CN108500264A - 一种铝合金增材制造工艺 - Google Patents

一种铝合金增材制造工艺 Download PDF

Info

Publication number
CN108500264A
CN108500264A CN201810333025.1A CN201810333025A CN108500264A CN 108500264 A CN108500264 A CN 108500264A CN 201810333025 A CN201810333025 A CN 201810333025A CN 108500264 A CN108500264 A CN 108500264A
Authority
CN
China
Prior art keywords
aluminium alloy
material manufacturing
increasing material
manufacturing technique
laser scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810333025.1A
Other languages
English (en)
Inventor
宋宇
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Lingzhuo Technology Co Ltd
Original Assignee
Foshan Lingzhuo Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Lingzhuo Technology Co Ltd filed Critical Foshan Lingzhuo Technology Co Ltd
Priority to CN201810333025.1A priority Critical patent/CN108500264A/zh
Publication of CN108500264A publication Critical patent/CN108500264A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种铝合金的增材制造工艺。采用激光将铝合金粉末融化,凝固,之后立即进行低温惰性气体处理,可以产生大量缺陷,在大大提高铝合金强度的同时塑性不会恶化。

Description

一种铝合金增材制造工艺
技术领域
本发明涉及增材制造技术领域,尤其涉及一种铝合金构件的增材制造工艺。
背景技术
铝合金具有密度低、比强度高、导热、导电、耐腐蚀等性能,是航空航天领域常用的一种轻质结构材料。传统加工技术难以实现变截面、内部复杂流道、精密薄壁件等复杂构件的制造,而这些对于增材制造技术却很容易实现。
发明内容
发明目的:本发明的目的在于提供一种高强度铝合金的激光增材制造工艺,本发明提供的工艺能够获得质量优异的铝合金。
本发明的技术方案如下 :
本发明提供了一种铝合金的增材制造工艺,包括如下步骤:
(1)将铝合金原料粉末进行铺粉,形成粉末层;
(2)在惰性气体保护下,对粉末层进行激光扫描,进行增材制造;
(3)采用低于零下20摄氏度的惰性气体冷却;
(4)进行去应力退火处理;
(5)重复步骤(1)-(4)。
作为优选,所述激光扫描的功率优选为500~800W;所述铝合金原料粉末的粒度优选为5~10μm;所述激光扫描过程中的光斑直径优选为50~100μm,所述铺粉的厚度优选为30~50μm。激光扫描的速度优选为8000~10000mm/s,激光扫描的扫描间距优选为0.1~0.2mm,所述去应力退火处理的方式有选为:加热到140~160℃再进行空冷。
有益的效果:
在本发明中,采用激光扫描后,铝合金粉末融化,凝固,之后立即进行低温惰性气体处理,可以产生大量缺陷,尤其是产生高密度位错网络,大大增强铝合金的强度;这种网络同时还可以允许位错通过,这样在强度增高的同时塑性不会恶化。同时,采用本发明的方案可以制造形状复杂的零件。
为了便于理解本发明,下面提供实施例用于解释本发明,但它们不构成对本发明的限定。
具体实施方式
下面通过结合实施例详细描述本发明。
实施例1
(1)将6061铝合金粉末(Al-0.3wt%Cu-0.15wt%Mn-1wt%Mg-0.25wt%Zn-0.2wt%Cr-0.15wt%Ti-0.5wt%Si-0.5wt%Fe)进行铺粉,形成粉末层,铺粉的厚度为50μm;
(2)在氩体保护下,对粉末层进行激光扫描,进行增材制造;其中,激光功率为600W,激光扫描过程中的光斑直径优选为100μm,激光扫描的速度优选为9000mm/s,激光扫描的扫描间距优选为0.1mm;
(3)采用零下20摄氏度的氩气冷却;
(4)进行去应力退火处理:加热到140℃再进行空冷;
(5)重复步骤(1)-(4)10次,得到铝合金样品。
对制备的铝合金进行拉伸测试,抗拉强度为512Mpa,延伸率为12%。
实施例2
(1)将7075铝合金粉末(Al-1.3wt%Cu-0.15wt%Mn-2wt%Mg-5.2wt%Zn-0.2wt%Cr-0.1wt%Ti-0.1wt%Si-0.1wt%Fe)进行铺粉,形成粉末层,铺粉的厚度为30μm;
(2)在氩体保护下,对粉末层进行激光扫描,进行增材制造;其中,激光功率为500W,激光扫描过程中的光斑直径优选为50μm,激光扫描的速度优选为10000mm/s,激光扫描的扫描间距优选为0.17mm;
(3)采用零下50摄氏度的氩气冷却;
(4)进行去应力退火处理:加热到160℃再进行空冷;
(5)重复步骤(1)-(4)10次,得到铝合金样品。
对制备的铝合金进行拉伸测试,抗拉强度为847Mpa,延伸率为10%。
实施例3
(1)将7050铝合金粉末(Al-2.3wt%Cu-0.05wt%Mn-2wt%Mg-6wt%Zn-0.02wt%Cr-0.1wt%Zr-0.05wt%Si-0.05wt%Fe)进行铺粉,形成粉末层,铺粉的厚度为43μm;
(2)在氩体保护下,对粉末层进行激光扫描,进行增材制造;其中,激光功率为800W,激光扫描过程中的光斑直径优选为70μm,激光扫描的速度优选为8000mm/s,激光扫描的扫描间距优选为0.2mm;
(3)采用零下40摄氏度的氩气冷却;
(4)进行去应力退火处理:加热到150℃再进行空冷;
(5)重复步骤(1)-(4)10次,得到铝合金样品。
对制备的铝合金进行拉伸测试,抗拉强度为911Mpa,延伸率为10%。
按照国标的常规制造方法,6061铝合金的抗拉强度为310Mpa,延伸率为11%;7075铝合金的抗拉强度为572Mpa,延伸率为11%;7050铝合金的抗拉强度为524Mpa,延伸率为10%。可以看出,本发明的技术方案大大提高了铝合金的抗拉强度,同时塑性没有受到损失。
以上所述仅是本发明实施方式的一些例子,应当指出:对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种铝合金增材制造工艺,其特征在于:该工艺采用激光将铝合金粉末融化、凝固,之后进行低温惰性气体处理。
2.一种如权利要求1所述的铝合金增材制造工艺,其特征在于:该工艺包含如下步骤:
(1)将铝合金原料粉末进行铺粉,形成粉末层;
(2)在惰性气体保护下,对粉末层进行激光扫描,进行增材制造;
(3)采用低于零下20摄氏度的惰性气体冷却;
(4)进行去应力退火处理;
(5)重复步骤(1)-(4)。
3.一种如权利要求2所述的铝合金增材制造工艺,其特征在于:激光扫描的功率为500~800W。
4.一种如权利要求2所述的铝合金增材制造工艺,其特征在于:铝合金原料粉末的粒度为5~10μm。
5.一种如权利要求2所述的铝合金增材制造工艺,其特征在于:激光扫描的光斑直径为50~100μm。
6.一种如权利要求2所述的铝合金增材制造工艺,其特征在于:铺粉的厚度为30~50μm。
7.一种如权利要求2所述的铝合金增材制造工艺,其特征在于:激光扫描的速度为8000~10000mm/s。
8.一种如权利要求2所述的铝合金增材制造工艺,其特征在于:激光扫描的扫描间距为0.1~0.2mm。
CN201810333025.1A 2018-04-13 2018-04-13 一种铝合金增材制造工艺 Withdrawn CN108500264A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810333025.1A CN108500264A (zh) 2018-04-13 2018-04-13 一种铝合金增材制造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810333025.1A CN108500264A (zh) 2018-04-13 2018-04-13 一种铝合金增材制造工艺

Publications (1)

Publication Number Publication Date
CN108500264A true CN108500264A (zh) 2018-09-07

Family

ID=63382031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810333025.1A Withdrawn CN108500264A (zh) 2018-04-13 2018-04-13 一种铝合金增材制造工艺

Country Status (1)

Country Link
CN (1) CN108500264A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328081A (zh) * 2011-09-26 2012-01-25 华中科技大学 一种高功率激光快速成形三维金属零件的方法
CN104399978A (zh) * 2014-11-27 2015-03-11 华南理工大学 一种大尺寸复杂形状多孔非晶合金零件的3d成形方法
CN104759625A (zh) * 2015-03-27 2015-07-08 桂林电子科技大学 一种使用激光3d打印技术制备铝合金结构件的材料及方法
CN105215359A (zh) * 2015-10-08 2016-01-06 湖南顶立科技有限公司 一种高压惰性气体保护下金属粉末增材制造方法
US20160001364A1 (en) * 2013-03-13 2016-01-07 United Technologies Corporation Uninteruppted filtering system for selective laser melting powder bed additive manufacturing process
CN107470629A (zh) * 2017-08-30 2017-12-15 湖南顶立科技有限公司 一种增材构件热处理工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328081A (zh) * 2011-09-26 2012-01-25 华中科技大学 一种高功率激光快速成形三维金属零件的方法
US20160001364A1 (en) * 2013-03-13 2016-01-07 United Technologies Corporation Uninteruppted filtering system for selective laser melting powder bed additive manufacturing process
CN104399978A (zh) * 2014-11-27 2015-03-11 华南理工大学 一种大尺寸复杂形状多孔非晶合金零件的3d成形方法
CN104759625A (zh) * 2015-03-27 2015-07-08 桂林电子科技大学 一种使用激光3d打印技术制备铝合金结构件的材料及方法
CN105215359A (zh) * 2015-10-08 2016-01-06 湖南顶立科技有限公司 一种高压惰性气体保护下金属粉末增材制造方法
CN107470629A (zh) * 2017-08-30 2017-12-15 湖南顶立科技有限公司 一种增材构件热处理工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王顺花,王彦平: "《材料科学基础》", 31 January 2011, 西南交通大学出版社 *
邓志谦: "《铜及铜合金物理冶金基础》", 31 December 2010, 中南大学出版社 *

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
JP7022698B2 (ja) チタン、アルミニウム、バナジウム、及び鉄のbcc材料ならびにそれから作製される製品
JP2017186642A (ja) ALM構造物の一体構造に使用するスカンジウムを含有するAl−Mg−Si合金
JP2021505760A (ja) 急速凝固法用の高強度アルミニウム合金
Qin et al. Microstructures and properties of welded joint of aluminum alloy to galvanized steel by Nd: YAG laser+ MIG arc hybrid brazing-fusion welding
Birol Precipitation during homogenization cooling in AlMgSi alloys
FR2841263A1 (fr) PROCEDE DE PRODUCTION D'UN PRODUIT EN ALLAIGE Al-Mg-Si EQUILIBRE A HAUTE RESISTANCE, ET PRODUIT SOUDABLE ET MATERIAU DE REVETEMENT POUR AVION, OBTENUS PAR UN TEL PROCEDE
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
WO2015011346A1 (fr) Elément de structure extrados en alliage aluminium cuivre lithium
CN103255319A (zh) 一种Al-Yb-Zr耐热铝合金及其热处理工艺
CN1776997B (zh) 大容量汽轮发电机转子铜合金槽楔及其制备方法
CN114150180B (zh) 一种电子束熔丝3d打印用海洋工程钛合金材料及其制备方法
CN108356267A (zh) 一种镁合金增材制造工艺
FR2805828A1 (fr) Alliage a base d'aluminium contenant du bore et son procede de fabrication
Bo et al. Effect of combinative addition of Ti and Sr on modification of AA4043 welding wire and mechanical properties of AA6082 welded by TIG welding
CN112976718B (zh) 一种1420Al-Li/Mg-9Li/1420Al-Li复合板及制备方法
CN104233031B (zh) 一种高强适焊性微合金化az91镁合金及制备方法
CN108500264A (zh) 一种铝合金增材制造工艺
WO1998010109A1 (fr) Alliage, alliage d'aluminium et element d'alliage d'aluminium ayant une excellente resistance a la fatigue thermique
CN107400809A (zh) 锆锶复合微合金化的高强韧耐腐蚀低硅含量铝硅铜系铸造铝合金及制备方法
CN101838763B (zh) 锶微合金化的高锌2099型铝合金及其制备方法
CN107338374A (zh) Zr、Sr复合微合金化和Mn合金化的高强韧Al‑Si‑Cu系铸造铝合金及制备方法
Harada et al. Effects of high-temperature solutionizing on microstructure and tear toughness of A356 cast aluminum alloy
CN108274001A (zh) 一种tc4钛合金激光增材制造工艺
Birol A calorimetric analysis of the precipitation reactions in AlSi1MgMn alloy with Cu additions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180907