CN108515177A - 一种具有多主相结构的纳米晶复合稀土永磁材料及其制备 - Google Patents

一种具有多主相结构的纳米晶复合稀土永磁材料及其制备 Download PDF

Info

Publication number
CN108515177A
CN108515177A CN201810478279.2A CN201810478279A CN108515177A CN 108515177 A CN108515177 A CN 108515177A CN 201810478279 A CN201810478279 A CN 201810478279A CN 108515177 A CN108515177 A CN 108515177A
Authority
CN
China
Prior art keywords
rare earth
main phase
powder
sintering
phase structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810478279.2A
Other languages
English (en)
Other versions
CN108515177B (zh
Inventor
江庆政
钟震晨
曾庆文
雷伟凯
S.U.雷曼
何伦可
刘仁辉
钟明龙
马胜灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201810478279.2A priority Critical patent/CN108515177B/zh
Publication of CN108515177A publication Critical patent/CN108515177A/zh
Application granted granted Critical
Publication of CN108515177B publication Critical patent/CN108515177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种具有多主相结构的纳米晶复合稀土永磁材料及其制备方法,将CexFe101‑x‑y‑zByMz磁粉与(PraNd1‑a)bFe100‑b‑c‑dBcMd粉末按质量比为20‑80:20‑80均匀混合,通过放电等离子烧结技术制备得到具有多主相结构的纳米晶复合永磁材料,其中:CexFe101‑x‑y‑zByMz磁粉,其中M为Cu、Al、Ga、Nb、Zr、Hf元素中的一种或多种,11≤x≤20,3≤y≤10,0≤z≤3;(PraNd1‑a)bFe100‑b‑c‑dBcMd磁粉,其中M为Cu、Al、Ga、Nb、Zr、Hf元素中的一种或多种,0≤a≤1,10≤b≤20,3≤c≤10,0≤d≤3。本发明利用具有硬磁性能的快淬合金粉末,改善了永磁体的微观结构、磁性能和耐腐蚀性能,充分利用了高丰度稀土元素Ce,得到了具有多主相结构的纳米晶复合永磁材料。此外,本发明还具有烧结时间短,工艺流程简单的特点,有效促进了稀土资源的高效平衡利用。

Description

一种具有多主相结构的纳米晶复合稀土永磁材料及其制备
技术领域
本发明属于稀土永磁材料领域,特别提供一种具有多主相结构的纳米晶复合稀土永磁材料及其制备方法。
背景技术
Nd2Fe14B类稀土永磁材料由于其优异的磁性能,被广泛的应用于风力发电、消费类电子、医疗器械、新能源汽车、航空航天、轨道交通等领域。钕铁硼(Nd-Fe-B)磁体的广泛应用促使全球对中低丰度稀土元素钕、镨、镝、铽的需求猛增。钕铁硼磁体中稀土金属含量约为31wt.%,伴随着钕铁硼市场的高速增长,全球对钕铁硼的主要原料稀土金属钕、镨、镝、铽的需求也在强劲增长。稀土需求量的猛增导致了关键稀土元素价格的大幅波动,对钕铁硼制造企业和下游应用产业造成巨大压力。一方面,Nd-Fe-B基永磁材料强烈依赖于Nd、Pr和Dy等贵重稀土资源,其中Nd、Pr使用量占据稀土总量的70wt.%以上,消耗巨大;另一方面,以Ce为主的高丰度稀土元素在稀土永磁中未获得大量应用,长期处于供过于求的市场积压状态,造成稀土资源的严重不平衡利用。
纳米晶磁体所特有的微观结构特点及较强的晶间交换耦合作用,使得其温度稳定性和断裂韧性要好于传统烧结磁体和粘结磁体。一般而言,多主相结构磁体具有比单主相结构磁体更优异的磁性能。因此,具有多主相结构的含Ce磁体的开发可充分利用高丰度稀土Ce,降低磁体成本,提高永磁体性价比,也可实现稀土资源的高效平衡利用。
发明内容
本发明的目的在于充分利用高丰度稀土Ce,并通过双合金技术,获得纳米晶复合磁体的多主相结构,从而进一步提高磁体磁性能。
本发明技术方案如下:
一种具有多主相结构的纳米晶复合稀土永磁材料,其特征在于:将具有硬磁性能的CexFe101-x-y-zByMz磁粉与(PraNd1-a)bFe100-b-c-dBcMd粉末按质量比为20-80:20-80均匀混合,通过放电等离子烧结技术制备得到具有多主相结构的纳米晶复合稀土永磁材料,其中:
CexFe101-x-y-zByMz磁粉,其中M为Cu、Al、Ga、Nb、Zr、Hf元素中的一种或多种,11≤x≤20,3≤y≤10,0≤z≤3;
(PraNd1-a)bFe100-b-c-dBcMd磁粉,其中M为Cu、Al、Ga、Nb、Zr、Hf元素中的一种或多种,0≤a≤1,10≤b≤20,3≤c≤10,0≤d≤3。
其中:CexFe101-x-y-zByMz磁粉中部分Fe元素可由Co替代;(PraNd1-a)bFe100-b-c-dBcMd磁粉中部分Fe元素可由Co替代,部分Pr、Nd元素可由Dy、Tb、Ho、Gd中的一种或多种替代。
本发明还提供了所述多主相结构的纳米晶复合稀土永磁材料的制备方法,其特征在于:通过放电等离子烧结技术制备所述纳米晶复合稀土永磁材料,放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为600~850℃,烧结压力为20~100MPa,烧结时间为0~20min。
制备所得磁体中存在三个居里温度转变点,即磁体中存在三主相,通过改变两种粉末的质量百分比,可以实现调控磁体居里温度的目的。同时,所得磁体中主相晶粒尺寸在纳米级别。
本发明所述多主相结构的纳米晶复合稀土永磁材料的制备方法,其特征在于,具体步骤如下:
①、将元素Ce、Fe、B、M按照CexFe101-x-y-zByMz配比,成分中部分Fe元素也可由Co元素取代;将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金铸锭,并通过熔体快淬的方式制备得到快淬合金带材,在气氛保护下将合金带破碎成粉末;
②、将元素Pr、Nd、Fe、B、M按照(PraNd1-a)bFe100-b-c-dBcMd配比,成分中部分Pr、Nd元素可由Dy、Tb、Ho、Gd替代,部分Fe元素可由Co替代;将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金铸锭,并通过熔体快淬的方式制备得到快淬合金带材,在气氛保护下将合金带破碎成粉末;
③、将CexFe101-x-y-zByMz粉末和(PraNd1-a)bFe100-b-cBcMd粉末按质量比为20-80:20-80均匀混合,倒入石墨模具中,通过放电等离子烧结设备制成具有双主相结构的纳米晶磁体。烧结温度为600~850℃,烧结压力为20~100MPa,烧结时间为0~20min。
一般而言,双主相结构磁体是利用两种具有硬磁性能的粉料获得,本发明通过两种具有硬磁性能的粉料混合,采用放电等离子快速烧结技术制备得到了纳米晶型三主相复合永磁体。磁体中同时存在三个不同成分的RE2Fe14B主相,通过控制低熔点稀土合金的添加种类和添加量,实现磁体居里转变点的可控调整,且各居里温度之间差别较大。本发明具有烧结时间短,工艺流程简单的特点,有效促进了稀土资源的高效平衡利用。
附图说明
图1为纳米晶复合永磁体M-T曲线。
图2为纳米晶复合永磁体透射电镜形貌图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述,但本发明不限于这些实施例,以下实施例只为说明目的,不应当被用来限制本发明以及权利要求的范围。
实施例1
将元素Ce、Fe、B、Nb、Cu、Ga、Co按照Ce17Fe74.5Co2B6Nb0.5Cu0.5Ga0.5配比,将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金铸锭,通过甩带机制备得到快淬合金带材,其中辊速为19m/s,在氩气保护下将合金带破碎成粉末;将元素Pr、Nd、Fe、B、Hf按照(Pr0.2Nd0.8)13Fe80.5B6Hf0.5配比,将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金铸锭,并通过熔体快淬的方式制备得到快淬合金带材,其中甩带机辊速为18m/s,在氩气保护下将合金带破碎成粉末;在氩气保护下将Ce17Fe74.5Co2B6Nb0.5Cu0.5Ga0.5粉末和(Pr0.2Nd0.8)13Fe80.5B6Hf0.5粉末按质量比80:20均匀混合。将混合粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。烧结前及整个烧结过程真空度小于10Pa,烧结温度为660℃,烧结压力为50MPa,烧结时间为5min。
图1为磁体M-T曲线。从图中可以看出,磁体中存在三个居里转变点,分别为Tc1=441K,Tc2=493K,Tc3=580K,表明磁体中存在三个硬磁主相,具有三主相结构。图2为磁体内部透射电镜形貌图。可以看出,磁体晶粒尺寸在纳米级别。
对比例1
将元素Ce、Fe、B、Nb、Cu、Ga、Co按照Ce17Fe74.5Co2B6Nb0.5Cu0.5Ga0.5配比,将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金铸锭,通过甩带机制备得到快淬合金带材,其中辊速为19m/s,在氩气保护下将合金带破碎成粉末;将Ce17Fe74.5Co2B6Nb0.5Cu0.5Ga0.5粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为650℃,烧结压力为50MPa,烧结时间为2min。
磁体中存在1个居里转变点,为Tc=443K,表明磁体中仅存在着一个主相。
对比例2
将元素Pr、Nd、Fe、B、Hf按照(Pr0.2Nd0.8)13Fe80.5B6Hf0.5配比,将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金铸锭,通过甩带机制备得到快淬合金带材,其中辊速为18m/s,在氩气保护下将合金带破碎成粉末;将(Pr0.2Nd0.8)13Fe80.5B6Hf0.5粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。烧结前及整个烧结过程真空度小于10Pa,烧结温度为700℃,烧结压力为50MPa,烧结时间为5min。
磁体中存在1个居里转变点,为Tc=581K,表明磁体中仅存在着一个主相。
实施例2
与实施例1的不同之处在于:将Ce17Fe74.5Co2B6Nb0.5Cu0.5Ga0.5粉末和(Pr0.2Nd0.8)13Fe80.5B6Hf0.5粉末按质量比60:40均匀混合。将混合粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为670℃,烧结压力为50MPa,烧结时间为5min。
磁体中存在三个居里转变点,分别为Tc1=446K,Tc2=505K,Tc3=577K,表明磁体中存在三个硬磁主相,具有三主相结构。
实施例3
与实施例1的不同之处在于:将Ce17Fe74.5Co2B6Nb0.5Cu0.5Ga0.5粉末和(Pr0.2Nd0.8)13Fe80.5B6Hf0.5粉末按质量比40:60均匀混合。将混合粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为680℃,烧结压力为60MPa,烧结时间为3min。
磁体中存在三个居里转变点,分别为Tc1=447K,Tc2=516K,Tc3=575K,表明磁体中存在三个硬磁主相,具有三主相结构。
实施例4
与实施例1的不同之处在于:将Ce17Fe74.5Co2B6Nb0.5Cu0.5Ga0.5粉末和(Pr0.2Nd0.8)13Fe80.5B6Hf0.5粉末按质量比20:80均匀混合。将混合粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为690℃,烧结压力为70MPa,烧结时间为6min。
磁体中存在三个居里转变点,分别为Tc1=452K,Tc2=515K,Tc3=578K,表明磁体中存在三个硬磁主相,具有三主相结构。
实施例5
将Ce15Fe78.5B6Nb1.0Ga0.5粉末和(Pr0.2Nd0.8)15Fe79B6粉末按质量比75:25均匀混合。将混合粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为700℃,烧结压力为60MPa,烧结时间为6min。
磁体中存在三个居里转变点,表明磁体中存在三个硬磁主相,具有三主相结构。
实施例6
将Ce14Fe78B6Zr1.5Ga1.5粉末和(Pr0.2Nd0.8)13Fe77.5Co3B6Cu0.5粉末按质量比60:40均匀混合。将混合粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为720℃,烧结压力为50MPa,烧结时间为8min。
磁体中存在三个居里转变点,也具有三主相结构。
实施例7
将Ce19Fe74.5B6Nb1.5粉末和(Pr0.2Nd0.8)13Fe80.5B6Hf0.5粉末按质量比50:50均匀混合。将混合粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得磁体。放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为750℃,烧结压力为50MPa,烧结时间为6min。
磁体中存在三个居里转变点,也具有三主相结构。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种具有多主相结构的纳米晶复合稀土永磁材料,其特征在于:将CexFe101-x-y-zByMz磁粉与(PraNd1-a)bFe100-b-c-dBcMd粉末按质量比为20-80:20-80均匀混合,通过放电等离子烧结技术制备得到具有多主相结构的纳米晶复合稀土永磁材料,其中:
CexFe101-x-y-zByMz磁粉,其中M为Cu、Al、Ga、Nb、Zr、Hf元素中的一种或多种,11≤x≤20,3≤y≤10,0≤z≤3;
(PraNd1-a)bFe100-b-c-dBcMd磁粉,其中M为Cu、Al、Ga、Nb、Zr、Hf元素中的一种或多种,0≤a≤1,10≤b≤20,3≤c≤10,0≤d≤3。
2.按照权利要求1所述多主相结构的纳米晶复合稀土永磁材料,其特征在于:CexFe101-x-y-zByMz磁粉中部分Fe元素由Co替代。
3.按照权利要求1所述多主相结构的纳米晶复合稀土永磁材料,其特征在于:(PraNd1-a)bFe100-b-c-dBcMd磁粉中部分Fe元素由Co替代,部分Pr、Nd元素由Dy、Tb、Ho、Gd中的一种或多种替代。
4.一种权利要求1所述多主相结构的纳米晶复合稀土永磁材料的制备方法,其特征在于:通过放电等离子烧结技术制备所述纳米晶复合稀土永磁材料,放电等离子放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为600~850℃,烧结压力为20~100MPa,烧结时间为0~20min。
5.按照权利要求4所述多主相结构的纳米晶复合稀土永磁材料的制备方法,其特征在于:所得磁体中存在三个居里温度转变点,通过改变两种粉末的质量百分比,可以实现调控磁体居里温度的目的。
6.按照权利要求4所述多主相结构的纳米晶复合稀土永磁材料的制备方法,其特征在于:所得磁体中主相晶粒尺寸在纳米级别。
CN201810478279.2A 2018-05-18 2018-05-18 一种具有多主相结构的纳米晶复合稀土永磁材料及其制备 Active CN108515177B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810478279.2A CN108515177B (zh) 2018-05-18 2018-05-18 一种具有多主相结构的纳米晶复合稀土永磁材料及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810478279.2A CN108515177B (zh) 2018-05-18 2018-05-18 一种具有多主相结构的纳米晶复合稀土永磁材料及其制备

Publications (2)

Publication Number Publication Date
CN108515177A true CN108515177A (zh) 2018-09-11
CN108515177B CN108515177B (zh) 2020-09-01

Family

ID=63427197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810478279.2A Active CN108515177B (zh) 2018-05-18 2018-05-18 一种具有多主相结构的纳米晶复合稀土永磁材料及其制备

Country Status (1)

Country Link
CN (1) CN108515177B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246644A (zh) * 2019-08-01 2019-09-17 泮敏翔 一种高性能多主相Ce基纳米晶磁体的制备方法
CN113903585A (zh) * 2021-09-07 2022-01-07 江西理工大学 一种具有各向异性的稀土永磁材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181603A (ja) * 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd 希土類磁石の製造方法
CN104576028A (zh) * 2014-12-30 2015-04-29 四川大学 富铈各向异性纳米晶稀土永磁体的制备方法
CN104599802A (zh) * 2014-12-03 2015-05-06 中国科学院宁波材料技术与工程研究所 稀土永磁材料及其制备方法
CN106128674A (zh) * 2016-07-08 2016-11-16 钢铁研究总院 一种双硬磁主相混合稀土永磁体及其制备方法
CN106548843A (zh) * 2016-10-17 2017-03-29 中国科学院宁波材料技术与工程研究所 稀土永磁材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181603A (ja) * 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd 希土類磁石の製造方法
CN104599802A (zh) * 2014-12-03 2015-05-06 中国科学院宁波材料技术与工程研究所 稀土永磁材料及其制备方法
CN104576028A (zh) * 2014-12-30 2015-04-29 四川大学 富铈各向异性纳米晶稀土永磁体的制备方法
CN106128674A (zh) * 2016-07-08 2016-11-16 钢铁研究总院 一种双硬磁主相混合稀土永磁体及其制备方法
CN106548843A (zh) * 2016-10-17 2017-03-29 中国科学院宁波材料技术与工程研究所 稀土永磁材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246644A (zh) * 2019-08-01 2019-09-17 泮敏翔 一种高性能多主相Ce基纳米晶磁体的制备方法
CN110246644B (zh) * 2019-08-01 2020-08-07 中国计量大学 一种高性能多主相Ce基纳米晶磁体的制备方法
CN113903585A (zh) * 2021-09-07 2022-01-07 江西理工大学 一种具有各向异性的稀土永磁材料及其制备方法
CN113903585B (zh) * 2021-09-07 2023-10-03 江西理工大学 一种具有各向异性的稀土永磁材料及其制备方法

Also Published As

Publication number Publication date
CN108515177B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6366666B2 (ja) 重希土類元素を含まない焼結Nd−Fe−B磁性体の製造方法
US20210166847A1 (en) Manufacturing method of sintered nd-fe-b permanent magnet
JP2021533557A (ja) 高い耐久性および高い保磁力を有するCe含有焼結希土類永久磁石、およびその調製方法
CN103123838B (zh) 一种应用高丰度稀土mm生产的稀土永磁体及其制备方法
CN107275027B (zh) 应用钇的富铈稀土永磁体及其制备方法
JP7211691B2 (ja) Nd-Fe-B系焼結磁性体の製造方法
JPWO2002103719A1 (ja) 希土類永久磁石材料
CN108565105A (zh) 一种高矫顽力钕铁硼磁体及其制备方法
CN106158203B (zh) 一种高矫顽力高稳定性钕铁硼磁体的制备方法
US9818516B2 (en) High temperature hybrid permanent magnet
CN102969112B (zh) 稀土永磁粉及其制备方法以及由其制备的磁体和磁性器件
CN108517455A (zh) 一种具有双主相结构的纳米晶稀土永磁材料及其制备方法
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN105702403A (zh) 一种烧结钕铁硼磁体及制备方法
CN109859920A (zh) 一种高抗蚀性富高丰度稀土永磁体及制备方法
CN110060833B (zh) 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
CN108515177A (zh) 一种具有多主相结构的纳米晶复合稀土永磁材料及其制备
JP6769479B2 (ja) 希土類永久磁石
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
JP2000234151A (ja) R−Fe−B系希土類永久磁石材料
CN105118649A (zh) 一种改善钕铁硼磁体晶界相的方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
EP4006931B1 (en) Manufacturing method of sintered magnet
CN108987014A (zh) 一种提高烧结钕铁硼磁体矫顽力的方法
US20220344081A1 (en) Method for improving magnetic properties of cerium-yttrium-rich rare earth permanent magnet

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant