CN108512457A - 具有位移感知功能的直线式惯性压电作动器及作动方法 - Google Patents

具有位移感知功能的直线式惯性压电作动器及作动方法 Download PDF

Info

Publication number
CN108512457A
CN108512457A CN201810354487.1A CN201810354487A CN108512457A CN 108512457 A CN108512457 A CN 108512457A CN 201810354487 A CN201810354487 A CN 201810354487A CN 108512457 A CN108512457 A CN 108512457A
Authority
CN
China
Prior art keywords
moving mass
mass
inertial
displacement
voussoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810354487.1A
Other languages
English (en)
Other versions
CN108512457B (zh
Inventor
徐明龙
邵妍
王源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Langwei Technology Co ltd
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810354487.1A priority Critical patent/CN108512457B/zh
Publication of CN108512457A publication Critical patent/CN108512457A/zh
Application granted granted Critical
Publication of CN108512457B publication Critical patent/CN108512457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

具有位移感知功能的直线式惯性压电作动器及作动方法,该作动器由圆柱外壳、底座、运动单元、菱形环、压电堆、惯性质量块、永磁体及比例式线性霍尔传感器组成;圆柱外壳底端与底座固定连接,圆柱外壳内部自上而下依次是:左右两端与外壳内部轨道方槽紧密贴合的运动单元,通过调节螺钉与运动单元连接的菱形环,过盈安装在菱形环内的压电堆,粘接在菱形环下方的惯性质量块,固定在惯性质量块下表面的永磁体,以及安装于底座上表面的比例式线性霍尔传感器;本发明利用非对称的锯齿波驱动压电堆,通过惯性冲击原理作动,采用比例式线性霍尔传感器实时感知位移;并且结构紧凑,易于安装,具有作动快速精准,断电锁止,钳位力可调节的特点。

Description

具有位移感知功能的直线式惯性压电作动器及作动方法
技术领域
本发明属于惯性压电作动器技术领域,具体涉及一种具有位移感知功能的直线式惯性压电作动器及作动方法。
背景技术
惯性式压电作动器是一类采用非对称的驱动信号、非对称的机械夹持结构或非对称的摩擦力为控制方式,通过惯性冲击运动形成驱动的机构。
与其他类型的压电驱动比较,惯性压电作动器具有结构简单、响应速度快、分辨率高、大行程、运动速度快和成本低等主要优点,可实现较大行程且同时具有纳米级定位精度。因此,惯性压电作动器适用于需要高分辨率、大行程的场合。目前,科技工作者已成功将惯性压电作动器应用于高精度定位机构,多自由度驱动器,微型机器人关节以及微操作手等领域。
一般地,直线式惯性压电作动器在结构内部包含线性导轨,采用直线光栅进行感知位移,这种设计极大增加了作动器的横向尺寸,限制了作动器在更小应用环境下的使用;另外,现有的直线式惯性作动器一般通过在运动块外部另设机构,如弹簧等,去实现钳位力的调节,这给加工和装配带来了一定困难。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种具有位移感知功能的直线式惯性压电作动器及作动方法,在高频驱动条件下,能够快速响应并稳定驱动负载上下运动;此作动器结构紧凑,易于加工和安装,结合冲击惯性型的驱动及比例式线性霍尔元件的传感,具有作动快速精准,位移能够实时测量,钳位力可调节的特点。
为了达到上述目的,本发明采用如下技术方案:
一种具有位移感知功能的直线式惯性压电作动器,包括圆柱外壳1、底座8、运动单元2、菱形环3、压电堆4、惯性质量块5、永磁体6及比例式线性霍尔传感器7;其中圆柱外壳1底端与底座8固定连接,圆柱外壳1内部的左右两端对称加工有两条轨道方槽,圆柱外壳1内部自上而下依次是:左右两端与轨道方槽紧密贴合的运动单元2,通过调节螺钉2-1与运动单元2连接的菱形环3,竖直过盈安装在菱形环3内的压电堆4,粘接在菱形环3下方的惯性质量块5,固定在惯性质量块5下表面的永磁体6,以及安装于底座8上表面的比例式线性霍尔传感器7,以上部件的中心均处于圆柱外壳1的垂直轴线上;运动单元2由调节螺钉2-1、左右对称的楔块2-2以及运动块2-3组成,运动块2-3左右两端设有S形弹性体,中心设有菱形空腔,菱形空腔内部的左右两侧对称加工有楔面,其中左侧楔面与楔块2-2的左侧楔面贴合,右侧楔面与楔块2-2的右侧楔面贴合,调节螺钉2-1的螺帽按压在楔块2-2上表面,螺杆沿轴向穿过楔块2-2中心的光孔,并旋转进入运动块2-3正下方的菱形环3螺纹孔内,此时上宽下窄的楔块2-2被螺帽按压并沿轴线向下运动,导致运动块2-3菱性空腔被横向撑开,运动块2-3左右两端的S形弹性体分别受到挤压并与同侧的轨道方槽壁面紧密贴合,运动块2-3与轨道方槽之间产生一定的静摩擦力,也即钳位力;在作动过程中,永磁体6随惯性质量块5轴向运动,永磁体6的不同位置会带来圆柱外壳1底端不同的内部磁场分布,安装于底座8上表面的比例式线性霍尔传感器7检测到的磁感应强度产生变化并输出相应电压,该输出电压的变化曲线经过激光位移计测得的作动器位移曲线进行标定,能够拟合出位移-电压一一对应的数学关系,由此通过比例式线性霍尔传感器7的输出电压就能够检测到作动器的输出位移。
所述运动块2-3中菱形空腔内部的左侧楔面与楔块2-2的左侧楔面贴合,运动块2-3中菱形空腔内部的右侧楔面与楔块2-2的右侧楔面贴合,所有楔面与楔块2-2左右方向的中心对称面之间的锐角夹度相等,当楔块2-2被螺帽按压并向下移动一定的轴向距离时,菱形空腔内部左右两侧的楔面将相互远离,该远离的横向距离为楔块2-2轴向移动的距离乘以楔角正切值的两倍,此时横向距离与运动块2-3两端的S形弹性体的刚度乘积就是轨道方槽与运动块2-3之间的正压力,因此旋转调节螺钉2-1,改变楔块2-2的轴向距离,就能够调整轨道方槽与运动块2-3之间的正压力,两者之间的摩擦力也即钳位力随之改变。
所述调节螺钉2-1的螺帽可延长高度,以作为作动器的输出装置使用。
所述惯性质量块5采用密度高的钨,这能够有效降低作动器的尺寸,所述圆柱外壳1和底座8采用磁导率高的铁镍合金,形成磁屏蔽空间,使比例式线性霍尔传感器7免受外部磁场的干扰。
所述圆柱外壳1底端通过安装螺钉9与底座8固定连接。
所述永磁体6为圆柱形。
所述的具有位移感知功能的直线式惯性压电作动器的作动方法,未通电时,调节运动块2-3与轨道方槽之间的钳位力至期望值,此时运动块2-3处于钳位状态;为使运动块2-3垂直向下运动,第一步,对压电堆4从零电压缓慢加电至满行程电压,压电堆4沿其轴向缓慢伸长,带动惯性质量块5缓慢远离运动块2-3运动,此时运动块2-3所受的静摩擦力能够克服惯性质量块5作用于运动块2-3的向上的惯性力,运动块2-3与轨道方槽壁面保持相对静止;第二步,对压电堆4从满行程电压迅速降电至零电压,压电堆4沿其轴向迅速收缩,带动惯性质量块5迅速朝向运动块2-3运动,此时运动块2-3受到惯性质量块5的向下的惯性冲击力远大于静摩擦力,运动块2-3相对轨道方槽向下滑动并产生一个步距;重复第一、二步,能够使运动块2-3连续地拉动负载向下运动;类似地,为使运动块2-3垂直向上运动,第一步,对压电堆4从零电压迅速加电至满行程电压,压电堆4沿其轴向迅速伸长,带动惯性质量块5迅速远离运动块2-3运动,此时运动块2-3受到惯性质量块5向上的惯性冲击力远大于静摩擦力,运动块2-3相对轨道方槽向上滑动并产生一个步距;第二步,对压电堆4从满行程电压缓慢降电至零电压,压电堆4沿其轴向缓慢收缩,带动惯性质量块5缓慢朝向运动块2-3运动,此时运动块2-3所受的静摩擦力能够克服惯性质量块5作用于运动块2-3的向下的惯性力,运动块2-3与轨道方槽壁面相对静止并保留了向上的一个步距;重复第一、二步,能够使运动块2-3连续地推动负载向上运动。
和现有技术相比,本发明具有如下优点:
1)本发明的运动单元2集成了输出位移功能以及调整钳位力的功能,其中运动块2-3本身就具有弹性,无需外加弹性元件,极大简化了钳位力调节机构,缩减了结构尺寸。
2)本发明的调节螺钉2-1的纵向旋入量能够通过楔面的配合转换为运动块2-3与轨道方槽之间的横向变形量,进而使得两者间的钳位力得到调整,同时,对于所需相同的钳位力调节范围,减小楔角或降低S型弹性体的刚度还能扩大与钳位力对应的调节螺钉2-1的旋入轴向范围,这使得调节过程更为高效精准,避免出现因调节范围过小而导致反复调试的现象。
3)本发明的惯性质量块5下方携带有永磁体6,永磁体6随惯性质量块5运动,并改变磁屏蔽的圆柱形外壳1下端内部的磁场分布,比例式线性霍尔传感器7实时检测磁感应强度的变化并输出电压信号,该电压信号经过激光位移计的标定后能够直接换算为作动器的输出位移,使用的永磁体6和比例式线性霍尔传感器7体积十分小巧,输入与输出的线性度良好,能够准确地实时感知作动器的输出位移。
4)本发明结构紧凑,体积小,质量轻,通过惯性驱动原理仅需单个压电叠堆便可驱动负载进行往返直线运动。
附图说明
图1为本发明结构部分剖视图。
图2为本发明剖视图。
图3为本发明运动块立体图。
图4为本发明向下运动的驱动电压时序图。
图5为本发明向上运动的驱动电压时序图。
具体实施方式
以下结合附图和具体实施方式对本发明作进一步详细说明。
如图1至图3所示,本发明具有位移感知功能的直线式惯性压电作动器,包括圆柱外壳1、底座8、运动单元2、菱形环3、压电堆4、惯性质量块5、永磁体6及比例式线性霍尔传感器7;其中圆柱外壳1底端通过安装螺钉9与底座8固定连接,圆柱外壳1内部的前端对称加工有两条轨道方槽,圆柱外壳1内部自上而下依次是:左右两端与轨道方槽紧密贴合的运动单元2,通过调节螺钉2-1与运动单元2连接的菱形环3,竖直过盈安装在菱形环3内的压电堆4,粘接在菱形环3下方的惯性质量块5,固定在惯性质量块5下表面的圆柱形的永磁体6,以及安装于底座8上表面的比例式线性霍尔传感器7,这些部件的中心均处于圆柱外壳1的垂直轴线上;运动单元2由调节螺钉2-1、左右对称的楔块2-2以及运动块2-3组成,运动块2-3左右两端设有S形弹性体,中心设有菱形空腔,菱形空腔内部的左右两侧对称加工有楔面,其中左侧楔面与楔块2-2的左侧楔面贴合,右侧楔面与楔块2-2的右侧楔面贴合,调节螺钉2-1的螺帽按压在楔块2-2上表面,螺杆沿轴向穿过楔块2-2中心的光孔,并旋转进入运动块2-3正下方的菱形环3螺纹孔内,此时上宽下窄的楔块2-2被螺帽按压并沿轴线向下运动,导致运动块2-3菱性空腔被横向撑开,运动块2-3左右两端的S形弹性体分别受到挤压并与同侧的轨道方槽壁面紧密贴合,运动块2-3与轨道方槽之间产生一定的静摩擦力,也即钳位力;在作动过程中,圆柱形的永磁体6随惯性质量块5轴向运动,永磁体6的不同位置会带来圆柱外壳1底端不同的内部磁场分布,安装于底座8上表面的比例式线性霍尔传感器7检测到的磁感应强度产生变化并输出相应电压,该输出电压的变化曲线经过激光位移计测得的作动器位移曲线进行标定,能够拟合出位移-电压一一对应的数学关系,由此通过比例式线性霍尔传感器7的输出电压就能够检测到作动器的输出位移。
作为本发明的优选实施方式,所述运动块2-3中菱形空腔内部的左侧楔面与楔块2-2的左侧楔面贴合,运动块2-3中菱形空腔内部的右侧楔面与楔块2-2的右侧楔面贴合,所有楔面与楔块2-2左右方向的中心对称面之间的锐角夹度相等,当楔块2-2被螺帽按压并向下移动一定的轴向距离时,菱形空腔内部左右两侧的楔面将相互远离,该远离的横向距离为楔块2-2轴向移动的距离乘以楔角正切值的两倍,此时横向距离与运动块2-3两端的S形弹性体的刚度乘积就是轨道方槽与运动块2-3之间的正压力,因此旋转调节螺钉2-1,改变楔块2-2的轴向距离,就能够调整轨道方槽与运动块2-3之间的正压力,两者之间的摩擦力也即钳位力随之改变。
作为本发明的优选实施方式,所述调节螺钉2-1的螺帽可延长高度,以作为作动器的输出装置使用。
作为本发明的优选实施方式,所述惯性质量块5应采用密度较高的钨,这能够有效降低作动器的尺寸,所述圆柱外壳1和底座8应当采用磁导率高的铁镍合金,形成磁屏蔽空间,使比例式线性霍尔传感器7免受外部磁场的干扰。
如图4和图5所示,本发明轻具有位移感知功能的直线式惯性压电作动器的作动方法,未通电时,调节运动块2-3与轨道方槽之间的钳位力至期望值,此时运动块2-3处于钳位状态;为使运动块2-3垂直向下运动,如图4所示,第一步,对压电堆4从零电压缓慢加电至满行程电压,压电堆4沿其轴向缓慢伸长,带动惯性质量块5缓慢远离运动块2-3运动,此时运动块2-3所受的静摩擦力能够克服惯性质量块5作用于运动块2-3的向上的惯性力,运动块2-3与轨道方槽壁面保持相对静止;第二步,对压电堆4从满行程电压迅速降电至零电压,压电堆4沿其轴向迅速收缩,带动惯性质量块5迅速朝向运动块2-3运动,此时运动块2-3受到惯性质量块5的向下的惯性冲击力远大于静摩擦力,运动块2-3相对轨道方槽向下滑动并产生一个步距;重复第一、二步,能够使运动块2-3连续地拉动负载向下运动;类似地,为使运动块2-3垂直向上运动,如图5所示,第一步,对压电堆4从零电压迅速加电至满行程电压,压电堆4沿其轴向迅速伸长,带动惯性质量块5迅速远离运动块2-3运动,此时运动块2-3受到惯性质量块5向上的惯性冲击力远大于静摩擦力,运动块2-3相对轨道方槽向上滑动并产生一个步距;第二步,对压电堆4从满行程电压缓慢降电至零电压,压电堆4沿其轴向缓慢收缩,带动惯性质量块5缓慢朝向运动块2-3运动,此时运动块2-3所受的静摩擦力能够克服惯性质量块5作用于运动块2-3的向下的惯性力,运动块2-3与轨道方槽壁面相对静止并保留了向上的一个步距;重复第一、二步,能够使运动块2-3连续地推动负载向上运动。

Claims (7)

1.一种具有位移感知功能的直线式惯性压电作动器,其特征在于:包括圆柱外壳(1)、底座(8)、运动单元(2)、菱形环(3)、压电堆(4)、惯性质量块(5)、永磁体(6)及比例式线性霍尔传感器(7);其中圆柱外壳(1)底端与底座(8)固定连接,圆柱外壳(1)内部的左右两端对称加工有两条轨道方槽,圆柱外壳(1)内部自上而下依次是:左右两端与轨道方槽紧密贴合的运动单元(2),通过调节螺钉(2-1)与运动单元(2)连接的菱形环(3),竖直过盈安装在菱形环(3)内的压电堆(4),粘接在菱形环(3)下方的惯性质量块(5),固定在惯性质量块(5)下表面的永磁体(6),以及安装于底座(8)上表面的比例式线性霍尔传感器(7),以上部件的中心均处于圆柱外壳(1)的垂直轴线上;运动单元(2)由调节螺钉(2-1)、左右对称的楔块(2-2)以及运动块(2-3)组成,运动块(2-3)左右两端设有S形弹性体,中心设有菱形空腔,菱形空腔内部的左右两侧对称加工有楔面,其中左侧楔面与楔块(2-2)的左侧楔面贴合,右侧楔面与楔块(2-2)的右侧楔面贴合,调节螺钉(2-1)的螺帽按压在楔块(2-2)上表面,螺杆沿轴向穿过楔块(2-2)中心的光孔,并旋转进入运动块(2-3)正下方的菱形环(3)螺纹孔内,此时上宽下窄的楔块(2-2)被螺帽按压并沿轴线向下运动,导致运动块(2-3)菱性空腔被横向撑开,运动块(2-3)左右两端的S形弹性体分别受到挤压并与同侧的轨道方槽壁面紧密贴合,运动块(2-3)与轨道方槽之间产生一定的静摩擦力,也即钳位力;在作动过程中,永磁体(6)随惯性质量块(5)轴向运动,永磁体(6)的不同位置会带来圆柱外壳(1)底端不同的内部磁场分布,安装于底座(8)上表面的比例式线性霍尔传感器(7)检测到的磁感应强度产生变化并输出相应电压,该输出电压的变化曲线经过激光位移计测得的作动器位移曲线进行标定,能够拟合出位移-电压一一对应的数学关系,由此通过比例式线性霍尔传感器(7)的输出电压就能够检测到作动器的输出位移。
2.根据权利要求1所述的具有位移感知功能的直线式惯性压电作动器,其特征在于:所述运动块(2-3)中菱形空腔内部的左侧楔面与楔块(2-2)的左侧楔面贴合,运动块(2-3)中菱形空腔内部的右侧楔面与楔块(2-2)的右侧楔面贴合,所有楔面与楔块(2-2)左右方向的中心对称面之间的锐角夹度相等,当楔块(2-2)被螺帽按压并向下移动一定的轴向距离时,菱形空腔内部左右两侧的楔面将相互远离,该远离的横向距离为楔块(2-2)轴向移动的距离乘以楔角正切值的两倍,此时横向距离与运动块(2-3)两端的S形弹性体的刚度乘积就是轨道方槽与运动块(2-3)之间的正压力,因此旋转调节螺钉(2-1),改变楔块(2-2)的轴向距离,就能够调整轨道方槽与运动块(2-3)之间的正压力,两者之间的摩擦力也即钳位力随之改变。
3.根据权利要求1所述的具有位移感知功能的直线式惯性压电作动器,其特征在于:所述调节螺钉(2-1)的螺帽可延长高度,以作为作动器的输出装置使用。
4.根据权利要求1所述的具有位移感知功能的直线式惯性压电作动器,其特征在于:所述惯性质量块(5)采用密度高的钨,这能够有效降低作动器的尺寸,所述圆柱外壳(1)和底座(8)采用磁导率高的铁镍合金,形成磁屏蔽空间,使比例式线性霍尔传感器(7)免受外部磁场的干扰。
5.根据权利要求1所述的具有位移感知功能的直线式惯性压电作动器,其特征在于:所述圆柱外壳(1)底端通过安装螺钉(9)与底座(8)固定连接。
6.根据权利要求1所述的具有位移感知功能的直线式惯性压电作动器,其特征在于:所述永磁体(6)为圆柱形。
7.权利要求1至6任一项所述的具有位移感知功能的直线式惯性压电作动器的作动方法,其特征在于:未通电时,调节运动块(2-3)与轨道方槽之间的钳位力至期望值,此时运动块(2-3)处于钳位状态;为使运动块(2-3)垂直向下运动,第一步,对压电堆(4)从零电压缓慢加电至满行程电压,压电堆(4)沿其轴向缓慢伸长,带动惯性质量块(5)缓慢远离运动块(2-3)运动,此时运动块(2-3)所受的静摩擦力能够克服惯性质量块(5)作用于运动块(2-3)的向上的惯性力,运动块(2-3)与轨道方槽壁面保持相对静止;第二步,对压电堆(4)从满行程电压迅速降电至零电压,压电堆(4)沿其轴向迅速收缩,带动惯性质量块(5)迅速朝向运动块(2-3)运动,此时运动块(2-3)受到惯性质量块(5)的向下的惯性冲击力远大于静摩擦力,运动块(2-3)相对轨道方槽向下滑动并产生一个步距;重复第一、二步,能够使运动块(2-3)连续地拉动负载向下运动;类似地,为使运动块(2-3)垂直向上运动,第一步,对压电堆(4)从零电压迅速加电至满行程电压,压电堆(4)沿其轴向迅速伸长,带动惯性质量块(5)迅速远离运动块(2-3)运动,此时运动块(2-3)受到惯性质量块(5)向上的惯性冲击力远大于静摩擦力,运动块(2-3)相对轨道方槽向上滑动并产生一个步距;第二步,对压电堆(4)从满行程电压缓慢降电至零电压,压电堆(4)沿其轴向缓慢收缩,带动惯性质量块(5)缓慢朝向运动块(2-3)运动,此时运动块(2-3)所受的静摩擦力能够克服惯性质量块(5)作用于运动块(2-3)的向下的惯性力,运动块(2-3)与轨道方槽壁面相对静止并保留了向上的一个步距;重复第一、二步,能够使运动块(2-3)连续地推动负载向上运动。
CN201810354487.1A 2018-04-19 2018-04-19 具有位移感知功能的直线式惯性压电作动器及作动方法 Active CN108512457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810354487.1A CN108512457B (zh) 2018-04-19 2018-04-19 具有位移感知功能的直线式惯性压电作动器及作动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810354487.1A CN108512457B (zh) 2018-04-19 2018-04-19 具有位移感知功能的直线式惯性压电作动器及作动方法

Publications (2)

Publication Number Publication Date
CN108512457A true CN108512457A (zh) 2018-09-07
CN108512457B CN108512457B (zh) 2019-10-18

Family

ID=63382646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810354487.1A Active CN108512457B (zh) 2018-04-19 2018-04-19 具有位移感知功能的直线式惯性压电作动器及作动方法

Country Status (1)

Country Link
CN (1) CN108512457B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006722A (zh) * 2019-12-23 2020-04-14 西安工业大学 基于压电和挠曲电材料的止推抗扭传感作动器
CN111049422A (zh) * 2020-01-15 2020-04-21 合肥工业大学 一种钳位控制的惯性冲击马达
CN111525833A (zh) * 2020-05-15 2020-08-11 合肥工业大学 一种锯齿波驱动的压电马达
CN112260579A (zh) * 2020-09-12 2021-01-22 西安交通大学 一种可断电保持位移的压电作动器及分时驱动的作动方法
CN112271955A (zh) * 2020-09-12 2021-01-26 西安交通大学 具有小位移过冲量可断电保持位移的压电作动器及作动方法
CN112904551A (zh) * 2021-01-14 2021-06-04 中国科学院光电技术研究所 一种基于宏微运动方式的三自由度高精度运动机构
CN112904519A (zh) * 2021-01-14 2021-06-04 中国科学院光电技术研究所 一种基于少支链机构的多自由度高精度运动平台
CN113381638A (zh) * 2021-05-31 2021-09-10 西安交通大学 具有抗冲击过载功能的直线作动装置及作动方法
CN113839583A (zh) * 2021-08-31 2021-12-24 哈尔滨工业大学 一种超声型压电推杆电机及其死区补偿方法
CN114235020A (zh) * 2021-12-25 2022-03-25 西安交通大学 一种基于剪切增稠效应的贯入式驱动器及其工作方法
CN114337360A (zh) * 2021-12-30 2022-04-12 西安交通大学 基于压电材料保持特性的大钳位力作动器及其作动方法
US11933719B2 (en) 2020-06-19 2024-03-19 Changxin Memory Technologies, Inc. Posture adjustment device and method for optical sensor, and automatic material transport system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048047B1 (ko) * 2010-02-01 2011-07-13 오건희 압전 리니어 모터
CN103023374A (zh) * 2012-12-28 2013-04-03 东南大学 惯性式压电直线电机
EP2590315A1 (de) * 2011-11-02 2013-05-08 Physik Instrumente (PI) GmbH & Co. KG Antriebsvorrichtung
CN203457075U (zh) * 2013-06-19 2014-02-26 浙江师范大学 变摩擦式非对称夹持惯性压电旋转驱动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048047B1 (ko) * 2010-02-01 2011-07-13 오건희 압전 리니어 모터
EP2590315A1 (de) * 2011-11-02 2013-05-08 Physik Instrumente (PI) GmbH & Co. KG Antriebsvorrichtung
CN103023374A (zh) * 2012-12-28 2013-04-03 东南大学 惯性式压电直线电机
CN203457075U (zh) * 2013-06-19 2014-02-26 浙江师范大学 变摩擦式非对称夹持惯性压电旋转驱动器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006722A (zh) * 2019-12-23 2020-04-14 西安工业大学 基于压电和挠曲电材料的止推抗扭传感作动器
CN111049422A (zh) * 2020-01-15 2020-04-21 合肥工业大学 一种钳位控制的惯性冲击马达
CN111525833B (zh) * 2020-05-15 2021-03-12 合肥工业大学 一种锯齿波驱动的压电马达
CN111525833A (zh) * 2020-05-15 2020-08-11 合肥工业大学 一种锯齿波驱动的压电马达
US11933719B2 (en) 2020-06-19 2024-03-19 Changxin Memory Technologies, Inc. Posture adjustment device and method for optical sensor, and automatic material transport system
CN112260579B (zh) * 2020-09-12 2021-09-03 西安交通大学 一种可断电保持位移的压电作动器的分时驱动的作动方法
CN112271955A (zh) * 2020-09-12 2021-01-26 西安交通大学 具有小位移过冲量可断电保持位移的压电作动器及作动方法
CN112271955B (zh) * 2020-09-12 2021-09-03 西安交通大学 具有小位移过冲量可断电保持位移的压电作动器的作动方法
CN112260579A (zh) * 2020-09-12 2021-01-22 西安交通大学 一种可断电保持位移的压电作动器及分时驱动的作动方法
CN112904551A (zh) * 2021-01-14 2021-06-04 中国科学院光电技术研究所 一种基于宏微运动方式的三自由度高精度运动机构
CN112904519A (zh) * 2021-01-14 2021-06-04 中国科学院光电技术研究所 一种基于少支链机构的多自由度高精度运动平台
CN113381638A (zh) * 2021-05-31 2021-09-10 西安交通大学 具有抗冲击过载功能的直线作动装置及作动方法
CN113381638B (zh) * 2021-05-31 2023-10-24 西安交通大学 具有抗冲击过载功能的直线作动装置及作动方法
CN113839583A (zh) * 2021-08-31 2021-12-24 哈尔滨工业大学 一种超声型压电推杆电机及其死区补偿方法
CN114235020A (zh) * 2021-12-25 2022-03-25 西安交通大学 一种基于剪切增稠效应的贯入式驱动器及其工作方法
CN114337360A (zh) * 2021-12-30 2022-04-12 西安交通大学 基于压电材料保持特性的大钳位力作动器及其作动方法
CN114337360B (zh) * 2021-12-30 2023-08-15 西安交通大学 基于压电材料保持特性的大钳位力作动器及其作动方法

Also Published As

Publication number Publication date
CN108512457B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN108512457B (zh) 具有位移感知功能的直线式惯性压电作动器及作动方法
WO2016082741A1 (zh) 直线电机共定子双驱动宏微一体化高速精密运动一维平台
WO2016197554A1 (zh) 动态特性可调宏微一体化复合平台
CN103986299B (zh) 挤压式磁流变弹性体力促动器
CN104467526B (zh) 一种实现单向运动的惯性粘滑式跨尺度运动平台
CN108306546B (zh) 紧凑型双致动组件压电粘滑驱动装置及其驱动方法
CN103580532A (zh) 一种底部预紧式粘滑驱动跨尺度精密运动平台
JP2013532843A (ja) 絶対位置フィードバックを用いて調整可能な光学マウント
US7528527B2 (en) Driving device
KR20100101100A (ko) 구동 장치 및 프레스 머신에 대한 방법
CN107393599A (zh) 集传感单元和约束元件于一体的二维快速偏转台及方法
CN112803829B (zh) 摩擦非对称型惯性压电直线驱动装置与方法
CN107834896B (zh) 预摩擦力调控寄生原理压电驱动器输出性能的装置与方法
CN107786120B (zh) 具有宏微混合运动特性的压电旋转定位平台与控制方法
CN209389958U (zh) 主动抑制寄生运动原理压电驱动器回退运动的装置
CN203491928U (zh) 一种仿生尺蠖型压电旋转驱动器
CN203632576U (zh) 一种上下预紧式粘滑驱动跨尺度精密运动平台
CN114244182B (zh) 含力与位移双传感的直线式压电作动器及其作动方法
JP4024027B2 (ja) 圧電アクチュエータ
CN106655879B (zh) 一种高精度大载荷复合压电主动作动杆及主动控制方法
CN113114067B (zh) 一种可大行程测距的压电粘滑式驱动装置的测距方法
CN203457072U (zh) 一种粘滑驱动跨尺度精密运动平台
CN114679084A (zh) 一种磨损状态可实时评测预紧力可调控的惯性式压电作动器
CN102528100A (zh) 自进给传感刀具机构
CN116214583B (zh) 一种基于并联变刚度的手指力传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231102

Address after: 1st Floor, Northwest Building of Eleven Science and Technology, No. 532 Shenzhousan Road, National Civil Aerospace Industry Base, Xi'an City, Shaanxi Province, 710100

Patentee after: XI'AN LANGWEI TECHNOLOGY Co.,Ltd.

Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28

Patentee before: XI'AN JIAOTONG University

TR01 Transfer of patent right