnetic skyrmions according to claim 1, wherein the tenth connection track (310) is also provided with a voltage-controlled magnetic anisotropy gate, and the logic gate is NOR at this time Door. 4.根据权利要求2或3所述的基于磁性斯格明子的逻辑门,其特征在于,利用极性为+1的磁性斯格明子表示逻辑1,从所述第一输入轨道(11)和第三输入轨道(13)进入;利用极性为-1的磁性斯格明子表示逻辑0,从所述第二输入轨道(12)和第四输入轨道(14)进入。4. The logic gate based on magnetic skyrmions according to claim 2 or 3, characterized in that, a magnetic skyrmion with a polarity of +1 is used to represent logic 1, from the first input track (11) and A third input track (13) enters; logical 0 is represented by a magnetic skyrmion with polarity -1, entering from said second input track (12) and fourth input track (14). 5.根据权利要求4所述的基于磁性斯格明子的逻辑门,其特征在于,所述磁性斯格明子在电流的驱动下能够转变为扭曲磁性斯格明子,所述扭曲磁性斯格明子存在于反铁磁边界并能沿着反铁磁边界运动,所述扭曲磁性斯格明子和拓扑荷为+1或-1的磁性斯格明子能够相互转化。5 . The logic gate based on magnetic skyrmions according to claim 4 , wherein the magnetic skyrmions can be converted into twisted magnetic skyrmions under the driving of electric current, and the twisted magnetic skyrmions exist The twisted magnetic skyrmions and magnetic skyrmions with a topological charge of +1 or -1 can be interconverted at and along the antiferromagnetic boundary. 6.根据权利要求5所述的基于磁性斯格明子的逻辑门,其特征在于,还包括控制电路,所述控制电路包括第一电压源(V1)、第二电压源(V2)和第三电压源(V3),所述电压控制磁各向异性门包括第一电压控制磁各向异性门(C1)和第二电压控制磁各向异性门(C2),所述第一电压控制磁各向异性门(C1)连接所述第一电压源(V1)和所述第二电压源(V2),所述第二电压控制磁各向异性门(C2)连接所述第一电压源(V1)和所述第三电压源(V3)。6. The magnetic skyrmion-based logic gate according to claim 5, further comprising a control circuit, the control circuit comprising a first voltage source (V1), a second voltage source (V2) and a third voltage source (V2) a voltage source (V3), the voltage controlled magnetic anisotropy gate comprising a first voltage controlled magnetic anisotropy gate (C1) and a second voltage controlled magnetic anisotropy gate (C2), the first voltage controlled magnetic anisotropy gate (C2) An anisotropic gate (C1) connects the first voltage source (V1) and the second voltage source (V2), and the second voltage-controlled magnetic anisotropy gate (C2) connects the first voltage source (V1) ) and the third voltage source (V3). 7.根据权利要求6所述的基于磁性斯格明子的逻辑门,其特征在于,所述第一输入端和第二输入端内均设置有磁性隧道结,用于检测是否有磁性斯格明子存在;所述第一输入端内的磁性隧道结用于控制所述第三电压源(V3),所述第二输入端内的磁性隧道结用于控制所述第二电压源(V2)。7. The logic gate based on magnetic skyrmions according to claim 6, wherein a magnetic tunnel junction is provided in the first input end and the second input end for detecting whether there is a magnetic skyrmion There is; a magnetic tunnel junction in the first input for controlling the third voltage source (V3) and a magnetic tunnel junction in the second input for controlling the second voltage source (V2). 8.根据权利要求5所述的基于磁性斯格明子的逻辑门,其特征在于,通过面内电流驱动所述磁性斯格明子运动,所述面内电流的通电装置为电极,所述第一输入端和第二输入端连接负电极,所述输出端连接正电极。8 . The logic gate based on magnetic skyrmions according to claim 5 , wherein the magnetic skyrmions are driven to move by an in-plane current, and the energization device of the in-plane current is an electrode, and the first The input terminal and the second input terminal are connected to the negative electrode, and the output terminal is connected to the positive electrode. 9.根据权利要求4所述的基于磁性斯格明子的逻辑门,其特征在于,所述第一输出轨道(21)和第二输出轨道(22)反铁磁耦合。9. The magnetic skyrmion-based logic gate according to claim 4, wherein the first output track (21) and the second output track (22) are antiferromagnetically coupled. 10.一种基于磁性斯格明子的逻辑非门,其特征在于,包括输入端和输出端,所述输入端包括反铁磁耦合的第五输入轨道(15)和第六输入轨道(16),所述输出端包括反铁磁耦合的第三输出轨道(23)和第四输出轨道(24),所述第五输入轨道(15)和所述第三输出轨道(23)反铁磁耦合,所述第六输入轨道(16)和所述第四输出轨道(24)反铁磁耦合。10. A logical NOT gate based on magnetic skyrmions, characterized by comprising an input end and an output end, the input end comprising a fifth input track (15) and a sixth input track (16) that are antiferromagnetically coupled , the output terminal comprises an antiferromagnetically coupled third output track (23) and a fourth output track (24), and the fifth input track (15) and the third output track (23) are antiferromagnetically coupled , the sixth input track (16) and the fourth output track (24) are antiferromagnetically coupled.
CN201810290782.5A 2018-04-03 2018-04-03 Logic gate based on magnetic siganmin Active CN108521275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810290782.5A CN108521275B (en) 2018-04-03 2018-04-03 Logic gate based on magnetic siganmin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810290782.5A CN108521275B (en) 2018-04-03 2018-04-03 Logic gate based on magnetic siganmin

Publications (2)

Publication Number Publication Date
CN108521275A CN108521275A (en) 2018-09-11
CN108521275B true CN108521275B (en) 2020-02-04

Family

ID=63431106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810290782.5A Active CN108521275B (en) 2018-04-03 2018-04-03 Logic gate based on magnetic siganmin

Country Status (1)

Country Link
CN (1) CN108521275B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534143A (en) * 2019-05-15 2019-12-03 南京大学 A kind of multi-electrode wiring method of the racing track memory based on magnetic lattice pine torch
CN110211614B (en) * 2019-06-13 2021-03-02 湖北大学 A latch, flip-flop and control method based on magnetic skyrmions
US11539365B2 (en) * 2019-06-27 2022-12-27 Board Of Regents, The University Of Texas System Reversible computing system and method based on conservative magnetic skyrmion logic
CN110445490B (en) * 2019-08-12 2023-06-09 香港中文大学(深圳) Logic devices driven by magnetic skyrmions based on spin waves
CN110535460B (en) * 2019-09-23 2021-08-24 四川师范大学 A Novel Logic Gate Circuit Based on Antiferromagnetic Skyrmions
CN111768806B (en) * 2020-06-12 2022-05-31 华南师范大学 Magnetic skynet based memory device and method for storing information by using same
CN111953312B (en) * 2020-07-03 2023-11-10 香港中文大学(深圳) A NOT gate based on topological magnetic structure and its control method
CN112564899B (en) * 2020-12-07 2022-04-08 哈尔滨工业大学(威海) Double-track MTJ (magnetic tunnel junction) and CMOS (complementary metal oxide semiconductor) mixed lookup table circuit
CN114708775A (en) * 2021-11-09 2022-07-05 张然 Mechanical logic door assembly comprising AND gate, OR gate and NOT gate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111681A1 (en) * 2014-01-23 2015-07-30 国立研究開発法人理化学研究所 Magnetic element and skyrmion memory
JP2015154002A (en) * 2014-02-18 2015-08-24 国立研究開発法人理化学研究所 Control method of size and orientation of vortex of skyrmion and skyrmion crystal
CN104192166B (en) * 2014-09-04 2016-09-21 电子科技大学 Rail attitude measurement method based on earth magnetism sensing and device
CN105514260B (en) * 2016-01-29 2018-02-27 中国科学院物理研究所 Spin logical device and include its electronic equipment
US9966901B2 (en) * 2015-11-19 2018-05-08 Samsung Electronics Co., Ltd. Spin-torque oscillator based on easy-cone anisotropy
CN105950941B (en) * 2016-05-11 2017-10-10 中国科学院物理研究所 A kind of magnetic Skyrmion material
CN106877858A (en) * 2016-12-27 2017-06-20 南京大学 A Logic Gate Circuit Based on Magnetic Skyrmions
CN107332554A (en) * 2017-06-09 2017-11-07 香港中文大学(深圳) OR gate and its control and methods for using them based on magnetic Skyrmion
CN107332555B (en) * 2017-06-09 2018-05-29 香港中文大学(深圳) Based on magnetic Skyrmion and door and its control method
CN107846215B (en) * 2017-10-31 2020-07-28 华中科技大学 Reconfigurable logic device based on magnetic sigecum

Also Published As

Publication number Publication date
CN108521275A (en) 2018-09-11

Similar Documents

Publication Publication Date Title
CN108521275B (en) Logic gate based on magnetic siganmin
CN108512545B (en) Reconfigurable logic gate based on magnetic sigecum
CN107846215B (en) Reconfigurable logic device based on magnetic sigecum
Yao et al. Magnetic tunnel junction-based spintronic logic units operated by spin transfer torque
CN103915488B (en) Spin field effect logic devices
CN107332554A (en) OR gate and its control and methods for using them based on magnetic Skyrmion
CN110535460B (en) A Novel Logic Gate Circuit Based on Antiferromagnetic Skyrmions
US9979401B2 (en) Magnetoelectric computational devices
CN107332555B (en) Based on magnetic Skyrmion and door and its control method
CN111384233A (en) Giant magnetoresistive devices, magnon field effect transistors and magnon tunnel junctions
CN110427170A (en) A kind of full adder based on spin(-)orbit square
Bang et al. Current-induced domain wall motion in antiferromagnetically coupled structures: Fundamentals and applications
CN105932153B (en) A kind of magnetism unusual hall transistors of room temperature lower piezoelectric regulation and control
US8400066B1 (en) Magnetic logic circuits and systems incorporating same
CN111953312A (en) A NOT gate based on topological magnetic structure and its control method
CN110211614B (en) A latch, flip-flop and control method based on magnetic skyrmions
CN111768806A (en) Magnetic skyrmion-based storage device and method for storing information in the same
WO2019106436A1 (en) Design of spin-orbit torque magnetic random access memory
CN110233617B (en) AND logic gate and NAND logic gate based on magnetic sigecum
CN113140671B (en) A device for flipping magnetic moment without magnetic field assistance using vertical spin polarized spin current and its preparation method
CN102931342A (en) Hall spinning scale material and component
Binek Controlling Magnetism with a Flip of a Switch
Atulasimha et al. Hybrid spintronic/straintronics: A super energy efficient computing scheme based on interacting multiferroic nanomagnets
CN115589764A (en) A kind of magnetic random storage unit and its preparation method and use method
CN114883483B (en) Spin gate logic device and extended spin majority gate logic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant