CN209389958U - 主动抑制寄生运动原理压电驱动器回退运动的装置 - Google Patents

主动抑制寄生运动原理压电驱动器回退运动的装置 Download PDF

Info

Publication number
CN209389958U
CN209389958U CN201920351683.3U CN201920351683U CN209389958U CN 209389958 U CN209389958 U CN 209389958U CN 201920351683 U CN201920351683 U CN 201920351683U CN 209389958 U CN209389958 U CN 209389958U
Authority
CN
China
Prior art keywords
driving
precompression
active suppression
movement
piezoelectric actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920351683.3U
Other languages
English (en)
Inventor
唐金岩
范昊寅
李涛
郭文鑫
杨晓峰
刘佳慧
黄虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201920351683.3U priority Critical patent/CN209389958U/zh
Application granted granted Critical
Publication of CN209389958U publication Critical patent/CN209389958U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本实用新型涉及一种主动抑制寄生运动原理压电驱动器回退运动的装置,属于精密机械领域。装置包括基座、动子单元、驱动单元、预压力调整单元。动子单元安装在基座的凸台上;预压力调整单元通过螺钉固定在基座上;驱动单元通过螺钉安装在预压力调整单元上,分别用以实现动子的自由移动,初始间隙和预压力的调整以及主动抑制回退现象的协同运动生成。优点在于:可显著抑制回退运动,实现理想的步进运动,并能一定程度上消除系统非线性产生的影响,便于后续精密控制。在精密和超精密定位、精密测量、精密加工装配、生物遗传工程和材料表面性能检测等领域有着广阔的应用前景。

Description

主动抑制寄生运动原理压电驱动器回退运动的装置
技术领域
本实用新型涉及精密机械领域,特别涉及一种主动抑制寄生运动原理压电驱动器回退运动的装置。本实用新型从原理上解决了寄生运动产生回退的问题,实现无回退的理想步进运动,便于后续精密控制。可用于精密定位、精密测量、精密光学、精密/超精密加工等领域实现高精度的直线定位。
背景技术
随着对微/纳米加工、定位、测量等需求的提升,高精度定位平台的需求日益迫切。利用压电材料制成的压电叠堆,给其施加一定的驱动电压,在其逆压电效应作用下,可产生微纳米尺度的位移。所以,压电驱动技术因其高分辨率、响应速度快、能耗较低等优点,得到研究人员的广泛关注。基于逆压电效应,出现了各种不同的利用压电叠堆实现精密定位的驱动器,主要分为两大类:直动式和步进式。直动式压电驱动器具有响应快、输出精度高、输出推力大等特点(Mechanical Systems and Signal Processing,99,747-759,2018),主要分为有放大机构和无放大机构两种,但其行程有限,即使有放大装置一般也只有几十微米,限制了其应用场合。步进式压电驱动器通过步进累积的方式,可实现理论无限行程,得到大量应用。根据不同的驱动原理,步进式压电驱动器主要包括:超声压电驱动、惯性式、粘滑式、尺蠖式、寄生式压电驱动器等。超声压电驱动具有低噪声、大扭矩、无回退现象等优点(Sensors and Actuators A:Physical,285,182-189,2019),但由于其利用共振驱动原理,导致驱动器使用寿命较短、易磨损、散热性能较差,且输出曲线不稳定。惯性式和粘滑式驱动器具有控制简单、响应速度快、成本低、结构简单等优点,但其承载能力小,易产生倾覆力矩,且由于其具有不可避免的回退现象,其驱动性能和应用前景被大大地限制。尺蠖式压电驱动器通过钳位机构能够实现较大的转矩,理论无限行程与无回退现象(Sensors andActuators A: Physical,194,269-276,2013),但是其结构较其它原理的驱动器要复杂许多,导致加工、装配与控制困难,而且从驱动到钳位运动之间的转换存在较大的冲击,在一定程度上削弱了其输出运动的稳定性。寄生式压电驱动器与粘滑式的特点类似,通过合理的结构设计,能够在较为紧凑的空间内实现连续的直线(Review of ScientificInstruments,83,055002,2012)或旋转驱动(Review of Scientific Instruments,84,096105,2013),但寄生运动在另一个方向运动的同时增加了接触压力,造成了较大的附加摩擦力,使得其回退现象显著,驱动效率和定位精度受到了限制。
综上所述,目前的压电驱动器,或可实现无回退的步进运动,但结构、加工、装配与控制复杂,或结构、加工、装配与控制相对简单,但步进运动过程中有明显的回退现象。由于回退现象的存在,粘滑式、寄生式和惯性式等类型的压电驱动器的驱动性能均受到了极大的限制。因此,研制能够抑制回退运动的粘滑式、寄生式和惯性式等类型的压电驱动器是当前研究的热点和难点,也是科学界与工业界迫切需要的。
发明内容
本实用新型的目的在于提供一种主动抑制寄生运动原理压电驱动器回退运动的装置,解决了现有技术存在的上述问题。本实用新型的主动抑制寄生运动原理压电驱动器回退运动的装置结构简单,运动行程大。通过驱动单元的两个压电叠堆协同作用,有效抑制了寄生原理压电驱动器产生的回退运动,实现了理想的无回退步进运动。借助本实用新型,可进一步提高寄生原理压电驱动器的运动特性,扩大其应用领域与范围,并可扩展适用于粘滑式等类型的压电驱动器。
本实用新型的上述目的通过以下技术方案实现:
主动抑制寄生运动原理压电驱动器回退运动的装置,包括基座1、动子单元、驱动单元、预压力调整单元,动子单元安装在基座1的凸台上,预压力调整单元通过螺钉固定在基座1 上,驱动单元通过螺钉8安装在预压力调整单元上,分别用以实现动子的自由移动,初始间隙和预压力的调整以及主动抑制回退现象的协同运动生成。
所述的驱动单元包括驱动铰链9、驱动压电叠堆7、楔块a4、提升压电叠堆3、楔块b2,所述驱动压电叠堆7和提升压电叠堆3分别通过楔块a4和楔块b2预紧安装在驱动铰链9中;通过给驱动压电叠堆7与提升压电叠堆3施加协同驱动电信号,实现主动抑制寄生运动原理压电驱动器回退运动的功能。
所述的动子单元由导轨5、滑块6组成,导轨5通过螺钉固定在基座1上,滑块6在驱动单元产生的驱动力作用下沿着导轨5直线移动。
所述的预压力调整单元包括粗调整机构10、螺钉8,通过调整预压力调整单元,调节驱动单元与动子单元之间的初始间隙和预压力。
本实用新型的有益效果在于:装置结构简单、运动行程大,能够从原理上主动抑制回退运动,实现理想的无回退步进运动,有效地提高了寄生运动原理压电驱动器的运动特性。基于协同运动驱动原理,本驱动器能够确保驱动过程压力恒定,保证了驱动器的线性输出特性;驱动效果为两者耦合,消除了系统非线性对输出的影响;通过调整预压力调整单元,可改变初始间隙和预压力,从而调整装置的承载能力;通过改变输入电信号幅值与频率,可调整单步位移大小和驱动速度,进而提升驱动性能。同样适用于粘滑式等原理的压电驱动器,适应范围广,实用性强。
附图说明
此处所说明的附图用来提供对本实用新型的进一步理解,构成本申请的一部分,本实用新型的示意性实例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。
图1为本实用新型的主动抑制寄生运动原理压电驱动器回退运动的装置的立体结构示意图;
图2为本实用新型的驱动压电叠堆单独作用示意图;
图3为本实用新型的提升压电叠堆单独作用示意图;
图4为本实用新型的驱动单元的俯视示意图;
图5为本实用新型的驱动单元等效机构示意图;
图6为本实用新型的主动抑制寄生运动原理压电驱动器回退运动的时序控制图;
图7为本实用新型的主动抑制寄生运动原理压电驱动器回退运动的过程示意图;
图8为本实用新型驱动压电叠堆单独作用过程示意图;
图9为本实用新型装置在4Hz,驱动压电叠堆在不同驱动电压下单独作用时,测得的实际位移输出曲线;
图10为本实用新型装置在4Hz,驱动压电叠堆的驱动电压52V,不同提升压电叠堆的驱动电压条件下测得的实际位移输出曲线。
图中:1、基座;2、楔块b;3、提升压电叠堆;4、楔块a;5、导轨;6、滑块;7、驱动压电叠堆;8、螺钉;9、驱动铰链;10、粗调整机构。
具体实施方式
下面结合附图进一步说明本实用新型的详细内容及其具体实施方式。
参见图1至图10所示,本实用新型的主动抑制寄生运动原理压电驱动器回退运动的装置,装置包括基座、动子单元、驱动单元、预压力调整单元。动子单元安装在基座的凸台上;预压力调整单元通过螺钉固定在基座上;驱动单元安装在预压力调整单元上。通过驱动单元中的驱动压电叠堆与提升压电叠堆产生的协同作用,使得寄生原理压电驱动器在驱动过程中压力恒定,进而实现回退运动的主动抑制。其优点在于:可显著抑制回退运动,实现理想的步进运动,并能一定程度上消除系统非线性产生的影响,便于后续精密控制。在精密和超精密定位、精密测量、精密加工装配、生物遗传工程和材料表面性能检测等领域有着广阔的应用前景。
参见图1、图2所示,本实用新型的主动抑制寄生运动原理压电驱动器回退运动的装置,包括基座1、动子单元、驱动单元、预压力调整单元。动子单元安装在基座1的凸台上;预压力调整单元通过螺钉固定在基座1上;驱动单元通过螺钉8安装在预压力调整单元上,分别用以实现动子的自由移动,初始间隙和预压力的调整以及主动抑制回退现象的协同运动生成。
所述的驱动单元包括:驱动铰链9、驱动压电叠堆7、楔块a4、提升压电叠堆3、楔块b2。所述的驱动压电叠堆7和提升压电叠堆3分别通过楔块a4和楔块b2预紧并安装在驱动铰链9中。给驱动压电叠堆7与提升压电叠堆3施加协同驱动电信号,并通过驱动杠杆与提升杠杆放大传递运动,最终驱动滑块6并抑制其回退。
所述的动子单元由导轨5、滑块6组成。导轨5通过螺钉固定在基座1上。滑块6在与驱动单元之间的摩擦力作用下沿着导轨5直线移动。
所述的预压力调整单元包括粗调整机构10、螺钉8。通过调整预压力调整单元,可方便地调节驱动单元与动子单元之间的初始间隙和预压力。
本实用新型利用驱动压电叠堆7与提升压电叠堆3的协同作用,可主动抑制寄生运动原理压电驱动器回退运动。
实施例:
参见图2、图4所示,当单独给驱动压电叠堆7施加具有一定幅值与频率的电信号时,驱动压电叠堆7因其逆压电效应伸长S1,使驱动杠杆绕C点旋转,将驱动压电叠堆7产生的位移S1放大,并对滑块6施加摩擦力fN1与正压力N1,进而使其产生沿y负方向运动Δy。由于驱动杠杆A点处有沿x负方向的寄生运动的存在,滑块6所受到A点的正压力N1随着驱动杠杆的转动而增大。
参见图3、图4所示,当单独给提升压电叠堆3施加具有一定幅值与频率的电信号时,驱动压电叠堆3因其逆压电效应伸长S2,并经由提升杠杆将驱动杠杆沿x正方向提升S2
参见图3、图4、图5所示,驱动杠杆ABC可等效为图5所示结构。由于提升杠杆的提升作用,C点可视为可沿x运动的可动铰支座,ABC为一可绕C点旋转的直杆,A点与动子单元接触。
参见图6、图7、图8,说明主动抑制寄生运动原理压电驱动器回退运动的具体过程与方法。如附图7所示,一个完整的运动循环主要包括以下4个过程:①如图7中的(a)所示,从0到t1时刻,驱动压电叠堆7与提升压电叠堆3均伸长,B点受到驱动压电叠堆3的作用,使驱动杠杆绕C点逆时针旋转,同时C点在提升杠杆的作用下向x正方向移动S2,A点与动子单元间产生的静压力N1与静摩擦力fN1驱动动子单元沿y负方向移动S,在此过程中,提升杠杆提升距离S2抵消全部或部分A点x负方向的寄生运动,此时的静压力N1小于图2、图8中的(a)所示过程的静压力N0;②从t1到t2时刻,驱动压电叠堆7与提升压电叠堆3均保持t1时刻的长度,动子单元保持静止;③如图7中的(b)所示,从t2到T时刻,提升压电叠堆3 继续保持t1时刻长度,驱动压电叠堆7则迅速恢复原长。此时,驱动铰链ABC在图4所示”Z”形结构的推动下回复原长,绕C点顺时针旋转,A点迅速与动子单元分离。在此过程中,动子单元表面产生滑动摩擦力的fN2,使滑块6沿y正方向回退S0。由于在相同的预压力下,图7中的(b)所示压力N2相较于图8中的(b)所示压力N0'很小,相应的滑动摩擦力fN2小于图8中的(b)所示fN0',且电压变化过程十分迅速,从而使回退得到抑制。试验证明,当提升距离S2足够大时,可完全抑制回退;④T时刻,提升压电叠堆3迅速恢复原长,C端沿x负方向迅速回落,A点再次与动子单元接触,驱动铰链9恢复初始状态,为下一个运动循环做准备。每个运动循环的驱动距离为ΔS=S-S0,当提升距离S2足够大时,ΔS=S。重复过程①到④,可实现理论无限行程、无回退的连续步进运动。
参见图9、图10所示,图9为本实用新型装置在4Hz,驱动压电叠堆7在不同驱动电压下单独作用时,测得的实际位移输出曲线;图10为本实用新型的主动抑制寄生运动原理压电驱动器回退运动的装置在频率为4Hz,驱动压电叠堆7的驱动电压幅值为52V,不同提升压电叠堆3的驱动电压的条件下测得的实际位移输出曲线。图9类似常规寄生运动原理的驱动结果,可以看出,回退现象严重,而且即使调整驱动电压幅值,仍然不能实现回退抑制。相比于图9,图10结果展示的是本实用新型的效果,可以看出,当提升压电叠堆3的驱动电压逐渐提升时,回退逐渐减小;当提升压电叠堆3的驱动电压达到100V以上时,已实现理想的无回退步进运动。以上对比,可见本实用新型可有效抑制寄生运动原理压电驱动器的回退运动。
以上所述仅为本实用新型的优选实例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡对本实用新型所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (4)

1.一种主动抑制寄生运动原理压电驱动器回退运动的装置,其特征在于:包括基座(1)、动子单元、驱动单元、预压力调整单元,动子单元安装在基座(1)的凸台上,预压力调整单元通过螺钉固定在基座(1)上,驱动单元通过螺钉(8)安装在预压力调整单元上,分别实现动子的自由移动,初始间隙和预压力的调整以及主动抑制回退现象的协同运动生成。
2.根据权利要求1所述的主动抑制寄生运动原理压电驱动器回退运动的装置,其特征在于:所述的驱动单元包括驱动铰链(9)、驱动压电叠堆(7)、楔块a(4)、提升压电叠堆(3)、楔块b(2),所述驱动压电叠堆(7)和提升压电叠堆(3)分别通过楔块a(4)和楔块b(2)预紧安装在驱动铰链(9)中;通过给驱动压电叠堆(7)与提升压电叠堆(3)施加协同驱动电信号,实现主动抑制寄生运动原理压电驱动器回退运动的功能。
3.根据权利要求1所述的主动抑制寄生运动原理压电驱动器回退运动的装置,其特征在于:所述的动子单元由导轨(5)、滑块(6)组成,导轨(5)通过螺钉固定在基座(1)上,滑块(6)在驱动单元产生的驱动力作用下沿着导轨(5)直线移动。
4.根据权利要求1所述的主动抑制寄生运动原理压电驱动器回退运动的装置,其特征在于:所述的预压力调整单元包括粗调整机构(10)、螺钉(8),通过调整预压力调整单元,调节驱动单元与动子单元之间的初始间隙和预压力。
CN201920351683.3U 2019-03-20 2019-03-20 主动抑制寄生运动原理压电驱动器回退运动的装置 Active CN209389958U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920351683.3U CN209389958U (zh) 2019-03-20 2019-03-20 主动抑制寄生运动原理压电驱动器回退运动的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920351683.3U CN209389958U (zh) 2019-03-20 2019-03-20 主动抑制寄生运动原理压电驱动器回退运动的装置

Publications (1)

Publication Number Publication Date
CN209389958U true CN209389958U (zh) 2019-09-13

Family

ID=67854779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920351683.3U Active CN209389958U (zh) 2019-03-20 2019-03-20 主动抑制寄生运动原理压电驱动器回退运动的装置

Country Status (1)

Country Link
CN (1) CN209389958U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756148A (zh) * 2019-03-20 2019-05-14 唐金岩 主动抑制寄生运动原理压电驱动器回退运动的装置与方法
CN110474563A (zh) * 2019-09-27 2019-11-19 长春工业大学 一种双向互锁式压电粘滑驱动装置及其激励方法
CN110508996A (zh) * 2019-09-24 2019-11-29 吉林大学 时序控制表面微结构阵列加工装置与方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756148A (zh) * 2019-03-20 2019-05-14 唐金岩 主动抑制寄生运动原理压电驱动器回退运动的装置与方法
CN110508996A (zh) * 2019-09-24 2019-11-29 吉林大学 时序控制表面微结构阵列加工装置与方法
CN110474563A (zh) * 2019-09-27 2019-11-19 长春工业大学 一种双向互锁式压电粘滑驱动装置及其激励方法
CN110474563B (zh) * 2019-09-27 2021-10-29 长春工业大学 一种双向互锁式压电粘滑驱动装置及其激励方法

Similar Documents

Publication Publication Date Title
CN109756148A (zh) 主动抑制寄生运动原理压电驱动器回退运动的装置与方法
CN209389958U (zh) 主动抑制寄生运动原理压电驱动器回退运动的装置
CN109217717B (zh) 弧形结构铰链抑制寄生压电驱动器回退运动的装置与方法
Wang et al. A novel inchworm type piezoelectric rotary actuator with large output torque: Design, analysis and experimental performance
CN103780142B (zh) 一种基于斜块箝位的大载荷高精度尺蠖型压电直线驱动器
CN102647107B (zh) 基于寄生运动原理的大行程微纳米级直线驱动器
CN207573263U (zh) 预摩擦力调控寄生原理压电驱动器输出性能的装置
CN109787505B (zh) 一种直线型压电电机及其驱动方法
CN105932902A (zh) J型结构精密压电粘滑直线马达及其驱动方法
CN104467526A (zh) 一种实现单向运动的惯性粘滑式跨尺度运动平台
US20070296308A1 (en) Driving device
CN107786120B (zh) 具有宏微混合运动特性的压电旋转定位平台与控制方法
CN110912444B (zh) 一种仿生爬行式压电驱动器
CN111049421A (zh) 模仿滑滑板运动设计的压电直线驱动装置与控制方法
CN207853785U (zh) 耦合尺蠖仿生与寄生运动原理的压电定位平台
CN107834896B (zh) 预摩擦力调控寄生原理压电驱动器输出性能的装置与方法
CN110768571A (zh) 一种基于寄生惯性原理的新型仿生爬行式压电精密驱动装置
CN105897043A (zh) 菱形铰链斜拉式正交驱动型压电粘滑直线马达及其复合激励方法
CN110829882B (zh) 一种t型压电驱动装置
CN109495010B (zh) 一种电磁调制非接触式直线压电电机
CN101207344B (zh) 蠕动式压电直线驱动器
CN203491928U (zh) 一种仿生尺蠖型压电旋转驱动器
CN112865593B (zh) 一种具有高输出性能的仿生冲击压电驱动器及其控制方法
CN113922701A (zh) 一种具有力放大特性的四杆粘滑电机及驱动方法
CN209526667U (zh) 一种基于弹簧复位的粘滑式压电惯性直线驱动器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant