CN108503353B - 一种复合磷酸盐系微波介质陶瓷及其制备方法 - Google Patents

一种复合磷酸盐系微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN108503353B
CN108503353B CN201711207808.7A CN201711207808A CN108503353B CN 108503353 B CN108503353 B CN 108503353B CN 201711207808 A CN201711207808 A CN 201711207808A CN 108503353 B CN108503353 B CN 108503353B
Authority
CN
China
Prior art keywords
microwave dielectric
dielectric ceramic
composite phosphate
powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711207808.7A
Other languages
English (en)
Other versions
CN108503353A (zh
Inventor
黄有华
郑兰兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Puyu Electronic Technology Co.,Ltd.
Original Assignee
Fuding Puyu Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuding Puyu Electronic Technology Co ltd filed Critical Fuding Puyu Electronic Technology Co ltd
Priority to CN201711207808.7A priority Critical patent/CN108503353B/zh
Publication of CN108503353A publication Critical patent/CN108503353A/zh
Application granted granted Critical
Publication of CN108503353B publication Critical patent/CN108503353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种复合磷酸盐系微波介质陶瓷,化学式为Ca4(La4‑xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8)+ywt%Li2CO3(0.5≤y≤1.0)+zwt%C(0<z≤1)。本发明还公开一种复合磷酸盐系微波介质陶瓷的制备方法,具体制备步骤如下:(1)将化学原料将化学原料将CaCO3、La2O3、SiO2、Bi2O3、Pr2O3和NH4H2PO4分别按化学计量比Ca4(La4‑xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8)化学计量组成称量配料成预磨配料;(2)将预磨配料放入球磨罐进行球磨,球磨后置于干燥箱中烘干成粉料;(3)将粉料进行煅烧得到煅烧粉料;(4)将煅烧粉料称量后放入球磨罐中,加入0.5~1.0wt%Li2CO3、0~1.0wt%C、氧化锆球和去离子水,球磨烘干得到烘干粉料;向烘干粉料中加入粘结剂造粒,并压制成胚体;(5)将胚体进行中温烧结成微波介质陶瓷;(6)测试微波介质陶瓷的微波介电性能。

Description

一种复合磷酸盐系微波介质陶瓷及其制备方法
技术领域
本发明属于微波介质陶瓷技术领域,具体涉及一种复合磷酸盐系微波介质陶瓷及其制备方法。
背景技术
近年来,北斗导航和5G通讯技术的迅速发展,对高性能微波介质陶瓷的需求量日益增长,要求微波介质陶瓷具有中低介电常数、低微波损耗和近零谐振频率温度系数。这种陶瓷既可以满足通信机的可移动性、便携性、小型化、微型化的要求,又可以满足在微波范围具有高性能、高可靠性工作特性要求,得到广泛关注。
应用于北斗导航和5G通讯微波系统中的微波介质材料,其基本性能要求为:谐振频率温度系数近零,Qf≥5000GHz。全新开发的复合磷酸盐系材料 Ca4(La4Pr2)(SiO4)4(PO4)2O2具有较佳的微波介电性能,但存在烧结温度偏高(1550 ℃以上),能耗大;同时品质因数偏低(~25000GHz)。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提出了提供一种复合磷酸盐系微波介质陶瓷及其制备方法。本发明提供的微波介质陶瓷,制备工艺简单,重复性良好,且微波介电性能优异,烧结温度较低。
为了达到上述目的,本发明采用以下技术方案予以实现:
一种复合磷酸盐系微波介质陶瓷,化学式为Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2 (0.2≤x≤0.8)+ywt%Li2CO3(0.5≤y≤1.0)+zwt%C(0<z≤1),其中C为添加剂。
进一步地,所述添加剂为NiO、Al2O3、WO3、ZrO2中至少选择一种。
一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,具体制备步骤如下:
(1)将化学原料将化学原料将CaCO3、La2O3、SiO2、Bi2O3、Pr2O3和 NH4H2PO4分别按化学计量比Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8),化学计量组成称量配料成预磨配料;
(2)将预磨配料放入球磨罐进行球磨,球磨后置于干燥箱中烘干成粉料;
(3)将粉料进行煅烧得到煅烧粉料;
(4)将煅烧粉料称量后放入球磨罐中,加入0.5~1.0wt%Li2CO3、0~ 1.0wt%C、氧化锆球和去离子水,球磨烘干得到烘干粉料;向烘干粉料中加入粘结剂造粒,并压制成胚体;
(5)将胚体进行中温烧结成微波介质陶瓷;
(6)测试微波介质陶瓷的微波介电性能。
在其中一个实施例中,所述C为NiO、Al2O3、WO3、ZrO2中至少选择一种的添加剂。
在其中一个实施例中,所述球磨罐内部预磨配料、氧化锆球和去离子水比例为1:2.5:3,球磨时间为14-18h,烘干温度为120℃。
在其中一个实施例中,所述煅烧温度为1150℃,煅烧时间为3h。
在其中一个实施例中,所述胚体为圆柱状,其直径为15mm,高度7.5mm。
在其中一个实施例中,所述粘结剂采用质量分数为3%的聚乙烯醇。
在其中一个实施例中,所述中温烧结的温度为1300~1400℃,烧结时间为 2-4h。
在其中一个实施例中,所述测试微波介质陶瓷的微波介电性能,包括:样品的直径和厚度使用千分尺测量;通过AgilentE8363APNA网络分析仪,采用Krupka法测量所制备微波介质陶瓷的介电常数,将测试样品放入ESPEC MC-710F型高低温循环箱进行谐振频率温度系数的测量,温度范围为20~60℃,测试频率在4~6GHz范围内。
本发明有益效果是:
本发明的优点是:复合磷酸盐系微波介质陶瓷的化学式为 Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8)+ywt%Li2CO3(0.5≤y≤1.0)+zwt%C (0<z≤1),该系列微波介质陶瓷材料其烧结范围为1300~1400℃属于中温烧结,介电常数为12~16,品质因数28000~35000GHz,谐振频率温度系数为-10~10ppm/ ℃。此复合磷酸盐系列微波介质陶瓷具有低损耗、介电常数适中同时近零频率温度系数的优异介电性能,能满足北斗导航和5G通信的需求。此外,该制备工艺简单,过程无污染,低成本,因此具有广阔的应用前景。
具体实施方式
为进一步了解本发明,以下结合实例对本发明进行描述,但应当理解的是这些描述只为了进一步说明本发明的特征和优点而不是对本发明专利要求的限制。
一种复合磷酸盐系微波介质陶瓷,化学式为Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2 (0.2≤x≤0.8)+ywt%Li2CO3(0.5≤y≤1.0)+zwt%C(0<z≤1),其中C为添加剂。
进一步地,所述添加剂为NiO、Al2O3、WO3、ZrO2中至少选择一种。
复合磷酸盐系微波介质陶瓷的化学式为Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2(0.2 ≤x≤0.8)+ywt%Li2CO3(0.5≤y≤1.0)+zwt%C(0<z≤1),其主要成分为化学计量比:Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8);Bi3+取代La3+,一方面改善复合磷酸盐系微波介质陶瓷的频率温度系数,另一方面降低其烧结温度。添加剂为适量的Li2CO3,添加量为0.5~1.0wt%,降低烧结温度;添加剂为适量的NiO、Al2O3、WO3、ZrO2中至少选择一种,添加量为0~1.0wt%,改善该复合磷酸盐系微波介质陶瓷的品质因数。
该系列微波介质陶瓷材料其烧结范围为1300~1400℃属于中温烧结,介电常数为12~16,品质因数28000~35000GHz,谐振频率温度系数为-10~10ppm/℃。此复合磷酸盐系列微波介质陶瓷具有低损耗、介电常数适中同时近零频率温度系数的优异介电性能,能满足北斗导航和5G通信的需求。此外,该制备工艺简单,过程无污染,低成本,因此具有广阔的应用前景。
通过Bi2O3取代La2O3降低配方的合成温度和改善谐振频率温度系数,合成温度为1150℃;通过Li2CO3的引入,大幅度的降低了低介电常数复合磷酸盐系微波介质陶瓷的烧结温度;通过添加NiO、Al2O3、WO3、ZrO2中至少选择一种,改善品质因数;提供了一种工艺简单且性能稳定的并可以批量生产的低介微波介质陶瓷及其制备方法。本发明的微波介质陶瓷,制备工艺简单,重复性良好,低成本且微波介电性能优异。
本发明还提供一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,具体制备步骤如下:
(1)将化学原料将化学原料将CaCO3、La2O3、SiO2、Bi2O3、Pr2O3和 NH4H2PO4分别按化学计量比Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8)化学计量组成称量配料成预磨配料;
(2)将预磨配料放入球磨罐进行球磨,球磨后置于干燥箱中烘干成粉料;其中球磨罐内部预磨配料、氧化锆球和去离子水比例为1:2.5:3,球磨时间为 14-18h,烘干温度为120℃;
(3)将粉料进行煅烧得到煅烧粉料;其中煅烧温度为1150℃,煅烧时间为 3h;
(4)将煅烧粉料称量后放入球磨罐中,加入0.5~1.0wt%Li2CO3、0~ 1.0wt%C、氧化锆球和去离子水,球磨烘干得到烘干粉料;向烘干粉料中加入粘结剂造粒,并压制成胚体;胚体为圆柱状,其直径为15mm,高度7.5mm;粘结剂采用质量分数为3%的聚乙烯醇。
(5)将胚体进行中温烧结成微波介质陶瓷;中温烧结的温度为1300~1400 ℃,烧结时间为2-4h。
(6)测试微波介质陶瓷的微波介电性能。其中样品的直径和厚度使用千分尺测量;通过AgilentE8363APNA网络分析仪,采用Krupka法(空腔法)测量所制备微波介质陶瓷的介电常数,将测试样品放入ESPECMC-710F型高低温循环箱进行谐振频率温度系数的测量,温度范围为20~60℃,测试频率在4~6GHz 范围内。
在上述中C为NiO、Al2O3、WO3、ZrO2中至少选择一种的添加剂。
该系列微波介质陶瓷材料其烧结范围为1300~1400℃属于中温烧结,介电常数为12~16,品质因数28000~35000GHz,谐振频率温度系数为-10~10ppm/℃。
实施例1
取x=0.2,y=0.5,z=0.5,C=WO3
(1)将CaCO3、La2O3、SiO2、Bi2O3、Pr2O3、NH4H2PO4分别按化学计量比Ca4(La3.8Bi0.2Pr2)(SiO4)4(PO4)2O2组成称量配料,混合后将原料加入尼龙罐中,加入氧化锆球和去离子水(料球水的比例如1:2.5:3)。球磨14~18h,将球磨后的原料放置于烘箱中,在120℃下烘干;
(2)混合均匀的粉料在1150℃煅烧3h;
(3)将步骤(2)煅烧后的原料放入球磨罐中,同时添加1.0wt%Li2CO3和0.5wt%的WO3,加入氧化锆球和去离子水,球磨20~24h,烘干,向烘干的粉料中加入质量溶度为3%的PVA溶液做为粘结剂并造粒,压制成圆柱状胚体,胚体直径约15mm,高度约7.5mm;
(4)把圆柱状胚体在1300℃~1400℃下保温4h烧结成瓷,即获得所需的低损耗、低介常数和近零频率温度系数的复合磷酸盐微波介质陶瓷;
(5)用网络分析仪和谐振腔测试步骤(4)制得的低损耗、低介常数和近零频率温度系数的复合磷酸盐微波介质陶瓷的微波介电性能;
具体实施例的相关工艺参数和微波介电性能的测试结果详见表1。
表1实施例1中涉及的实验结果:
Figure GDA0002868658950000051
实施例2
仿照实施例1,在实施例1的基础上选取x=0.6、y=0.5组分添加zwt%C物质,其余与实施例1相同,测试结果详见表2。
表2实施例2中涉及的实验结果:
Figure GDA0002868658950000052
上面对本发明优选实施方式作了详细说明,但是本发明不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化,这些变化涉及本领域技术人员所熟知的相关技术,这些都落入本发明专利的保护范围。
不脱离本发明的构思和范围可以做出许多其他改变和改型。应当理解,本发明不限于特定的实施方式,本发明的范围由所附权利要求限定。

Claims (7)

1.一种复合磷酸盐系微波介质陶瓷,化学式为Ca4(La4-xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8)+ywt%Li2CO3(0.5≤y≤1.0)+zwt%C(0<z≤1),其中C为添加剂,所述添加剂为NiO、Al2O3、WO3、ZrO2中至少选择一种。
2.一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,具体制备步骤如下:
(1)将化学原料CaCO3、La2O3、SiO2、Bi2O3、Pr2O3和NH4H2PO4分别按化学计量比Ca4(La4- xBixPr2)(SiO4)4(PO4)2O2(0.2≤x≤0.8)化学计量组成称量配料成预磨配料;
(2)将预磨配料放入球磨罐进行球磨,球磨后置于干燥箱中烘干成粉料;
(3)将粉料进行煅烧得到煅烧粉料;
(4)将煅烧粉料称量后放入球磨罐中,加入0.5~1.0wt%Li2CO3、0~1.0wt%C、氧化锆球和去离子水,球磨烘干得到烘干粉料;向烘干粉料中加入粘结剂造粒,并压制成胚体;
(5)将胚体进行中温烧结成微波介质陶瓷;所述中温烧结的温度为1300~1400℃,烧结时间为2-4h;
(6)测试微波介质陶瓷的微波介电性能;
所述C为NiO、Al2O3、WO3、ZrO2中至少选择一种的添加剂。
3.根据权利要求2所述的一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,所述球磨罐内部预磨配料、氧化锆球和去离子水比例为1:2.5:3,球磨时间为14-18h,烘干温度为120℃。
4.根据权利要求2所述的一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,所述煅烧温度为1150℃,煅烧时间为3h。
5.根据权利要求2所述的一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,所述胚体为圆柱状,其直径为15mm,高度7.5mm。
6.根据权利要求2所述的一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,所述粘结剂采用质量分数为3%的聚乙烯醇。
7.根据权利要求2所述的一种复合磷酸盐系微波介质陶瓷的制备方法,其特征在于,所述测试微波介质陶瓷的微波介电性能,包括:样品的直径和厚度使用千分尺测量;通过Agilent E8363A PNA网络分析仪,采用Krupka法测量所制备微波介质陶瓷的介电常数,将测试样品放入ESPEC MC-710F型高低温循环箱进行谐振频率温度系数的测量,温度范围为20~60℃,测试频率在4~6GHz范围内。
CN201711207808.7A 2017-11-27 2017-11-27 一种复合磷酸盐系微波介质陶瓷及其制备方法 Active CN108503353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711207808.7A CN108503353B (zh) 2017-11-27 2017-11-27 一种复合磷酸盐系微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711207808.7A CN108503353B (zh) 2017-11-27 2017-11-27 一种复合磷酸盐系微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN108503353A CN108503353A (zh) 2018-09-07
CN108503353B true CN108503353B (zh) 2021-03-05

Family

ID=63374681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711207808.7A Active CN108503353B (zh) 2017-11-27 2017-11-27 一种复合磷酸盐系微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108503353B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024245B (zh) * 2021-04-08 2022-03-29 华南理工大学 一种高击穿强度介电陶瓷材料及其制备方法
CN113277848A (zh) * 2021-05-26 2021-08-20 福建溥昱电子科技有限公司 一种中介复合钒酸盐系微波介质陶瓷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231406A (ja) * 1988-11-11 1990-09-13 Kyushu Refract Co Ltd リン酸カルシウム系ステイン材料
CN103449815A (zh) * 2013-07-30 2013-12-18 广东工业大学 一种共掺杂磷灰石结构陶瓷材料及其制备方法
CN103496964A (zh) * 2013-09-23 2014-01-08 桂林理工大学 可低温烧结的微波介电陶瓷Ca3Bi(PO4)3及其制备方法
CN104087300A (zh) * 2014-03-20 2014-10-08 王海容 一种硫代磷酸盐荧光体及其应用
CN107352995A (zh) * 2017-07-25 2017-11-17 济南大学 一种Ca1‑x‑ySrxBayZr4(PO4)6超低热膨胀陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231406A (ja) * 1988-11-11 1990-09-13 Kyushu Refract Co Ltd リン酸カルシウム系ステイン材料
CN103449815A (zh) * 2013-07-30 2013-12-18 广东工业大学 一种共掺杂磷灰石结构陶瓷材料及其制备方法
CN103496964A (zh) * 2013-09-23 2014-01-08 桂林理工大学 可低温烧结的微波介电陶瓷Ca3Bi(PO4)3及其制备方法
CN104087300A (zh) * 2014-03-20 2014-10-08 王海容 一种硫代磷酸盐荧光体及其应用
CN107352995A (zh) * 2017-07-25 2017-11-17 济南大学 一种Ca1‑x‑ySrxBayZr4(PO4)6超低热膨胀陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effect of isovalent substitutions on the microwave dielectric properties;Dhanesh Thomas等人;《Journal of Alloys and Compounds》;20120828(第546期);全文 *
Microwave Dielectric Properties of Ca2+xLa8-x(SiO4)6-x(PO4)xO2;Dhanesh Thomas等人;《Journal of American Ceramic Socity》;20110421;第8卷(第94期);全文 *

Also Published As

Publication number Publication date
CN108503353A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
CN111302788B (zh) 一种具有高Qf值低介电常数的陶瓷材料及其制备方法
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
CN108503353B (zh) 一种复合磷酸盐系微波介质陶瓷及其制备方法
CN103482978A (zh) 固溶体微波介质陶瓷材料及其制备方法与应用
CN105198408A (zh) 微波陶瓷介质材料及其制备方法
CN108484126A (zh) 一种微波介质陶瓷及其制备方法
CN107805067B (zh) 一种零频率温度系数及超低损耗的低介电常数微波介质陶瓷及其制备方法
CN105347781A (zh) 一种陶瓷材料及其制备方法
CN111377710A (zh) 微波介质陶瓷材料和介质陶瓷块的制备方法
CN102093053A (zh) 一种新型中温烧结微波介质陶瓷材料
CN115650713B (zh) 一种5g通信用微波介质陶瓷材料及其制备方法
CN105060888B (zh) 一种氧化铝掺杂制备低损耗稳定铌酸钕陶瓷
CN113277848A (zh) 一种中介复合钒酸盐系微波介质陶瓷的制备方法
CN113548888B (zh) 一种频率温度系数改善的微波介质材料及其制备方法
CN112939595B (zh) 高温下近零温度系数的微波介质陶瓷材料及其制备方法
CN101817674B (zh) 一种低介电常数低损耗微波介质陶瓷及其制备方法
CN110357628B (zh) 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法
CN111960821B (zh) 一种微波介质陶瓷材料及其制备方法和应用
CN104030685A (zh) 一种高q值微波介质陶瓷及其制备方法
CN102765938B (zh) 一种新的高Q×f值微波介质陶瓷材料
CN102765933B (zh) 一种高Q×f值微波介质陶瓷材料及其制备方法
CN103073285A (zh) 一种低损耗中介电常数微波介质陶瓷及其制备工艺
CN111635226A (zh) 一种低介电常数陶瓷材料及其制备方法
CN106565241B (zh) 一种高性能铌酸镧系微波介质陶瓷
CN109796136A (zh) 一种BLMT玻璃与Li2Zn3Ti4O12陶瓷复合的低温共烧陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 355200 Industrial Park B1, Guanling Town, Fuding City, Ningde City, Fujian Province

Patentee after: Fujian Puyu Electronic Technology Co.,Ltd.

Address before: 355200 c-08, tietang Industrial Zone, Shanqian street, Fuding City, Ningde City, Fujian Province

Patentee before: FUDING PUYU ELECTRONIC TECHNOLOGY Co.,Ltd.

CP03 Change of name, title or address