CN108518912A - Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler - Google Patents

Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler Download PDF

Info

Publication number
CN108518912A
CN108518912A CN201810437951.3A CN201810437951A CN108518912A CN 108518912 A CN108518912 A CN 108518912A CN 201810437951 A CN201810437951 A CN 201810437951A CN 108518912 A CN108518912 A CN 108518912A
Authority
CN
China
Prior art keywords
air
piston
heat exchanger
cold
air compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810437951.3A
Other languages
Chinese (zh)
Other versions
CN108518912B (en
Inventor
陈曦
林毅
宋佳星
葛寅飞
昌庆航
刘振
张建辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810437951.3A priority Critical patent/CN108518912B/en
Publication of CN108518912A publication Critical patent/CN108518912A/en
Application granted granted Critical
Publication of CN108518912B publication Critical patent/CN108518912B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Abstract

Multi-temperature zone wind cooling refrigerator according to the present invention using pulse type free-piston Stirling cooler,Including refrigerator body,Refrigeration section,Control unit,Refrigerator body has at least one air compartment,The air delivery duct being arranged outside air compartment and air -return duct,Be respectively arranged on the air compartment wall of air compartment connection air delivery duct with inside air compartment air outlet and the return air inlet that is connected to inside air -return duct and air compartment,The position of return air inlet is higher than the position of air outlet,Air delivery duct is airtight passage with air -return duct and is connected,Refrigeration section includes pulse type free-piston Stirling cooler,Cool end heat exchanger,Cold end air-supply arrangement,Cool end heat exchanger is arranged in cold end and positioned at the junction of air delivery duct and air -return duct,Cool end heat exchanger separates air delivery duct and air -return duct,Controller respectively with indoor temperature transmitter,Cold head temperature sensor,Air compartment blow valve,Air compartment air returning valve is connected,Controller controls air compartment blow valve respectively,The size of the valve folding of air compartment air returning valve.

Description

Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler
Technical field
The invention belongs to field of household appliances, and in particular to a kind of multi-temperature zone using pulse type free-piston Stirling cooler Wind cooling refrigerator.
Background technology
As the improvement of people's living standards, the freezing function of general refrigerator (temperature is higher than -18 DEG C) gradually cannot be satisfied Freezing requirement of the people to some food, as some seafood need to preserve more preferably at -40 DEG C or less.By taking meat product as an example, general When logical refrigerator preserves, 7 DEG C of refrigerations were no more than 2 days, and 0 DEG C of refrigeration was no more than 5 days, and when -18 DEG C of freezings, the time can not be more than 1 month.For the food for needing to preserve for a long time, cryogenic temperature is lower, more can inhibit the activity of microbial growth and enzyme, Nutritive loss is smaller, and it is better to preserve freshness.
Traditional domestic refrigerator refrigeration generally uses single-stage vapor compression formula throttle refrigeration system, by compressor, condenser, Four essential part compositions of throttle part and evaporator, various pieces are linked together by pipeline and form a closed system System.A certain amount of refrigerant is filled in system, refrigerant passes through four compression, condensation, throttling, evaporation cyclic processes in system Refrigeration.Fast, the good refrigeration effect using the Refrigeration Speed for Refrigerator of vapour compression refrigeration, technology maturation, therefore performance stabilization, service life It is long.Using vapour compression refrigeration refrigerator work when, compressor interval start and stop under the control of temperature controller.When the temperature in refrigerator When higher than set temperature, compressor start refrigeration, in-cabinet temperature reduces, until to reach set temperature below for the temperature in refrigerator A certain critical value, compressor are stopped, and ice the temperature inside the box is begun to ramp up.When temperature rise to another facing higher than set temperature When dividing value, compressor starts to start work again.Above procedure iterative cycles.Therefore, even if refrigerator is in stable state, in babinet Temperature also have periodic fluctuation, this for some as seafood gourmet food preserve it is unfavorable.And single-stage vapor compression Throttle refrigeration system also is difficult to realize -40 DEG C of cryogenic temperatures below, cannot be satisfied the temperature requirements to some food preservations.
Stirling refrigeration cycle is made of two constant temperature process and constant volume process, and theoretical circulation efficiency is Carnot efficiency. Comparatively, there is higher refrigerating efficiency using stirling refrigeration technology under cryogenic refrigeration operating mode.Sterlin refrigerator is adopted The closed cycle freezed with gas expansion, is connected to by compression unit with expansion cell valveless.Using helium as refrigeration work Matter will not generate destruction to ozone layer, be a kind of extremely environmentally friendly Refrigeration Technique.Free-piston Stirling cooler is without complexity Pipe-line system, compressor and expanding machine integrate, and has few moving component, oil-free lubrication, not easy to wear, reliability The advantages that height, long lifespan, compact-sized, light-weight, high cooling efficiency, but also high with temperature-controlled precision, at full capacity and part All there is higher efficiency, by adjusting the i.e. controllable refrigerating capacity of input voltage and cryogenic temperature under load.
Invention content
New and effective pulse type free-piston Stirling cooler is used one of the objects of the present invention is to provide a kind of Multi-temperature zone wind cooling refrigerator, coaxial pulse-tube type free-piston Stirling cooler of the invention eliminates traditional free-piston, and this is special The longer low-temperature expansion piston of woods refrigeration machine is replaced with shorter room-temperature zone work work recycling expansion piston.This spy of free-piston The expansion cylinder of woods refrigeration machine becomes the pulse tube of vascular cold finger, and pulse tube cold end is disposed with the air deflector of laminarization, hot junction Equipped with two level hot end heat exchanger.The advantages of this change combines free-piston Stirling cooler and vascular refrigerator, passes through Cancel the expansion piston in hot and cold side high frequency motion, eliminate pumping loss that low-temperature expansion piston brings, shuttle loss and Axial heat conduction loss.Shorter swell at room temperature piston is set by hot junction and solves the problems, such as the acoustic power recovery of vascular refrigerator, because This, when recycling cold end sound work(completely, which imitates for Carnot cycle Rate.Meanwhile cancellation low-temperature expansion piston reduces refrigeration machine manufacture difficulty, reduces overall mass.
The present invention provides a kind of multi-temperature zone wind cooling refrigerators using pulse type free-piston Stirling cooler, have this The feature of sample, including refrigerator body, refrigeration section, control unit,
Wherein, refrigerator body has at least one air compartment, the air delivery duct being arranged outside air compartment and air -return duct, air compartment Be respectively arranged on air compartment wall connection air delivery duct with inside air compartment air outlet and the return air that is connected to inside air -return duct and air compartment Mouthful, the position of return air inlet is higher than the position of air outlet, and air delivery duct is airtight passage with air -return duct and is connected, and refrigeration section includes Pulse type free-piston Stirling cooler, cool end heat exchanger, cold end air-supply arrangement, pulse type free-piston Stirling cooler With cold finger, there is cold finger cold and hot end, cool end heat exchanger to be arranged in cold end and positioned at the connection of air delivery duct and air -return duct Place, cool end heat exchanger separate air delivery duct and air -return duct, and air-supply arrangement is arranged in air delivery duct or air -return duct, is located at cool end heat exchanger Side, control unit include controller, indoor temperature transmitter, cold head temperature sensor, air compartment blow valve, air compartment air returning valve, air compartment Blow valve is arranged in air outlet, and air compartment air returning valve is arranged in return air inlet, and indoor temperature transmitter is arranged in air compartment, cold head Temperature sensor be arranged in cold end, controller respectively with indoor temperature transmitter, cold head temperature sensor, air compartment blow valve, Air compartment air returning valve is connected, and controller controls the size of the valve folding of air compartment blow valve, air compartment air returning valve respectively, and pulse type is free Piston Stirling cooler includes linear motor, compression unit, expanding machine unit and rack, wherein rack includes flange, sets Piston tube and pedestal in flange are set, the side of flange shape in disk form, the flange is additionally provided with concentric roundel, bottom Seat is cylindrical in shape, and one end is connected with the other side of flange, and the other end is free end, the center line of pedestal and the center line weight of flange It closes, piston tube is straight pipe, and one end open is located at the outside of roundel, and another end opening is located in pedestal, has in piston tube Cylinder-piston chamber, compression piston and expansion piston for accommodating refrigeration machine are provided in plunger shaft and multiple penetrate piston tube pipe The through-hole of wall, linear motor include outer yoke, interior yoke and mover, and outer yoke, interior yoke are separately positioned in rack and outer There is gap, mover to be arranged in gap, compression unit has compression piston, compression piston spring, pressure between yoke, interior yoke Contracting piston spring is fixedly connected by connector with rack, compression piston be arranged in piston tube, one end be connected with mover and with Compression piston spring is connected, and the other end is free end, and expanding machine unit includes expansion piston, expansion piston spring, expansion piston Bar, level-one hot end heat exchanger, two level hot end heat exchanger, regenerator, pulse tube, cool end heat exchanger, level-one hot end heat exchanger is in circle Tubular is sleeved on the outer wall of piston tube and is arranged on the end face of roundel, one end and the piston tube lateral ends phase of pulse tube Even, the other end is connected with cool end heat exchanger, and regenerator is cylindrical, is arranged in the outside of pulse tube, one end and cool end heat exchanger It is connected, the other end is connected with level-one hot end heat exchanger, and two level hot end heat exchanger is arranged in pulse tube, and expansion piston is in piston tube In, expansion piston spring is fixedly connected by connector with rack, and one end of expansion piston bar is connected with expansion piston, the other end It is connected with expansion piston spring after compression piston, compression piston spring, compression piston, expansion piston and plunger shaft are constituted Compression chamber, expansion piston, two level hot end heat exchanger and plunger shaft constitute expansion chamber.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, it is special Sign is, further includes:The thawing apparatus being arranged on cool end heat exchanger.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, may be used also To have the feature that:Wherein, thawing apparatus is the heating wire being wrapped in outside cool end heat exchanger.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, may be used also To have the feature that:Wherein, cool end heat exchanger is finned heat exchanger.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, may be used also To have the feature that:Wherein, controller further include control return air valve channel, control temperature sensor channel, control into Air valve channel, control cold junction temperature sensor channel, control cold end fan channel.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, may be used also To have the feature that:Wherein, return air inlet and air outlet be not in same air compartment wall.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, may be used also To have the feature that:Wherein, cold end air-supply arrangement is fan.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, it is special Sign is, further includes:
The hot end heat exchanger and radiator fan being arranged on hot junction, hot end heat exchanger and radiator fan are arranged at together In one closed case.
In addition, in the multi-temperature zone refrigerator provided by the invention using pulse type free-piston Stirling cooler, may be used also To have the feature that:Wherein, closed case is provided with the air inlet for introducing fresh air and realizes the air outlet of hot-side heat dissipation.
The effect of invention
Compared with existing refrigerator, the beneficial effects of the present invention are:
(1) due to using free-piston Stirling cooler, the lowest refrigerating temperature of refrigerator can be made to reach -60 DEG C, and And compression piston stroke can be adjusted by changing driving voltage, to control refrigerating capacity and cryogenic temperature.It can be according to difference The requirement classification of cryogenic temperature preserves food.
(2) coaxial pulse-tube type free-piston Stirling cooler of the invention eliminates traditional free piston stirling refrigeration The longer low-temperature expansion piston of machine is replaced with shorter room-temperature zone work work recycling expansion piston.Free piston stirling freezes The expansion cylinder of machine becomes the pulse tube of vascular cold finger, and pulse tube cold end is disposed with the air deflector of laminarization, and hot junction is equipped with two Grade hot end heat exchanger.The advantages of this change combines free-piston Stirling cooler and vascular refrigerator, by cancelling The expansion piston of hot and cold side high frequency motion eliminates pumping loss, shuttle loss and axial direction that low-temperature expansion piston is brought and leads Heat loss.Shorter swell at room temperature piston is set by hot junction and solves the problems, such as the acoustic power recovery of vascular refrigerator, therefore, when complete When full recycling cold end sound work(, which is Carnot's cycle efficiency.Meanwhile Cancelling low-temperature expansion piston reduces refrigeration machine manufacture difficulty, reduces overall mass.
Description of the drawings
Fig. 1 is that the multi-temperature zone wind cooling refrigerator of the present invention using pulse type free-piston Stirling cooler freezes Principle schematic;
Fig. 2 is pulse type free-piston Stirling cooler diagrammatic cross-section in the embodiment of the present invention;
Fig. 3 is the stereoscopic schematic diagram of rack in the embodiment of the present invention;
Fig. 4 is A direction views in Fig. 3;And
Fig. 5 is C-C sectional views in Fig. 4.
Specific implementation mode
It is real below in order to make the technical means, the creative features, the aims and the efficiencies achieved by the present invention be easy to understand Apply example combination attached drawing being specifically addressed using the multi-temperature zone refrigerator of pulse type free-piston Stirling cooler to the present invention.
Embodiment
Multi-temperature zone wind cooling refrigerator includes refrigerator body, refrigeration section, control unit.
As shown in Figure 1, box air compartment there are three refrigerator body tools, air compartment I, the air compartment respectively set gradually from top to bottom II, air compartment III, mutually independence and section are rectangle for air compartment I, air compartment II, air compartment III.
Air delivery duct 23k is arranged in the outside of three air compartments, and air -return duct 24k is arranged in the outside of three air compartments, air delivery duct 23k It is airtight passage with air -return duct 24k and is connected.
Be respectively arranged on the air compartment wall of three air compartments connection air delivery duct with inside air compartment air outlet and be connected to return air Return air inlet inside road and air compartment, in embodiment, the position of return air inlet is higher than the position of air outlet, and air outlet is located proximate to wind The bottom of room, for return air inlet with air outlet not in same air compartment wall, return air inlet is separately positioned on two opposite sides with air outlet On wall.
Air delivery duct 23k is connected with the air outlet of air compartment I, air compartment II, air compartment III respectively.
Air -return duct 24k is connected with the return air inlet of air compartment I, air compartment II, air compartment III respectively.
Refrigeration section includes pulse type free-piston Stirling cooler 2k, cold end finned heat exchanger 3k, cold end fan 4k, electricity Heated filament 5k, hot side fin heat exchanger 6k, air inlet 7k, strainer 8k, hot junction fan 9k, air outlet 10k.
There is pulse type free-piston Stirling cooler 2k cold finger, cold finger to have cold and hot end.
Cold end finned heat exchanger 3k is arranged in cold end and positioned at the junction of air delivery duct 23k and air -return duct 24k, cold end wing Piece heat exchanger 3k separates air delivery duct 23k and air -return duct 24k.It is wound with heating wire 5k on cold end finned heat exchanger 3k, for carrying out Defrosting.
Cold end fan 4k is arranged in the 23k of air delivery duct, is located at the front end of cold end finned heat exchanger 3k.
Hot side fin heat exchanger 6k is arranged on the hot junction of coaxial pulse-tube type free-piston Stirling cooler 2k, hot junction wing Piece heat exchanger 6k, hot junction fan 9k and refrigeration machine 2k body be arranged in the same closed case, the top of closed case It is provided with the air inlet 7k for introducing fresh air and realizes the air outlet 10k of hot-side heat dissipation, strainer 8k is additionally provided in air inlet 7k, Hot junction fan 9k is arranged in the tail portion of the body of refrigeration machine 2k, and air outlet 10k faces hot junction fan 9k is arranged in closed case On side wall.
Control unit includes controller 1k, I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, III temperature of air compartment Sensor 13k, cold head temperature sensor 14k, control return air valve channel 15k, control temperature sensor channel 16k, control into Air valve channel 17k, control cold junction temperature sensor channel 18k, control cold end fan channel 19k, control heating wire 20k, control Refrigeration machine power cord 21k processed, control hot junction fan 22k, I blow valve A of air compartment, II blow valve B of air compartment, III blow valve C of air compartment, wind I air returning valve a of room, II air returning valve b of air compartment, III air returning valve c of air compartment, hot junction fan 9k, cold end fan 4k.
I blow valve A of air compartment, II blow valve B of air compartment, III blow valve C of air compartment are separately positioned on air compartment I, air compartment II, air compartment III Air outlet in.
I air returning valve a of air compartment, II air returning valve b of air compartment, III air returning valve c of air compartment are separately positioned on air compartment I, air compartment II, air compartment III Return air inlet in.
I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, III temperature sensor 13k of air compartment are separately positioned on In air compartment I, air compartment II, air compartment III.
Cold head temperature sensor 14k is arranged in cold end.
Controller 1k respectively with controller 1k, I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, air compartment III Temperature sensor 13k, cold head temperature sensor 14k, control return air valve channel 15k, control temperature sensor channel 16k, control System air inlet valve channel 17k, control cold junction temperature sensor channel 18k, control cold end fan channel 19k, control heating wire 20k, control refrigeration machine power cord 21k, control hot junction fan 22k, I blow valve A of air compartment, II blow valve B of air compartment, air compartment III are blown Valve C, I air returning valve a of air compartment, II air returning valve b of air compartment, III air returning valve c of air compartment, refrigeration machine 2k are connected.
Controller 1k controls the unlatching of refrigeration machine 2k, hot junction fan 9k, cold end fan 4k, and stopping and air compartment I respectively Blow valve A, II blow valve B of air compartment, III blow valve C of air compartment, I air returning valve a of air compartment, II air returning valve b of air compartment, III air returning valve c of air compartment Valve folding size.
As shown in Fig. 2, coaxial pulse-tube type free-piston Stirling cooler 2k includes linear motor 1, compression unit, expansion Machine unit, rack 50 and shell 60.
As shown in Fig. 3,4,5, rack 50 includes flange 52, the piston tube 51 being arranged in flange 52 and pedestal 53,
Wherein, 52 shape in disk form of flange, the side of the flange are additionally provided with concentric roundel 521, on flange 52 It is even to be provided with multiple connection through-holes.
Pedestal 53 is cylindrical in shape, and one end is connected with the side of flange 52, and the other end is free end, the center line and method of pedestal 53 The center line of orchid 52 overlaps, and is provided with multiple connecting screw holes on the free end of pedestal 53, and in embodiment, pedestal 53 is around flange Four supporting legs of 52 center line setting.
Piston tube 51 be straight tube, be arranged in flange 52 and with 52 coaxial line of flange, lateral ends opening be located at roundel 521 outside, inner opposite end opening are located in pedestal 53, have cylinder-piston chamber in piston tube 51, are provided in plunger shaft more A perpendicular to piston tube axis and to penetrate the through-hole 511 of piston tube wall, in embodiment, the section of through-hole 511 is arc groove, number Amount is 3.
Linear motor 1 includes outer yoke 11, interior yoke 14 and mover, and outer yoke 11, interior yoke 14 are separately positioned on machine There is gap, mover to be arranged in gap, mover includes permanent magnet 13 and permanent magnetism body support frame on frame and between outer yoke, interior yoke 15。
As shown in Figure 1, linear motor 1 includes mainly outer yoke 11, coil 12, permanent magnet 13, interior yoke 14, permanent magnet branch Frame 15, mover include permanent magnet 13, permanent magnetism body support frame 15, connector 16, fixing nut 18, compression piston 19 and compression piston Flat spring 17 (only takes the 1/3 of flat spring quality) when calculating mover quality, and permanent magnetism body support frame 15 is connected with permanent magnet 13, and with Compression piston 19 and connector 16 are connected through a screw thread.Outer yoke 11 is soft magnetic materials with interior yoke 14, commonly uses electric work pure iron, silicon The materials such as steel disc make, and permanent magnet 13 is permanent-magnet material, commonly uses Ru-Fe-Mn, alnico permanent magnetic material to make.Outer yoke 11, line Circle 12, permanent magnet 13, interior yoke 14 are annular, and using coaxially arranged.Outer yoke 11, interior yoke 14 are separately positioned on machine There is gap, mover to be arranged on frame 50 and between outer yoke, interior yoke in gap.
When coil is passed through direct current, outer yoke 11 and interior yoke 14 can form magnetic force loop line, in 11 He of outer yoke Magnetic pole is generated on interior yoke 14.When being passed through alternating current in coil, permanent magnet 13 will be done back and forth by alternating electromagnetic force Linear motion.When permanent magnet 13 does linear reciprocating motion, compression piston 19 can be driven to do linear reciprocating motion, compression piston plate Spring 17 provides axial reciprocating elastic power and radial support.
Compression unit includes connector 16, compression piston flat spring 17, fixing nut 18, compression piston 19.Compression piston Flat spring 17 is connected by fixing nut 18 with connector 16, and compression piston flat spring 17 is fixed with rack 50 by connector Connection, compression piston 19 are arranged in plunger shaft, and one end is connected with mover and is connected with compression piston spring 17, and the other end is certainly By holding.
Expanding machine unit include expansion piston 21, expansion piston flat spring 22, piston rod 23, level-one hot end heat exchanger 26, Two level hot end heat exchanger 33, regenerator 25, pulse tube 31, cool end heat exchanger 24, cold finger shell 35,
Level-one hot end heat exchanger 26 is cylindrical, is sleeved on the outer wall of piston tube 51 and is arranged in the end face of roundel 521 On, level-one hot end heat exchanger 26 is separate structure with rack 50, and level-one hot end heat exchanger 26 and the outer wall interference of piston tube 51 are matched It closes.
One end of pulse tube 31 is connected with 51 lateral ends of piston tube, and the other end is connected with cool end heat exchanger 24,
Regenerator 25 is in the cylindrical shape of ring-shaped section and ring-shaped, is arranged in the outside of pulse tube 31, one end and cool end heat exchanger 24 It is connected, the other end is connected with level-one hot end heat exchanger 26.
Two level hot end heat exchanger 33 is arranged in pulse tube 31, is located at the junction of pulse tube 31 and piston tube 51, two level Hot end heat exchanger 33 is separate structure with rack 50, and two level hot end heat exchanger 33 and the inner wall of piston tube 51 are interference fitted.
Expansion piston 21 is arranged in piston tube 51, and expansion piston flat spring 22 is fixed by connector and rack 50 to be connected Connect, one end of piston rod 23 is connected with expansion piston 21, the other end pass through compression piston 19, after compression piston flat spring 17 with it is swollen Swollen piston flat spring 22 is connected,
Compression piston 19, expansion piston 21 and plunger shaft constitute compression chamber, compression piston 19, two level hot end heat exchanger 33 And plunger shaft constitutes expansion chamber, expansion chamber is coaxially arranged with compression chamber.
Cold finger shell 35 is arranged in the outside of level-one hot end heat exchanger 26, regenerator 25, cool end heat exchanger 24, and shell 60 is arranged In rack 50 and the outside of expanding machine unit 30, shell 60, cold finger shell 35 and rack 50 are linked into an integrated entity by connector.
Radiator 27 is located at the outside of level-one hot end heat exchanger 26 and is arranged on cold finger shell 35, level-one hot end heat exchanger 26 The radiator 27 that heat is passed to outside by cold finger shell 35, is finally released to environment.
Undamped dynamic absorber unit 4 is connected with shell 60 and is arranged in the outside of shell 60, for being carried out to refrigeration machine Damping.
The motion process and gas flow of expansion piston and compression piston:
Expansion piston flat spring 22 is fixed with piston rod 23, and expansion piston 21 is connected with piston rod 23.
Expansion piston 21 is pure pneumatic actuation, is generated using the displacement phase difference between expansion piston 21 and compression piston 19 Refrigeration effect, 70 °~100 ° of the phase of the leading compression piston of the displacement of usual expansion piston 21 19.Since linear motor is sine Electric excitation is exchanged, so the movement of expansion piston 21 and compression piston 19 is also to be in sinusoidal continuous movement, but in order to explain State its operation principle, it is assumed that expansion piston 21 does the movement of intermittent touchdown formula with compression piston 19 according to circulation law.
Sound wave compression process:Expansion piston 21 rests on that top dead centre is motionless, and compression piston 19 is moved upwards by lower dead center, this When main compression chamber 29 in sound wave compressed, and flow into the level-one hot end heat exchanger 26 on the outside of cylinder, compression process generated Heat is released to level-one hot end heat exchanger 26, and heat is passed to the heat dissipation in outside by level-one hot end heat exchanger 26 by outer housing again Device 27, is finally released to environment.Ideally think that cylinder and outer housing are complete heat conduction, while level-one hot end heat exchanger 26 is infinitely great with the heat exchange area of radiator 27, therefore the temperature of working medium remains unchanged.But in real process, isotherm compression is It is impossible, and expansion piston 21 can not possibly intermittent movement, when compression piston 19 moves upwards, expansion piston 21 has been Through starting to move downward.
Regenerator exothermic process:Compression piston 19 moves to motionless after top dead centre, and expansion piston 21 moves downward, at this time sound Wave comes into full contact with heat exchange by the filler in regenerator 25, with regenerator 25, heat is discharged to regenerator 25, at this time backheat The temperature of device 25 increases, acoustic wave temperature and pressure reduction.But in practical heat transfer process, 25 heat transfer process of regenerator is not fixed Hold, it is also not possible to the complete heat exchange of 25 filler of real sound wave and regenerator.
Sound wave Laminar Flow process:Gas flows through after cool end heat exchanger 24 through air deflector 32, enters as a laminar flow Gas in pulse tube 31 is pushed to expansion chamber 28 by pulse tube 31.After gas is squeezed, pressure and temperature rises.The heat of generation It is radially transferred to level-one hot end heat exchanger 26 by two level hot end heat exchanger 33, be finally transmitted to radiator 27 and is released to ring Border.Gas expansion for doing work in expansion chamber 28, auxiliary pushing expansion piston become smaller, play to lower dead center, work(recycling compression chamber The effect of recycling sound work(.In practical work process, compression piston 19 can't rest on always top dead centre, but can be with swollen Swollen piston 21 moves downwardly together, but it need to be pointed out that the two is not movement in the same direction but the leading compression piston of expansion piston one Fixed phase angle.
Sound wave process of refrigerastion:Expansion piston 21 moves up to top dead centre since lower dead center, and compression piston 19 moves to Lower dead center, expansion piston 21 push back to the sound wave in expansion chamber 28 in pulse tube 31, gas swelling heat absorption in pulse tube, production Raw refrigeration effect reaches lowest refrigerating temperature at 31 top of pulse tube at air deflector 32.The cold of generation is changed by cold end Hot device 24 is exported to cold environment.Sound wave working medium returns in regenerator 25 along original route and comes into full contact with heat exchange with filler again, inhales After receiving the heat in regenerator 25, returns to main compression chamber 29 and wait for next second compression.The temperature and pressure of the process sound wave Rise, 25 temperature of regenerator declines.In real process, when compression piston 19 reaches lower dead center expansion piston 21 and not up on Stop, but during returning to top dead centre, but its still advanced compression piston 19 on displacement wave phase.
The present embodiment is suitable for the cryogenic temperature of 220K (- 53 DEG C) or more, can provide the refrigerating capacity of 50W-200W.
The controller 1k of refrigerator can control the driving voltage of pulse type sterlin refrigerator 2k to realize according to actual load The cryogenic temperature of each warm area.Refrigeration machine cold end meets finned heat exchanger 3k, and cold end fan 4k passes through the cold wind of different temperatures respectively Blow valve A, B, C of adjustable aperture are sent to each air compartment, and return air flows back to refrigeration machine 2k cold ends by air returning valve a, b, c, with cold end Finned heat exchanger 3k heat convections, temperature reduce;Heating wire 5k is wound on finned heat exchanger 3k, realizes defrosting function;Refrigeration Machine hot junction meets finned heat exchanger 6k, and fresh air enters refrigeration machine hot junction by air inlet 7k by strainer 8k, passes through outlet air by fan 9k Mouth 10k is to external environment to realize hot-side heat dissipation;Control function is realized by controller 1:By control return air valve channel 15k, Control air inlet valve channel 17k controls six valve openings respectively, and control temperature sensor channel 16k, which is transmitted, is mounted on each air compartment The signal of interior I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, III temperature sensor 13k of air compartment controls cold end The cold head temperature sensor 14k of temperature sensor channel 18k control refrigeration machine cold ends, control cold end fan channel 19k, control electricity Heated filament 20k, control refrigeration machine power cord 21k, control hot junction fan 22k control respectively fan 4k, heating wire 5k, refrigeration machine 2k and The start and stop of fan 9k.
I babinet set temperatures are 7 DEG C
II babinet set temperatures are -18 DEG C
III babinet set temperatures are -48 DEG C
It is as follows to sketch specific implementation process.
1, initial temperature-fall period:
When initial cooling, the temperature in three babinets rests on environment temperature (assuming that 23 DEG C), pulse type sterlin system Cold 2k is run with maximum, and air inlet valve A, B, C and air returning valve a, b, c keep maximum opening at this time.
After I babinets reach target temperature (7 DEG C -0.2 DEG C, i.e., 6.8 DEG C), air inlet valve A and air returning valve a are closed, and I babinets are complete At cooling.Air inlet valve B, C and air returning valve b, c still maintain maximum opening at this time, and refrigeration machine 2k is still run with maximum power.
After II babinets reach target temperature (- 18 DEG C -0.2 DEG C, i.e., -18.2 DEG C), air inlet valve B and air returning valve b are closed, II Babinet completes cooling.Air inlet valve C and air returning valve c still maintains maximum opening at this time, and refrigeration machine 2k is still run with maximum power.
After III babinets reach target temperature (- 48 DEG C -0.2 DEG C, i.e., -48.2 DEG C), air inlet valve C and air returning valve c are closed, III babinets complete cooling.All babinets are completed to cool down at this time, and refrigeration machine 2k, cold end fan 4k, hot junction fan 9k stop fortune Row.
In first temperature-fall period, the air humidity content in air duct is larger, so in cold end finned heat exchanger 3k surface meetings Serious frosting avoids frost layer too thick and increases cold end fin so starting heating wire 3k after completing first cooling carries out defrosting The heat transfer resistance of heat exchanger 3k.
2, to the process of each babinet accurate temperature controlling:
With the infiltration of extraneous thermic load, each spin manifold temperature can gradually be higher than target temperature.
When the temperature of III babinets is higher than 0.2 DEG C of set temperature (- 47.8 DEG C), first detect cold head temperature whether be higher than- 53 DEG C, if being higher than -53 DEG C, refrigeration machine 2k and hot junction wind turbine 9k start, be reduced to cold head temperature with maximal input operation - After 53 DEG C, reduces the input power of refrigeration machine 2k and remain that cold head temperature is -53 DEG C, cold end wind turbine 4k is opened, air inlet valve C Opening 20% aperture with air returning valve c, (aperture cannot be excessive, and otherwise the mutual crossfire of air in the air and air duct in babinet, makes Temperature fluctuation in babinet is violent), the cold wind of low temperature is blown into III babinets, when spin manifold temperature reaches -48.2 DEG C, refrigeration machine 2k is shut down, and air inlet valve C and air returning valve c are closed.Because considering that the heat transfer temperature difference between cool end heat exchanger 3k and air (is usually 5 DEG C), so in cooling III babinets, cold head temperature cannot only be reduced to -48 DEG C, otherwise pass through cold end finned heat exchanger 3k's Cold wind temperature can be solely -43 DEG C, can not the temperature of III babinets be reduced to target temperature.In addition, because first completing Electrical heating has been carried out after cooling and has held white process, so cold head temperature is not less than -53 DEG C, without considering controlling party in this case Method.
Similarly, when the temperature in II babinets is higher than 0.2 DEG C of set temperature (- 17.8 DEG C), first detection cold head temperature is No is -23 DEG C (also taking 5 DEG C of heat transfer temperature differences herein), if being higher than -23 DEG C, refrigeration machine 2k and hot junction wind turbine 9k start, by cold head After temperature is down to -23 DEG C, reduces the input power of refrigeration machine 2k and remain that cold head temperature is -23 DEG C, be then turned on cold end wind Machine 4k, air inlet valve B and air returning valve b open 20% aperture, and cold wind is blown into II babinets, when spin manifold temperature reaches -18.2 DEG C, system Cold 2k is shut down, and air inlet valve B and air returning valve b are closed;If first detecting, cold head temperature is less than -23 DEG C, starts heating wire 5, makes Temperature rapid increase for cold head to after -23 DEG C, stops electrical heating, rerun refrigeration machine 2k and cold end fan 4k, and refrigeration machine 2k's is defeated Entering power need to remain that cold head temperature is -23 DEG C, and air inlet valve B and air returning valve b open 20% aperture, and cold wind is blown into II casees Body.It is worth noting that, when detection cold head temperature is less than -23 DEG C in the ban, cold head temperature can be slowly waited for voluntarily to rise to -23 DEG C, but the overlong time for allowing cold head voluntarily to heat up, the deviation set temperature that the temperature of II babinets can be larger in the period can not Ensure accurate temperature controlling.So being assisted using electrical heating, making cold head, temperature rapid increase to -23 DEG C.
When the temperature in I babinets is higher than 0.2 DEG C of set temperature (7.2 DEG C), first whether detection cold head temperature is 2 DEG C (also taking 5 DEG C of heat transfer temperature differences herein), if being higher than 2 DEG C, refrigeration machine 2k and hot junction wind turbine 9k start, and cold head temperature is down to 2 DEG C Afterwards, it reduces the input power of refrigeration machine 2k and remains that cold head temperature is 2 DEG C, be then turned on cold end wind turbine 4k, air inlet valve A and return Air-valve a opens 20% aperture, and cold wind is blown into I babinets, and when spin manifold temperature reaches 6.8 DEG C, refrigeration machine 2k is shut down, air inlet valve A It is closed with air returning valve a;It is less than 2 DEG C when if first detecting cold head temperature, starts heating wire 5k, making cold head, temperature rapid increase to 2 After DEG C, stop electrical heating, the input power of rerun refrigeration machine 2k and cold end fan 4k, refrigeration machine 2k need to remain cold head temperature Degree is 2 DEG C, and air inlet valve A and air returning valve a open 20% aperture, and cold wind is blown into I babinets.
Explanation:
When carrying out accurate temperature controlling to III babinets, cold head temperature is set as -53 DEG C, purpose one is to consider cold end heat exchange 5 DEG C of heat transfer temperature differences between device 3k and air, purpose is second is that in order to reduceLoss.Assuming that cold head temperature is set to -80 DEG C, The cold wind then blown out be about -75 DEG C, with -75 DEG C of cold wind come cool down target temperature be -48 DEG C babinet thenLose it is excessive, this Outer that cold head is reduced to the input work bigger needed for -80 DEG C, refrigerating capacity smaller, COP is relatively low.Consider, it will be to III babinet essences When true temperature control, keep cold head temperature best in -53 DEG C of efficiency.When similarly, to I, II babinet accurate temperature controlling, cold head temperature is kept to exist 2 DEG C, -23 DEG C of efficiency it is best.
It summarizes:
When spin manifold temperature is higher than 0.2 DEG C of set temperature, start to cool down to babinet.When spin manifold temperature is less than setting temperature When spending 0.2 DEG C, stopping cools down to babinet.
The effect of embodiment
The pulse type free-piston Stirling cooler of the present embodiment eliminate traditional free-piston Stirling cooler compared with Long low-temperature expansion piston is replaced with shorter room-temperature zone work work recycling expansion piston.Free-piston Stirling cooler Expansion cylinder becomes the pulse tube of vascular cold finger, and pulse tube cold end is disposed with the air deflector of laminarization, and hot junction is equipped with two level heat Hold heat exchanger.The advantages of this change combines free-piston Stirling cooler and vascular refrigerator, by cancelling cold and hot The expansion piston for holding high frequency motion eliminates pumping loss, shuttle loss and axial thermal conductivity damage that low-temperature expansion piston is brought It loses.Shorter swell at room temperature piston is set by hot junction and solves the problems, such as the acoustic power recovery of vascular refrigerator, therefore, when returning completely When receiving cold end sound work(, which is Carnot's cycle efficiency.Meanwhile cancelling Low-temperature expansion piston reduces refrigeration machine manufacture difficulty, reduces overall mass.
The above embodiment is the preferred case of the present invention, is not intended to limit protection scope of the present invention.

Claims (9)

1. a kind of multi-temperature zone wind cooling refrigerator using pulse type free-piston Stirling cooler, which is characterized in that including:
Refrigerator body, refrigeration section, control unit,
Wherein, the refrigerator body has at least one air compartment, the air delivery duct being arranged outside the air compartment and air -return duct,
Be respectively arranged on the air compartment wall of the air compartment be connected to the air delivery duct with inside the air compartment air outlet and be connected to The air -return duct and the return air inlet inside the air compartment, the position of the return air inlet are higher than the position of the air outlet,
The air delivery duct is airtight passage with the air -return duct and is connected,
The refrigeration section includes pulse type free-piston Stirling cooler, cool end heat exchanger, cold end air-supply arrangement,
There is the pulse type free-piston Stirling cooler cold finger, the cold finger to have cold and hot end,
The cool end heat exchanger is arranged in the cold end and positioned at the junction of the air delivery duct and the air -return duct, described cold Heat exchanger is held to separate the air delivery duct and the air -return duct,
The air-supply arrangement is arranged in the air delivery duct or the air -return duct, is located at by the cool end heat exchanger,
The control unit includes controller, wind indoor temperature transmitter, cold head temperature sensor, air compartment blow valve, air compartment return air Valve,
The air compartment blow valve is arranged in the air outlet, and the air compartment air returning valve is arranged in the return air inlet,
The indoor temperature transmitter is arranged in the air compartment,
The cold head temperature sensor is arranged in the cold end,
The controller respectively with the indoor temperature transmitter, the cold head temperature sensor, the air compartment blow valve, described Air compartment air returning valve is connected, and the controller controls the big of the valve folding of the air compartment blow valve, the air compartment air returning valve respectively It is small,
The pulse type free-piston Stirling cooler includes linear motor, compression unit, expanding machine unit and rack,
Wherein, the rack include flange, the piston tube that is arranged in the flange and pedestal,
The flange shape in disk form, the side of the flange are additionally provided with concentric roundel,
The pedestal is cylindrical in shape, and one end is connected with the other side of flange, and the other end is free end, the center line of the pedestal and institute The center line for stating flange overlaps,
The piston tube is straight pipe, and one end open is located at the outside of the roundel, and another end opening is located in the pedestal, There is cylinder-piston chamber, compression piston and expansion piston for accommodating the refrigeration machine, the plunger shaft in the piston tube On be provided with multiple through-holes for penetrating the piston tube wall,
The linear motor includes outer yoke, interior yoke and mover, and the outer yoke, the interior yoke are separately positioned on described There is gap, the mover to be arranged in the gap in rack and between outer yoke, interior yoke,
There is the compression unit compression piston, compression piston spring, the compression piston spring to pass through connector and the machine Frame is fixedly connected, and the compression piston is arranged in the piston tube, one end be connected with the mover and with the compression piston Spring is connected, and the other end is free end,
The expanding machine unit includes expansion piston, expansion piston spring, expansion piston bar, level-one hot end heat exchanger, two level heat Heat exchanger, regenerator, pulse tube, cool end heat exchanger are held,
The level-one hot end heat exchanger is cylindrical, is sleeved on the outer wall of the piston tube and is arranged in the end face of the roundel On,
One end of the pulse tube is connected with the piston tube lateral ends, and the other end is connected with the cool end heat exchanger,
The regenerator is cylindrical, is arranged in the outside of the pulse tube, one end is connected with the cool end heat exchanger, the other end It is connected with the level-one hot end heat exchanger,
The two level hot end heat exchanger is arranged in the pulse tube,
In the piston tube, the expansion piston spring is fixedly connected by connector with the rack expansion piston, One end of the expansion piston bar is connected with the expansion piston, and the other end passes through the compression piston, the compression piston bullet It is connected with the expansion piston spring after spring,
The compression piston, the expansion piston and the plunger shaft constitute compression chamber,
The expansion piston, the two level hot end heat exchanger and the plunger shaft constitute expansion chamber.
2. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is, further includes:
The thawing apparatus being arranged on the cool end heat exchanger.
3. the multi-temperature zone wind cooling refrigerator according to claim 2 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the thawing apparatus is the heating wire being wrapped in outside the cool end heat exchanger.
4. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the cool end heat exchanger is finned heat exchanger.
5. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the controller further includes control return air valve channel, control temperature sensor channel, control air inlet valve letter Road, control cold junction temperature sensor channel, control cold end fan channel.
6. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the return air inlet and the air outlet be not in the same air compartment wall.
7. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the cold end air-supply arrangement is fan.
8. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is, further includes:
The hot end heat exchanger and radiator fan being arranged on the hot junction, the hot end heat exchanger and the radiator fan are equal It is arranged in the same closed case.
9. the multi-temperature zone cold refrigerator according to claim 8 using pulse type free-piston Stirling cooler, feature It is:
Wherein, the closed case is provided with the air inlet for introducing fresh air and realizes the air outlet of hot-side heat dissipation.
CN201810437951.3A 2018-05-09 2018-05-09 Multi-temperature-zone air-cooled refrigerator adopting pulse tube type free piston Stirling refrigerator Active CN108518912B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810437951.3A CN108518912B (en) 2018-05-09 2018-05-09 Multi-temperature-zone air-cooled refrigerator adopting pulse tube type free piston Stirling refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810437951.3A CN108518912B (en) 2018-05-09 2018-05-09 Multi-temperature-zone air-cooled refrigerator adopting pulse tube type free piston Stirling refrigerator

