CN208520060U - Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler - Google Patents

Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler Download PDF

Info

Publication number
CN208520060U
CN208520060U CN201820685629.8U CN201820685629U CN208520060U CN 208520060 U CN208520060 U CN 208520060U CN 201820685629 U CN201820685629 U CN 201820685629U CN 208520060 U CN208520060 U CN 208520060U
Authority
CN
China
Prior art keywords
air
piston
heat exchanger
cold
air compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820685629.8U
Other languages
Chinese (zh)
Inventor
陈曦
林毅
宋佳星
葛寅飞
昌庆航
刘振
张建辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201820685629.8U priority Critical patent/CN208520060U/en
Application granted granted Critical
Publication of CN208520060U publication Critical patent/CN208520060U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Multi-temperature zone wind cooling refrigerator according to the present utility model using pulse type free-piston Stirling cooler, including refrigerator body, refrigeration section, control unit, refrigerator body has at least one air compartment, air delivery duct outside air compartment and air -return duct are set, connection air delivery duct and the air outlet inside air compartment and the return air inlet being connected to inside air -return duct and air compartment are respectively arranged on the air compartment wall of air compartment, the position of return air inlet is higher than the position of air outlet, air delivery duct is airtight passage with air -return duct and is connected, refrigeration section includes pulse type free-piston Stirling cooler, cool end heat exchanger, cold end air supply device, the junction in cold end and being located at air delivery duct and air -return duct is arranged in cool end heat exchanger, cool end heat exchanger separates air delivery duct and air -return duct, controller respectively with indoor temperature transmitter, cold head temperature sensor, air compartment blow valve, air compartment Air returning valve is connected, and controller controls the size of the valve folding of air compartment blow valve, air compartment air returning valve respectively.

Description

Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler
Technical field
The utility model belongs to field of household appliances, and in particular to a kind of using the more of pulse type free-piston Stirling cooler Warm area wind cooling refrigerator.
Background technique
As the improvement of people's living standards, the freezing function of general refrigerator (temperature is higher than -18 DEG C) is gradually unable to satisfy Freezing requirement of the people to some food, such as some seafood need to save at -40 DEG C or less more preferable.By taking meat product as an example, general When logical refrigerator saves, 7 DEG C of refrigerations were no more than 2 days, and 0 DEG C of refrigeration was no more than 5 days, and when -18 DEG C of freezings, the time can not be more than 1 month.For the food for needing to save for a long time, cryogenic temperature is lower, more can inhibit the activity of microbial growth and enzyme, Nutritive loss is smaller, and it is better to save freshness.
Traditional domestic refrigerator refrigeration generally uses single-stage vapor compression formula throttle refrigeration system, by compressor, condenser, Four essential part compositions of throttle part and evaporator, various pieces are linked together by pipeline and form a closed system System.A certain amount of refrigerant is filled in system, refrigerant passes through four compression, condensation, throttling, evaporation cyclic processes in system Refrigeration.Fast, the good refrigeration effect using the Refrigeration Speed for Refrigerator of vapour compression refrigeration, technology maturation, therefore performance stabilization, service life It is long.Using vapour compression refrigeration refrigerator work when, compressor interval start and stop under the control of temperature controller.When the temperature in refrigerator When higher than set temperature, compressor start refrigeration, in-cabinet temperature is reduced, until to reach set temperature below for the temperature in refrigerator A certain critical value, compressor stop working, and ice the temperature inside the box is begun to ramp up.When temperature rises to another facing higher than set temperature When dividing value, compressor starts to start work again.Above procedure iterative cycles.Therefore, even if refrigerator is in stable state, in cabinet Temperature also have periodic fluctuation, it is unfavorable that this saves some gourmet foods as seafood.And single-stage vapor compression Throttle refrigeration system is also difficult to realize -40 DEG C of cryogenic temperatures below, is unable to satisfy the temperature requirements to some food preservations.
Stirling refrigeration cycle is made of two constant temperature process and constant volume process, and theoretical circulation efficiency is Carnot efficiency. Comparatively, there is higher refrigerating efficiency using stirling refrigeration technology under cryogenic refrigeration operating condition.Sterlin refrigerator is adopted The closed cycle freezed with gas expansion, is connected to by compression unit with expansion cell valveless.Using helium as refrigeration work Matter will not generate destruction to ozone layer, be a kind of extremely environmentally friendly Refrigeration Technique.Free-piston Stirling cooler is without complexity Pipe-line system, compressor and expanding machine integrate, and has that moving component is few, oil-free lubrication, not easy to wear, reliability High, the advantages that service life is long, compact-sized, light-weight, high cooling efficiency, but also have that temperature-controlled precision is high, at full capacity and locally Efficiency all with higher under load, by adjusting the i.e. controllable refrigerating capacity of input voltage and cryogenic temperature.
Utility model content
One of the purpose of this utility model is to provide a kind of using new and effective pulse type free piston stirling system The multi-temperature zone wind cooling refrigerator of cold, the coaxial pulse-tube type free-piston Stirling cooler of the utility model eliminate traditional free The longer low-temperature expansion piston of piston Stirling cooler is replaced with shorter room-temperature zone work work recycling expansion piston.Freely The expansion cylinder of piston Stirling cooler becomes the pulse tube of vascular cold finger, and pulse tube cold end is disposed with the water conservancy diversion of laminarization Device, hot end are equipped with second level hot end heat exchanger.This change combines the excellent of free-piston Stirling cooler and vascular refrigerator Point eliminates low-temperature expansion piston bring pumping loss, shuttle damage by cancelling the expansion piston in hot and cold side high frequency motion Mistake and axial heat conduction loss.The acoustic power recovery that shorter swell at room temperature piston solves vascular refrigerator is arranged by hot end to ask Topic, therefore, when recycling cold end sound function completely, which follows for Kano Ring efficiency.Meanwhile cancellation low-temperature expansion piston reduces refrigeration machine manufacture difficulty, reduces overall mass.
The utility model provides a kind of multi-temperature zone wind cooling refrigerator using pulse type free-piston Stirling cooler, tool There are such feature, including refrigerator body, refrigeration section, control unit,
Wherein, refrigerator body has at least one air compartment, the air delivery duct being arranged in outside air compartment and air -return duct, air compartment Connection air delivery duct and the air outlet inside air compartment and the return air being connected to inside air -return duct and air compartment are respectively arranged on air compartment wall Mouthful, the position of return air inlet is higher than the position of air outlet, and air delivery duct is airtight passage with air -return duct and is connected, and refrigeration section includes Pulse type free-piston Stirling cooler, cool end heat exchanger, cold end air supply device, pulse type free-piston Stirling cooler With cold finger, cold finger has cold and hot end, and the connection in cold end and being located at air delivery duct and air -return duct is arranged in cool end heat exchanger Place, cool end heat exchanger separate air delivery duct and air -return duct, and air supply device is arranged in air delivery duct or air -return duct, are located at cool end heat exchanger Side, control unit include controller, indoor temperature transmitter, cold head temperature sensor, air compartment blow valve, air compartment air returning valve, air compartment Blow valve is arranged in air outlet, and air compartment air returning valve is arranged in return air inlet, and indoor temperature transmitter is arranged in air compartment, cold head Temperature sensor be arranged in cold end, controller respectively with indoor temperature transmitter, cold head temperature sensor, air compartment blow valve, Air compartment air returning valve is connected, and controller controls the size of the valve folding of air compartment blow valve, air compartment air returning valve respectively, and pulse type is free Piston Stirling cooler includes linear motor, compression unit, expanding machine unit and rack, wherein rack includes flange, sets Piston tube and pedestal in flange are set, flange shape in disk form, the side of the flange is additionally provided with concentric roundel, bottom Seat is cylindrical in shape, and one end is connected with the other side of flange, and the other end is free end, the center line of pedestal and the center line weight of flange It closes, piston tube is straight pipe, and the outside open at one end positioned at roundel, another end opening is located in pedestal, is had in piston tube Cylinder-piston chamber is provided in plunger shaft and multiple penetrates piston tube pipe for accommodating the compression piston and expansion piston of refrigeration machine The through-hole of wall, linear motor include outer yoke, interior yoke and mover, and outer yoke, interior yoke are respectively set on the rack and outside There is gap, mover is arranged in gap, and compression unit has compression piston, compression piston spring, pressure between yoke, interior yoke Contracting piston spring is fixedly connected by connector with rack, compression piston be arranged in piston tube, one end be connected with mover and with Compression piston spring is connected, and the other end is free end, and expanding machine unit includes expansion piston, expansion piston spring, expansion piston Bar, level-one hot end heat exchanger, second level hot end heat exchanger, regenerator, pulse tube, cool end heat exchanger, level-one hot end heat exchanger is in circle Tubular covers on the outer wall of piston tube and on the end face that roundel is arranged in, one end and the piston tube lateral ends phase of pulse tube Even, the other end is connected with cool end heat exchanger, and regenerator is cylindrical, and the outside of pulse tube, one end and cool end heat exchanger is arranged in It is connected, the other end is connected with level-one hot end heat exchanger, and second level hot end heat exchanger is arranged in pulse tube, and expansion piston is in piston tube In, expansion piston spring is fixedly connected by connector with rack, and one end of expansion piston bar is connected with expansion piston, the other end It is connected after compression piston, compression piston spring with expansion piston spring, compression piston, expansion piston and plunger shaft are constituted Compression chamber, expansion piston, second level hot end heat exchanger and plunger shaft constitute expansion chamber.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It is characterized by further comprising: the thawing apparatus on cool end heat exchanger is arranged in.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It can also have the following features: wherein, thawing apparatus is the heating wire being wrapped in outside cool end heat exchanger.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It can also have the following features: wherein, cool end heat exchanger is finned heat exchanger.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It can also have the following features: wherein, controller further includes control return air valve channel, control temperature sensor channel, control System air inlet valve channel, control cold junction temperature sensor channel, control cold end fan channel.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It can also have the following features: wherein, return air inlet and air outlet be not in same air compartment wall.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It can also have the following features: wherein, cold end air supply device is fan.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It is characterized by further comprising:
Hot end heat exchanger and radiator fan on hot end are set, and hot end heat exchanger and radiator fan are arranged at together In one closed case.
In addition, in the multi-temperature zone refrigerator provided by the utility model using pulse type free-piston Stirling cooler, It can also have the following features: wherein, closed case is provided with the air inlet for introducing fresh air and realizes the outlet air of hot-side heat dissipation Mouthful.
The action and effect of utility model
Compared with existing refrigerator, the utility model has the beneficial effects that:
(1) due to using free-piston Stirling cooler, the lowest refrigerating temperature of refrigerator can be made to reach -60 DEG C, and And compression piston stroke can be adjusted by changing driving voltage, to control refrigerating capacity and cryogenic temperature.It can be according to difference The requirement classification of cryogenic temperature saves food.
(2) the coaxial pulse-tube type free-piston Stirling cooler of the utility model eliminates traditional free piston stirling The longer low-temperature expansion piston of refrigeration machine is replaced with shorter room-temperature zone work work recycling expansion piston.Free piston stirling The expansion cylinder of refrigeration machine becomes the pulse tube of vascular cold finger, and pulse tube cold end is disposed with the air deflector of laminarization, and hot end is set There is second level hot end heat exchanger.The advantages of this change combines free-piston Stirling cooler and vascular refrigerator, by taking Disappear in the expansion piston of hot and cold side high frequency motion, eliminates low-temperature expansion piston bring pumping loss, shuttle loss and axis To conductive heat loss.Shorter swell at room temperature piston is set by hot end and solves the problems, such as the acoustic power recovery of vascular refrigerator, therefore, When recycling cold end sound function completely, which is Carnot's cycle efficiency. Meanwhile cancellation low-temperature expansion piston reduces refrigeration machine manufacture difficulty, reduces overall mass.
Detailed description of the invention
Fig. 1 is the multi-temperature zone wind cooling refrigerator used by the utility model using pulse type free-piston Stirling cooler Refrigeration principle schematic diagram;
Fig. 2 is pulse type free-piston Stirling cooler diagrammatic cross-section in the embodiments of the present invention;
Fig. 3 is the stereoscopic schematic diagram of rack in the embodiments of the present invention;
Fig. 4 is A direction view in Fig. 3;And
Fig. 5 is C-C cross-sectional view in Fig. 4.
Specific embodiment
In order to be easy to understand the technical means, creative features, achievement of purpose, and effectiveness of the utility model, with Lower embodiment combination attached drawing is had to the utility model using the multi-temperature zone refrigerator work of pulse type free-piston Stirling cooler Body illustrates.
Embodiment
Multi-temperature zone wind cooling refrigerator includes refrigerator body, refrigeration section, control unit.
As shown in Figure 1, box air compartment there are three refrigerator body tools, air compartment I, the air compartment respectively set gradually from top to bottom II, air compartment III, mutually independence and section are rectangle for air compartment I, air compartment II, air compartment III.
The outside of three air compartments is arranged in air delivery duct 23k, and the outside of three air compartments, air delivery duct 23k is arranged in air -return duct 24k It is airtight passage with air -return duct 24k and is connected.
It is respectively arranged with connection air delivery duct and the air outlet inside air compartment on the air compartment wall of three air compartments and is connected to return air Return air inlet inside road and air compartment, in embodiment, the position of return air inlet is higher than the position of air outlet, and air outlet is located proximate to wind Not in same air compartment wall, return air inlet and air outlet are separately positioned on two opposite sides for the bottom of room, return air inlet and air outlet On wall.
Air delivery duct 23k is connected with the air outlet of air compartment I, air compartment II, air compartment III respectively.
Air -return duct 24k is connected with the return air inlet of air compartment I, air compartment II, air compartment III respectively.
Refrigeration section includes pulse type free-piston Stirling cooler 2k, cold end finned heat exchanger 3k, cold end fan 4k, electricity Heated filament 5k, hot side fin heat exchanger 6k, air inlet 7k, strainer 8k, hot end fan 9k, air outlet 10k.
Pulse type free-piston Stirling cooler 2k has cold finger, and cold finger has cold and hot end.
The junction in cold end and being located at air delivery duct 23k and air -return duct 24k, cold end wing is arranged in cold end finned heat exchanger 3k Piece heat exchanger 3k separates air delivery duct 23k and air -return duct 24k.It is wound with heating wire 5k on cold end finned heat exchanger 3k, for carrying out Defrosting.
Cold end fan 4k is arranged in the 23k of air delivery duct, positioned at the front end of cold end finned heat exchanger 3k.
Hot side fin heat exchanger 6k is arranged on the hot end of coaxial pulse-tube type free-piston Stirling cooler 2k, hot end wing Piece heat exchanger 6k, hot end fan 9k and refrigeration machine 2k body be arranged in the same closed case, the top of closed case It is provided with the air inlet 7k for introducing fresh air and realizes the air outlet 10k of hot-side heat dissipation, strainer 8k is additionally provided in air inlet 7k, The tail portion of the body of refrigeration machine 2k is arranged in hot end fan 9k, and closed case is arranged in air outlet 10k face hot end fan 9k On side wall.
Control unit includes controller 1k, I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, III temperature of air compartment Sensor 13k, cold head temperature sensor 14k, control return air valve channel 15k, control temperature sensor channel 16k, control into Air valve channel 17k, control cold junction temperature sensor channel 18k, control cold end fan channel 19k, control heating wire 20k, control Refrigeration machine power supply line 21k processed, control hot end fan 22k, I blow valve A of air compartment, II blow valve B of air compartment, III blow valve C of air compartment, wind I air returning valve a of room, II air returning valve b of air compartment, III air returning valve c of air compartment, hot end fan 9k, cold end fan 4k.
I blow valve A of air compartment, II blow valve B of air compartment, III blow valve C of air compartment are separately positioned on air compartment I, air compartment II, air compartment III Air outlet in.
I air returning valve a of air compartment, II air returning valve b of air compartment, III air returning valve c of air compartment are separately positioned on air compartment I, air compartment II, air compartment III Return air inlet in.
I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, III temperature sensor 13k of air compartment are separately positioned on Air compartment I, air compartment II, in air compartment III.
Cold head temperature sensor 14k is arranged in cold end.
Controller 1k respectively with controller 1k, I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, air compartment III Temperature sensor 13k, cold head temperature sensor 14k, control return air valve channel 15k, control temperature sensor channel 16k, control System air inlet valve channel 17k, control cold junction temperature sensor channel 18k, control cold end fan channel 19k, control heating wire 20k, control refrigeration machine power supply line 21k, control hot end fan 22k, I blow valve A of air compartment, II blow valve B of air compartment, air compartment III are blown Valve C, I air returning valve a of air compartment, II air returning valve b of air compartment, III air returning valve c of air compartment, refrigeration machine 2k are connected.
Controller 1k controls the unlatching of refrigeration machine 2k, hot end fan 9k, cold end fan 4k, and stopping and air compartment I respectively Blow valve A, II blow valve B of air compartment, III blow valve C of air compartment, I air returning valve a of air compartment, II air returning valve b of air compartment, III air returning valve c of air compartment Valve folding size.
As shown in Fig. 2, coaxial pulse-tube type free-piston Stirling cooler 2k includes linear motor 1, compression unit, expansion Machine unit, rack 50 and shell 60.
As shown in Fig. 3,4,5, rack 50 includes flange 52, the piston tube 51 being arranged in flange 52 and pedestal 53,
Wherein, the shape in disk form of flange 52, the side of the flange are additionally provided with concentric roundel 521, on flange 52 It is even to be provided with multiple connection through-holes.
Pedestal 53 is cylindrical in shape, and one end is connected with the side of flange 52, and the other end is free end, the center line and method of pedestal 53 The center line of orchid 52 is overlapped, and is provided with multiple connecting screw holes on the free end of pedestal 53, and in embodiment, pedestal 53 is around flange Four supporting legs of 52 center line setting.
Piston tube 51 be straight tube, be arranged in flange 52 and with 52 coaxial line of flange, lateral ends opening be located at roundel 521 outside, inner opposite end opening are located in pedestal 53, have cylinder-piston chamber in piston tube 51, are provided in plunger shaft more A perpendicular to piston tube axis and to penetrate the through-hole 511 of piston tube wall, in embodiment, the section of through-hole 511 is arc groove, number Amount is 3.
Linear motor 1 includes outer yoke 11, interior yoke 14 and mover, and outer yoke 11, interior yoke 14 are separately positioned on machine There is gap, mover is arranged in gap, and mover includes permanent magnet 13 and permanent magnetism body support frame on frame and between outer yoke, interior yoke 15。
As shown in Figure 1, linear motor 1 mainly includes outer yoke 11, coil 12, permanent magnet 13, interior yoke 14, permanent magnet branch Frame 15, mover include permanent magnet 13, permanent magnetism body support frame 15, connector 16, fixture nut 18, compression piston 19 and compression piston Flat spring 17 (only takes the 1/3 of flat spring quality when calculating mover quality), and permanent magnetism body support frame 15 is connected with permanent magnet 13, and with Compression piston 19 and connector 16 are connected through a screw thread.Outer yoke 11 is soft magnetic materials with interior yoke 14, commonly uses electric work pure iron, silicon The production of the materials such as steel disc, permanent magnet 13 are permanent-magnet material, commonly use Ru-Fe-Mn, alnico permanent magnetic material to make.Outer yoke 11, line Circle 12, permanent magnet 13, interior yoke 14 are annular, and using coaxially arranged.Outer yoke 11, interior yoke 14 are separately positioned on machine There is gap, mover is arranged in gap on frame 50 and between outer yoke, interior yoke.
When coil is passed through direct current, outer yoke 11 and interior yoke 14 will form magnetic force loop line, thus in outer 11 He of yoke Magnetic pole is generated on interior yoke 14.When being passed through alternating current in coil, permanent magnet 13 just will receive alternating electromagnetic force and do reciprocal Linear motion.When permanent magnet 13 does linear reciprocating motion, it will drive compression piston 19 and do linear reciprocating motion, compression piston plate Spring 17 provides axial reciprocating elastic power and radial support.
Compression unit includes connector 16, compression piston flat spring 17, fixture nut 18, compression piston 19.Compression piston Flat spring 17 is connected by fixture nut 18 with connector 16, and compression piston flat spring 17 is fixed with rack 50 by connector Connection, compression piston 19 are arranged in plunger shaft, and one end is connected with mover and is connected with compression piston spring 17, and the other end is certainly By holding.
Expanding machine unit include expansion piston 21, expansion piston flat spring 22, piston rod 23, level-one hot end heat exchanger 26, Second level hot end heat exchanger 33, regenerator 25, pulse tube 31, cool end heat exchanger 24, cold finger shell 35,
Level-one hot end heat exchanger 26 is cylindrical, covers on the outer wall of piston tube 51 and be arranged in the end face of roundel 521 On, level-one hot end heat exchanger 26 and rack 50 are separate structure, and level-one hot end heat exchanger 26 and the outer wall interference of piston tube 51 are matched It closes.
One end of pulse tube 31 is connected with 51 lateral ends of piston tube, and the other end is connected with cool end heat exchanger 24,
Regenerator 25 is in the cylindrical shape of ring-shaped section and ring-shaped, and the outside of pulse tube 31, one end and cool end heat exchanger 24 is arranged in It is connected, the other end is connected with level-one hot end heat exchanger 26.
Second level hot end heat exchanger 33 is arranged in pulse tube 31, positioned at the junction of pulse tube 31 and piston tube 51, second level Hot end heat exchanger 33 and rack 50 are separate structure, the inner wall interference fit of second level hot end heat exchanger 33 and piston tube 51.
Expansion piston 21 is arranged in piston tube 51, and expansion piston flat spring 22 connects by the way that connector and rack 50 are fixed Connect, one end of piston rod 23 is connected with expansion piston 21, the other end pass through compression piston 19, after compression piston flat spring 17 with it is swollen Swollen piston flat spring 22 is connected,
Compression piston 19, expansion piston 21 and plunger shaft constitute compression chamber, compression piston 19, second level hot end heat exchanger 33 And plunger shaft constitutes expansion chamber, expansion chamber is coaxially arranged with compression chamber.
The outside of level-one hot end heat exchanger 26, regenerator 25, cool end heat exchanger 24 is arranged in cold finger shell 35, and shell 60 is arranged In rack 50 and the outside of expanding machine unit 30, shell 60, cold finger shell 35 and rack 50 are linked into an integrated entity by connector.
Radiator 27 is located at the outside of level-one hot end heat exchanger 26 and is arranged on cold finger shell 35, level-one hot end heat exchanger 26 The radiator 27 that heat is passed to outside by cold finger shell 35, is finally released to environment.
Undamped dynamic absorber unit 4 is connected with shell 60 and is arranged in the outside of shell 60, for carrying out to refrigeration machine Damping.
The motion process and gas flow of expansion piston and compression piston:
Expansion piston flat spring 22 and piston rod 23 are fixed, and expansion piston 21 is connected with piston rod 23.
Expansion piston 21 is pure pneumatic actuation, is generated using the displacement phase difference between expansion piston 21 and compression piston 19 Refrigeration effect, 70 °~100 ° of phase of the leading compression piston 19 of displacement of usual expansion piston 21.Since linear motor is sine Electric excitation is exchanged, so it is in sinusoidal continuous movement that the movement of expansion piston 21 and compression piston 19, which is also, but in order to explain State its working principle, it is assumed that expansion piston 21 and compression piston 19 do intermittent touchdown formula according to circulation law and move.
Sound wave compression process: expansion piston 21 rests on that top dead centre is motionless, and compression piston 19 is moved upwards by lower dead center, this When main compression chamber 29 in sound wave compressed, and flow into the level-one hot end heat exchanger 26 on the outside of cylinder, compression process generated Heat is released to level-one hot end heat exchanger 26, and heat is passed to the heat dissipation in outside by level-one hot end heat exchanger 26 by outer housing again Device 27, is finally released to environment.Ideally think cylinder and outer housing is completely thermally conductive, while level-one hot end heat exchanger 26 is infinitely great with the heat exchange area of radiator 27, therefore the temperature of working medium remains unchanged.But in the actual process, isotherm compression is It is impossible, and expansion piston 21 can not intermittent movement, when compression piston 19 moves upwards, expansion piston 21 has been Through starting to move downward.
Regenerator exothermic process: compression piston 19 moves to motionless after top dead centre, and expansion piston 21 moves downward, at this time sound Wave comes into full contact with heat exchange by the filler in regenerator 25, with regenerator 25, heat is discharged to regenerator 25, at this time backheat The temperature of device 25 increases, acoustic wave temperature and pressure reduction.But in practical heat transfer process, 25 heat transfer process of regenerator is not fixed Hold, it is also not possible to the complete heat exchange of 25 filler of real sound wave and regenerator.
Sound wave Laminar Flow process: gas passes through air deflector 32 after flowing through cool end heat exchanger 24, enters as a laminar flow Gas in pulse tube 31 is pushed to expansion chamber 28 by pulse tube 31.After gas is squeezed, pressure and temperature rises.The heat of generation It is radially transferred to level-one hot end heat exchanger 26 by second level hot end heat exchanger 33, be finally transmitted to radiator 27 and is released to ring Border.Gas expansion for doing work in expansion chamber 28, auxiliary pushing expansion piston become smaller, play to lower dead center, function recycling compression chamber The effect of recycling sound function.In practical work process, compression piston 19 can't rest on always top dead centre, but can be with swollen Swollen piston 21 moves downwardly together, but it need to be pointed out that the two is not movement in the same direction but the leading compression piston one of expansion piston Fixed phase angle.
Sound wave process of refrigerastion: expansion piston 21 moves up to top dead centre since lower dead center, and compression piston 19 moves to Lower dead center, expansion piston 21 push back to the sound wave in expansion chamber 28 in pulse tube 31, gas swelling heat absorption in pulse tube, produce Raw refrigeration effect reaches lowest refrigerating temperature at air deflector 32 at 31 top of pulse tube.The cooling capacity of generation is changed by cold end Hot device 24 is exported to cold environment.Sound wave working medium returns in regenerator 25 along original route again and comes into full contact with heat exchange with filler, inhales After receiving the heat in regenerator 25, returns to main compression chamber 29 and wait next second compression.The temperature and pressure of the process sound wave Rise, the decline of 25 temperature of regenerator.In the actual process, when compression piston 19 reaches lower dead center expansion piston 21 and not up on Stop, but during returning to top dead centre, but its still advanced compression piston 19 on displacement wave phase.
The present embodiment is suitable for the cryogenic temperature of 220K (- 53 DEG C) or more, can provide the refrigerating capacity of 50W-200W.
The controller 1k of refrigerator can control the driving voltage of pulse type sterlin refrigerator 2k according to actual load to realize The cryogenic temperature of each warm area.Refrigeration machine cold end meets finned heat exchanger 3k, and cold end fan 4k passes through the cold wind of different temperatures respectively Blow valve A, B, C of adjustable aperture are sent to each air compartment, and return air flows back to refrigeration machine 2k cold end by air returning valve a, b, c, with cold end Finned heat exchanger 3k heat convection, temperature reduce;Heating wire 5k is wound on finned heat exchanger 3k, realizes defrosting function;Refrigeration Machine hot end meets finned heat exchanger 6k, and fresh air enters refrigeration machine hot end by strainer 8k by air inlet 7k, passes through outlet air by fan 9k Mouth 10k is to external environment to realize hot-side heat dissipation;Control function is realized by controller 1: by control return air valve channel 15k, Control air inlet valve channel 17k controls six valve openings respectively, and control temperature sensor channel 16k transmitting is mounted on each air compartment The signal of interior I temperature sensor 11k of air compartment, II temperature sensor 12k of air compartment, III temperature sensor 13k of air compartment control cold end Temperature sensor channel 18k controls the cold head temperature sensor 14k of refrigeration machine cold end, control cold end fan channel 19k, control electricity Heated filament 20k, control refrigeration machine power supply line 21k, control hot end fan 22k control respectively fan 4k, heating wire 5k, refrigeration machine 2k and The start and stop of fan 9k.
I cabinet set temperature is 7 DEG C
II cabinet set temperature is -18 DEG C
III cabinet set temperature is -48 DEG C
It is as follows to sketch specific implementation process.
1, initial temperature-fall period:
When initial cooling, three intracorporal temperature of case rest on environment temperature (assuming that 23 DEG C), pulse type sterlin system Cold 2k is with maximum operation, and air inlet valve A, B, C and air returning valve a, b, c keep maximum opening at this time.
After I cabinet reaches target temperature (7 DEG C -0.2 DEG C, i.e., 6.8 DEG C), air inlet valve A and air returning valve a are closed, and I cabinet is complete At cooling.Air inlet valve B, C and air returning valve b, c still maintain maximum opening at this time, and refrigeration machine 2k is still run with maximum power.
After II cabinet reaches target temperature (- 18 DEG C -0.2 DEG C, i.e., -18.2 DEG C), air inlet valve B and air returning valve b are closed, II Cabinet completes cooling.Air inlet valve C and air returning valve c still maintains maximum opening at this time, and refrigeration machine 2k is still run with maximum power.
After III cabinet reaches target temperature (- 48 DEG C -0.2 DEG C, i.e., -48.2 DEG C), air inlet valve C and air returning valve c are closed, III cabinet completes cooling.All cabinets are completed to cool down at this time, and refrigeration machine 2k, cold end fan 4k, hot end fan 9k stop fortune Row.
In first temperature-fall period, the air humidity content in air duct is larger, so in cold end finned heat exchanger 3k surface meeting Serious frosting avoids frost layer too thick and increases cold end fin so starting heating wire 3k carries out defrosting after completing first cooling The heat transfer resistance of heat exchanger 3k.
2, to the process of each cabinet accurate temperature controlling:
With the infiltration of extraneous thermic load, each spin manifold temperature can gradually be higher than target temperature.
When the temperature of III cabinet be higher than 0.2 DEG C of set temperature when (- 47.8 DEG C), first detect cold head temperature whether be higher than- 53 DEG C, if being higher than -53 DEG C, refrigeration machine 2k and hot end blower 9k starting, be reduced to cold head temperature with maximal input operation - After 53 DEG C, reduces the input power of refrigeration machine 2k and remain that cold head temperature is -53 DEG C, cold end blower 4k is opened, air inlet valve C Opening 20% aperture with air returning valve c, (aperture cannot be excessive, and otherwise the mutual crossfire of air in the intracorporal air of case and air duct, makes The intracorporal temperature fluctuation of case is violent), the cold wind of low temperature is blown into III cabinet, when spin manifold temperature reaches -48.2 DEG C, refrigeration machine 2k is shut down, and air inlet valve C and air returning valve c are closed.Because considering heat transfer temperature difference between cool end heat exchanger 3k and air (usually 5 DEG C), so in cooling III cabinet, cold head temperature cannot only be reduced to -48 DEG C, otherwise by cold end finned heat exchanger 3k's Cold wind temperature can be solely -43 DEG C, the temperature of III cabinet can not be reduced to target temperature.In addition, because first completing Electric heating has been carried out after cooling and has held white process, so cold head temperature is not less than -53 DEG C, without considering controlling party in this case Method.
Similarly, when the intracorporal temperature of II case is higher than 0.2 DEG C of set temperature (- 17.8 DEG C), first detecting cold head temperature is No is -23 DEG C (also taking 5 DEG C of heat transfer temperature differences herein), if being higher than -23 DEG C, refrigeration machine 2k and hot end blower 9k starting, by cold head After temperature is down to -23 DEG C, reduces the input power of refrigeration machine 2k and remain that cold head temperature is -23 DEG C, be then turned on cold end wind Machine 4k, air inlet valve B and air returning valve b open 20% aperture, and cold wind is blown into II cabinet, when spin manifold temperature reaches -18.2 DEG C, system Cold 2k is shut down, and air inlet valve B and air returning valve b are closed;If first detecting, cold head temperature lower than -23 DEG C, starts heating wire 5, makes Temperature rapid increase for cold head to after -23 DEG C, stops electric heating, rerun refrigeration machine 2k and cold end fan 4k, and refrigeration machine 2k's is defeated Entering power need to remain that cold head temperature is -23 DEG C, and air inlet valve B and air returning valve b open 20% aperture, and cold wind is blown into II case Body.It is worth noting that, can slowly wait cold head temperature voluntarily to rise to -23 when detection cold head temperature is lower than -23 DEG C in the ban DEG C, but the overlong time for allowing cold head voluntarily to heat up, in the period temperature of II cabinet can biggish deviation set temperature, can not Guarantee accurate temperature controlling.So being assisted using electric heating, making cold head, temperature rapid increase to -23 DEG C.
When the intracorporal temperature of I case is higher than 0.2 DEG C of set temperature (7.2 DEG C), first detect whether cold head temperature is 2 DEG C (also taking 5 DEG C of heat transfer temperature differences herein), if being higher than 2 DEG C, cold head temperature is down to 2 DEG C by refrigeration machine 2k and hot end blower 9k starting Afterwards, it reduces the input power of refrigeration machine 2k and remains that cold head temperature is 2 DEG C, be then turned on cold end blower 4k, air inlet valve A and return Air-valve a opens 20% aperture, and cold wind is blown into I cabinet, and when spin manifold temperature reaches 6.8 DEG C, refrigeration machine 2k is shut down, air inlet valve A It is closed with air returning valve a;It is lower than 2 DEG C when if first detecting cold head temperature, starts heating wire 5k, making cold head, temperature rapid increase to 2 After DEG C, stop electric heating, the input power of rerun refrigeration machine 2k and cold end fan 4k, refrigeration machine 2k need to remain cold head temperature Degree is 2 DEG C, and air inlet valve A and air returning valve a open 20% aperture, and cold wind is blown into I cabinet.
Illustrate:
When carrying out accurate temperature controlling to III cabinet, cold head temperature is set as -53 DEG C, purpose is first is that consider cold end heat exchange 5 DEG C of heat transfer temperature differences between device 3k and air, purpose is second is that in order to reduceLoss.Assuming that setting cold head temperature to -80 DEG C, then the cold wind blown out is about -75 DEG C, and the cabinet that target temperature is -48 DEG C is cooled down with -75 DEG C of cold wind thenIt lost Greatly, input work needed for cold head being furthermore reduced to -80 DEG C is bigger, and refrigerating capacity is smaller, and COP is lower.Comprehensively consider, it will be to III When cabinet accurate temperature controlling, keep cold head temperature best in -53 DEG C of efficiency.When similarly, to I, II cabinet accurate temperature controlling, cold head is kept Temperature 2 DEG C, -23 DEG C of efficiency it is best.
It summarizes:
When spin manifold temperature is higher than 0.2 DEG C of set temperature, start to cool down to cabinet.When spin manifold temperature is lower than setting temperature When spending 0.2 DEG C, stopping cools down to cabinet.
The action and effect of embodiment
The pulse type free-piston Stirling cooler of the present embodiment eliminate traditional free-piston Stirling cooler compared with Long low-temperature expansion piston is replaced with shorter room-temperature zone work work recycling expansion piston.Free-piston Stirling cooler Expansion cylinder becomes the pulse tube of vascular cold finger, and pulse tube cold end is disposed with the air deflector of laminarization, and hot end is equipped with second level heat Hold heat exchanger.The advantages of this change combines free-piston Stirling cooler and vascular refrigerator, by cancelling cold and hot The expansion piston for holding high frequency motion eliminates low-temperature expansion piston bring pumping loss, shuttle loss and axial thermal conductivity damage It loses.Shorter swell at room temperature piston is set by hot end and solves the problems, such as the acoustic power recovery of vascular refrigerator, therefore, when returning completely When receiving cold end sound function, which is Carnot's cycle efficiency.Meanwhile cancelling Low-temperature expansion piston reduces refrigeration machine manufacture difficulty, reduces overall mass.
Above embodiment is the preferred case of the utility model, is not intended to limit the protection scope of the utility model.

Claims (9)

1. a kind of multi-temperature zone wind cooling refrigerator using pulse type free-piston Stirling cooler characterized by comprising
Refrigerator body, refrigeration section, control unit,
Wherein, the refrigerator body has at least one air compartment, the air delivery duct being arranged in outside the air compartment and air -return duct,
It is respectively arranged with the connection air delivery duct and the air outlet inside the air compartment on the air compartment wall of the air compartment and is connected to Return air inlet inside the air -return duct and the air compartment, the position of the return air inlet are higher than the position of the air outlet,
The air delivery duct is airtight passage with the air -return duct and is connected,
The refrigeration section includes pulse type free-piston Stirling cooler, cool end heat exchanger, cold end air supply device,
The pulse type free-piston Stirling cooler has cold finger, and the cold finger has cold and hot end,
The junction in the cold end and being located at the air delivery duct and the air -return duct is arranged in the cool end heat exchanger, described cold Heat exchanger is held to separate the air delivery duct and the air -return duct,
The air supply device is arranged in the air delivery duct or the air -return duct, is located at by the cool end heat exchanger,
The control unit includes controller, wind indoor temperature transmitter, cold head temperature sensor, air compartment blow valve, air compartment return air Valve,
The air compartment blow valve is arranged in the air outlet, and the air compartment air returning valve is arranged in the return air inlet,
The indoor temperature transmitter is arranged in the air compartment,
The cold head temperature sensor is arranged in the cold end,
The controller respectively with the indoor temperature transmitter, the cold head temperature sensor, the air compartment blow valve, described Air compartment air returning valve is connected, and the controller controls the big of the valve folding of the air compartment blow valve, the air compartment air returning valve respectively It is small,
The pulse type free-piston Stirling cooler includes linear motor, compression unit, expanding machine unit and rack,
Wherein, the rack includes flange, the piston tube being arranged in the flange and pedestal,
The flange shape in disk form, the side of the flange are additionally provided with concentric roundel,
The pedestal is cylindrical in shape, and one end is connected with the other side of flange, and the other end is free end, the center line of the pedestal and institute The center line for stating flange is overlapped,
The piston tube is straight pipe, and the outside open at one end positioned at the roundel, another end opening is located in the pedestal, There is cylinder-piston chamber, for accommodating the compression piston and expansion piston of the refrigeration machine, the plunger shaft in the piston tube On be provided with multiple through-holes for penetrating the piston tube wall,
The linear motor includes outer yoke, interior yoke and mover, and the outer yoke, the interior yoke are separately positioned on described There is gap in rack and between outer yoke, interior yoke, the mover is arranged in the gap,
The compression unit has compression piston, compression piston spring, and the compression piston spring passes through connector and the machine Frame is fixedly connected, and the compression piston is arranged in the piston tube, one end be connected with the mover and with the compression piston Spring is connected, and the other end is free end,
The expanding machine unit includes expansion piston, expansion piston spring, expansion piston bar, level-one hot end heat exchanger, second level heat Heat exchanger, regenerator, pulse tube, cool end heat exchanger are held,
The level-one hot end heat exchanger is cylindrical, covers on the outer wall of the piston tube and be arranged in the end face of the roundel On,
One end of the pulse tube is connected with the piston tube lateral ends, and the other end is connected with the cool end heat exchanger,
The regenerator is cylindrical, and the outside of the pulse tube is arranged in, and one end is connected with the cool end heat exchanger, the other end It is connected with the level-one hot end heat exchanger,
The second level hot end heat exchanger is arranged in the pulse tube,
In the piston tube, the expansion piston spring is fixedly connected by connector with the rack expansion piston, One end of the expansion piston bar is connected with the expansion piston, and the other end passes through the compression piston, the compression piston bullet It is connected after spring with the expansion piston spring,
The compression piston, the expansion piston and the plunger shaft constitute compression chamber,
The expansion piston, the second level hot end heat exchanger and the plunger shaft constitute expansion chamber.
2. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is, further includes:
Thawing apparatus on the cool end heat exchanger is set.
3. the multi-temperature zone wind cooling refrigerator according to claim 2 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the thawing apparatus is the heating wire being wrapped in outside the cool end heat exchanger.
4. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the cool end heat exchanger is finned heat exchanger.
5. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the controller further includes control return air valve channel, control temperature sensor channel, control air inlet valve letter Road, control cold junction temperature sensor channel, control cold end fan channel.
6. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the return air inlet and the air outlet be not in the same air compartment wall.
7. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the cold end air supply device is fan.
8. the multi-temperature zone wind cooling refrigerator according to claim 1 using pulse type free-piston Stirling cooler, special Sign is, further includes:
Hot end heat exchanger and radiator fan on the hot end are set, and the hot end heat exchanger and the radiator fan are equal It is arranged in the same closed case.
9. the multi-temperature zone wind cooling refrigerator according to claim 8 using pulse type free-piston Stirling cooler, special Sign is:
Wherein, the closed case is provided with the air inlet for introducing fresh air and realizes the air outlet of hot-side heat dissipation.
CN201820685629.8U 2018-05-09 2018-05-09 Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler Expired - Fee Related CN208520060U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820685629.8U CN208520060U (en) 2018-05-09 2018-05-09 Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820685629.8U CN208520060U (en) 2018-05-09 2018-05-09 Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler

Publications (1)

Publication Number Publication Date
CN208520060U true CN208520060U (en) 2019-02-19

Family

ID=65342208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820685629.8U Expired - Fee Related CN208520060U (en) 2018-05-09 2018-05-09 Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler

Country Status (1)

Country Link
CN (1) CN208520060U (en)

Similar Documents

Publication Publication Date Title
CN108800713A (en) Using the multi-temperature zone wind cooling refrigerator and temperature control method of sterlin refrigerator
US10451320B2 (en) Refrigerator appliance with water condensing features
CN106052258A (en) Refrigerator having multiple temperature zones
CN108592481A (en) Using the multi-temperature zone refrigerator of pulse type free-piston Stirling cooler
CN103062951B (en) Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler
CN101900447B (en) G-M refrigerator with phase modulating mechanism
WO2017118241A1 (en) Mechanical vibration-isolated, liquid helium consumption-free and extremely low temperature refrigerating system
US10527325B2 (en) Refrigerator appliance
CN108826729A (en) A kind of expanding machine unit and pulse type free-piston Stirling cooler
CN108548234A (en) A kind of dehumidification module and heated dehumidifying wardrobe with acoustic energy refrigeration machine
CN108518912A (en) Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler
CN108759147A (en) A kind of wine cabinet using pulse type free-piston Stirling cooler
CN205843183U (en) Many temperature-zone refrigerators
CN208653032U (en) A kind of energy-saving refrigeration equipment
CN208520060U (en) Using the multi-temperature zone wind cooling refrigerator of pulse type free-piston Stirling cooler
CN108626903A (en) A kind of pulse type free-piston Stirling cooler
CN108626921A (en) A kind of expanding machine unit and pulse type free-piston Stirling cooler
CN108800643A (en) A kind of pulse type free-piston Stirling cooler and refrigerating method
CN108518883A (en) A kind of pulse type free-piston Stirling cooler
CN208520035U (en) A kind of pulse type free-piston Stirling cooler
CN103216966A (en) Free piston type pulse tube refrigerator
CN207763285U (en) Commercial freezing and refrigeration variable frequency condenser group
CN108375234A (en) A kind of expanding machine unit and pulse type free-piston Stirling cooler
WO2019037708A1 (en) Mobile easy-to-clean energy-saving refrigeration apparatus
CN108800642A (en) A kind of pulse type free-piston Stirling cooler

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190219

CF01 Termination of patent right due to non-payment of annual fee