Publications (2)

Publication Number Publication Date
CN108518912A true CN108518912A (en) 2018-09-11
CN108518912B CN108518912B (en) 2023-11-07

Family

ID=63430167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810437951.3A Active CN108518912B (en) 2018-05-09 2018-05-09 Multi-temperature-zone air-cooled refrigerator adopting pulse tube type free piston Stirling refrigerator

Country Status (1)

Country Link
CN (1) CN108518912B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458783A (en) * 2018-12-28 2019-03-12 浙江荣捷特科技有限公司 A kind of refrigerator using single sterlin refrigerator as cold source
CN115218602A (en) * 2022-06-27 2022-10-21 青岛海尔生物医疗股份有限公司 Method and device for controlling temperature of refrigerator, refrigerator and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196910A (en) * 2009-02-23 2010-09-09 Aisin Seiki Co Ltd Cold box with refrigerator unit
CN105115219A (en) * 2015-08-24 2015-12-02 上海理工大学 Cryogenic refrigerator for combined pulse heat pipes of Stirling cryocooler
CN106052258A (en) * 2016-07-21 2016-10-26 上海理工大学 Refrigerator having multiple temperature zones

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196910A (en) * 2009-02-23 2010-09-09 Aisin Seiki Co Ltd Cold box with refrigerator unit
CN105115219A (en) * 2015-08-24 2015-12-02 上海理工大学 Cryogenic refrigerator for combined pulse heat pipes of Stirling cryocooler
CN106052258A (en) * 2016-07-21 2016-10-26 上海理工大学 Refrigerator having multiple temperature zones

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458783A (en) * 2018-12-28 2019-03-12 浙江荣捷特科技有限公司 A kind of refrigerator using single sterlin refrigerator as cold source
CN115218602A (en) * 2022-06-27 2022-10-21 青岛海尔生物医疗股份有限公司 Method and device for controlling temperature of refrigerator, refrigerator and storage medium
CN115218602B (en) * 2022-06-27 2023-08-11 青岛海尔生物医疗股份有限公司 Method and device for controlling temperature of refrigerator, refrigerator and storage medium

Also Published As

Publication number Publication date
CN108518912B (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN103062951B (en) Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler
CN108592481A (en) Using the multi-temperature zone refrigerator of pulse type free-piston Stirling cooler
CN106052258A (en) Refrigerator having multiple temperature zones
CN101900447B (en) G-M refrigerator with phase modulating mechanism
CN108800713A (en) Using the multi-temperature zone wind cooling refrigerator and temperature control method of sterlin refrigerator
CN106766502A (en) The temperature-varying zone refrigerator of the stirling refrigeration of detachable one two
CN108826729A (en) A kind of expanding machine unit and pulse type free-piston Stirling cooler
CN108518912A (en) Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler
CN107023453A (en) Linear compressor and refrigeration system
CN108759147A (en) A kind of wine cabinet using pulse type free-piston Stirling cooler
CN205843183U (en) Many temperature-zone refrigerators
CN208653032U (en) A kind of energy-saving refrigeration equipment
CN208520060U (en) Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler
CN108626903A (en) A kind of pulse type free-piston Stirling cooler
CN108626921A (en) A kind of expanding machine unit and pulse type free-piston Stirling cooler
CN108800643A (en) A kind of pulse type free-piston Stirling cooler and refrigerating method
CN108518883A (en) A kind of pulse type free-piston Stirling cooler
CN201764746U (en) G-M refrigerator with phase modulation mechanisms
CN208520035U (en) A kind of pulse type free-piston Stirling cooler
CN207763285U (en) Commercial freezing and refrigeration variable frequency condenser group
CN203231579U (en) Low temperature J-T throttling cryocooler precooled by a stirling /pulse tube composite cryocooler
CN108375234A (en) A kind of expanding machine unit and pulse type free-piston Stirling cooler
CN215490546U (en) Refrigeration house refrigerating system
CN108800642A (en) A kind of pulse type free-piston Stirling cooler
CN108954891B (en) Stirling/pulse tube composite refrigerator based on eddy current damping phase modulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant