CN108493251A - 屏蔽栅场效应晶体管及其制造方法 - Google Patents

屏蔽栅场效应晶体管及其制造方法 Download PDF

Info

Publication number
CN108493251A
CN108493251A CN201810351436.3A CN201810351436A CN108493251A CN 108493251 A CN108493251 A CN 108493251A CN 201810351436 A CN201810351436 A CN 201810351436A CN 108493251 A CN108493251 A CN 108493251A
Authority
CN
China
Prior art keywords
effect transistor
field effect
gate field
manufacturing
shielded gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810351436.3A
Other languages
English (en)
Inventor
黄昕
张帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan Anhai Semiconductor Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810351436.3A priority Critical patent/CN108493251A/zh
Publication of CN108493251A publication Critical patent/CN108493251A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种屏蔽栅场效应晶体管及其制造方法,属于半导体技术领域。由于该屏蔽栅场效应晶体管的制造方法中首先在沟槽底部形成底部氧化层,再于沟槽表面形成屏蔽栅氧化层,因此利用该方法形成的屏蔽栅场效应晶体管的屏蔽栅底部的氧化层厚度较其它位置更厚,可以达到减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且本发明的屏蔽栅场效应晶体管的结构简单,其制造方法工艺简便,成本也相当低廉。

Description

屏蔽栅场效应晶体管及其制造方法
技术领域
本发明涉及半导体技术领域,特别涉及场效应晶体管技术领域,具体是指一种屏蔽栅场效应晶体管及其制造方法。
背景技术
随着电子信息技术的迅速发展,特别是像时尚消费电子和便携式产品的快速发展,金属氧化物半导体场效应晶体管(MOSFET)等功率器件的需求量越来越大,MOSFET主要分为横向和纵向两种,横向MOSFET的明显优势是其较好的集成性,可以更容易集成到现有技术的工艺平台上,但由于其耐压的漂移区在表面展开,显示出了其最大的不足,占用的面积较大,面积代表成本,耐压越高的器件,劣势越明显,而纵向MOSFET很好的避免了这一问题,因此,超高压的分立器件仍然以纵向为主。
图1为传统的沟槽型纵向场效应晶体管。为了满足高频应用,对电容的要求越来越高,带有屏蔽栅结构的沟槽型场效应晶体管得到了广泛的应用,基本结构如图2所示。随着电压应用的增大,这种结构的弱点就会越来越明显,如图3所示,屏蔽栅底部为器件电场最强的位置,容易被击穿。因此,如何降低屏蔽栅底部电场,防止其被击穿,成为本领域亟待解决的问题。
发明内容
本发明的目的是克服了上述现有技术中的缺点,提供一种通过优化屏蔽栅底部的氧化层的厚度实现减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且结构简单,生产工艺简便,成本低廉的屏蔽栅场效应晶体管及其制造方法。
为了实现上述的目的,本发明的屏蔽栅场效应晶体管的制造方法包括以下步骤:
(1)在作为漏极的N+衬底上利用外延生长工艺产生N-区;
(2)在所述的N-区上设置掩模版进行第一次刻蚀形成位于该N-区内的沟槽;
(3)在所述沟槽内壁上设置掩模版进行第二次刻蚀加深所述的沟槽形成沟槽底部;
(4)在所述的沟槽底部形成底部介质层;
(5)去除所述的掩模版和部分底部介质层;
(6)在所述沟槽表面形成屏蔽栅介质层;
(7)在所述沟槽内进行屏蔽栅多晶淀积并回刻;
(8)淀积介质层覆盖所述的沟槽;
(9)进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀,形成位于所述沟槽顶部的栅极;
(10)在所述的N-区顶部进行P-body区注入和退火,形成P-body区;
(11)在所述的P-body区顶部沿所述的沟道进行N+注入;
(12)利用后段工艺在器件顶部形成源极。
该屏蔽栅场效应晶体管的制造方法中,所述的掩模版为氮化硅。
该屏蔽栅场效应晶体管的制造方法中,所述的步骤(4)具体为,通过热氧生长在所述的沟槽底部形成底部氧化层。
该屏蔽栅场效应晶体管的制造方法中,所述的步骤(6)具体为,通过热氧生长在沟槽表面形成屏蔽栅氧化层。
该屏蔽栅场效应晶体管的制造方法中,所述的步骤(8)具体为,淀积氧化层覆盖所述的沟槽。
该屏蔽栅场效应晶体管的制造方法中,所述的步骤(12)具体为,利用后段工艺,设置层间介质层,P+注入及金属连线在器件顶部形成源极。
本发明还提供一种利用上述制造方法制成的屏蔽栅场效应晶体管,其底部介质层的厚度为0.7至1.7μm。
采用了该发明屏蔽栅场效应晶体管及其制造方法,由于其首先在沟槽底部形成底部氧化层,再于沟槽表面形成屏蔽栅氧化层,因此其屏蔽栅底部的氧化层的厚度较其它位置更厚,达到减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且本发明的屏蔽栅场效应晶体管的结构简单,其制造方法工艺简便,成本也相当低廉。
附图说明
图1为传统沟槽型纵向场效应晶体管结构示意图。
图2为现有技术中的带有屏蔽栅结构的沟槽型场效应晶体管结构示意图。
图3为现有技术中的带有屏蔽栅结构的沟槽型场效应晶体管屏蔽栅底部击穿点示意图。
图4为本发明的屏蔽栅场效应晶体管及其制造方法的流程示意图。
图5为本发明的屏蔽栅场效应晶体管及其制造方法中EPI生长工艺示意图。
图6为本发明的屏蔽栅场效应晶体管及其制造方法中第一次刻蚀示意图。
图7为本发明的屏蔽栅场效应晶体管及其制造方法中第二次刻蚀示意图。
图8为本发明的屏蔽栅场效应晶体管及其制造方法中形成底部氧化层示意图。
图9为本发明的屏蔽栅场效应晶体管及其制造方法中去除掩模版和部分底部氧化层示意图。
图10为本发明的屏蔽栅场效应晶体管及其制造方法中在沟槽表面形成屏蔽栅氧化层示意图。
图11为本发明的屏蔽栅场效应晶体管及其制造方法中在沟槽内进行屏蔽栅多晶淀积并回刻示意图。
图12为本发明的屏蔽栅场效应晶体管及其制造方法中淀积氧化层覆盖沟槽示意图。
图13为本发明的屏蔽栅场效应晶体管及其制造方法中进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀示意图。
图14为本发明的屏蔽栅场效应晶体管及其制造方法中P-body区注入和退火示意图。
图15为本发明的屏蔽栅场效应晶体管及其制造方法中进行N+注入示意图。
图16为本发明的屏蔽栅场效应晶体管的结构示意图。
图17为本发明的屏蔽栅场效应晶体管与传统屏蔽栅场效应晶体管的底部电场分布对比示意图。
具体实施方式
为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明。
请参阅图4所示,为本发明的屏蔽栅场效应晶体管及其制造方法的流程示意图。
在一种实施方式中,该屏蔽栅场效应晶体管的制造方法,包括以下步骤:
(1)如图5所示,在作为漏极的N+衬底上利用外延生长工艺产生N-区;
(2)如图6所示,在所述的N-区上设置氮化硅掩模版进行第一次刻蚀形成位于该N-区内的沟槽;
(3)如图7所示,在所述沟槽内壁上设置氮化硅掩模版进行第二次刻蚀加深所述的沟槽形成沟槽底部;
(4)如图8所示,在所述的沟槽底部形成底部介质层;
(5)如图9所示,去除所述的掩模版和部分底部介质层;
(6)如图10所示,在所述沟槽表面形成屏蔽栅介质层;
(7)如图11所示,在所述沟槽内进行屏蔽栅多晶淀积并回刻;
(8)如图12所示,淀积介质层覆盖所述的沟槽;
(9)如图13所示,进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀,形成位于所述沟槽顶部的栅极;
(10)如图14所示,在所述的N-区顶部进行P-body区注入和退火,形成P-body区;
(11)如图15所示,在所述的P-body区顶部沿所述的沟道进行N+注入;
(12)如图16所示,利用后段工艺在器件顶部形成源极。
在优选的实施方式中,
所述的步骤(4)具体为,通过热氧生长在所述的沟槽底部形成底部氧化层。
所述的步骤(6)具体为,通过热氧生长在沟槽表面形成屏蔽栅氧化层。
所述的步骤(8)具体为,淀积氧化层覆盖所述的沟槽。
所述的步骤(12)具体为,利用后段工艺,设置层间介质层,P+注入及金属连线在器件顶部形成源极。
本发明还提供一种利用上述制造方法制成的屏蔽栅场效应晶体管,其结构如图16所示。在优选的实施方式中,所述的底部介质层的厚度为0.7至1.7μm。
在本发明的应用中,屏蔽栅底部的氧化层的厚度可根据不同的应用而有所不同。本发明可以涵盖20V~250V的广泛应用范围,以100V应用为例,传统技术屏蔽栅底部的氧化层的厚度大概在0.5~0.7um的范围,而本发明的厚度大致为传统厚度的1.2~2倍;
增大底部氧化层厚度一方面可以承担更大的电场进而得到更高的击穿电压。本发明与传统结构底部电场分布对比如图17所示。本发明中更厚的底部二氧化硅可以有效降低N-外延层(硅)中的电场强度(本发明电场强度E1<传统结构电场强度E2),进而可以更晚到达临界电场,从而得到更高的击穿电压。
另一方面,同增大底部氧化层厚度还可以进一步减小漏极与源极之间的寄生电容;根据平板电容的理论,C=εA/d,其中ε为介质层二氧化硅的介电常数,A为面积,d为介质层厚度,因此,Cds会随着介质层厚度d的增大而减小。
采用了该发明屏蔽栅场效应晶体管及其制造方法,由于其首先在沟槽底部形成底部氧化层,再于沟槽表面形成屏蔽栅氧化层,因此其屏蔽栅底部的氧化层的厚度较其它位置更厚,达到减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且本发明的屏蔽栅场效应晶体管的结构简单,其制造方法工艺简便,成本也相当低廉。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (8)

1.一种屏蔽栅场效应晶体管的制造方法,其特征在于,该方法包括以下步骤:
(1)在作为漏极的N+衬底上利用外延生长工艺产生N-区;
(2)在所述的N-区上设置掩模版进行第一次刻蚀形成位于该N-区内的沟槽;
(3)在所述沟槽内壁上设置掩模版进行第二次刻蚀加深所述的沟槽形成沟槽底部;
(4)在所述的沟槽底部形成底部介质层;
(5)去除所述的掩模版和部分底部介质层;
(6)在所述沟槽表面形成屏蔽栅介质层;
(7)在所述沟槽内进行屏蔽栅多晶淀积并回刻;
(8)淀积介质层覆盖所述的沟槽;
(9)进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀,形成位于所述沟槽顶部的栅极;
(10)在所述的N-区顶部进行P-body区注入和退火,形成P-body区;
(11)在所述的P-body区顶部沿所述的沟道进行N+注入;
(12)利用后段工艺在器件顶部形成源极。
2.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的掩模版为氮化硅。
3.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的步骤(4)具体为,
通过热氧生长在所述的沟槽底部形成底部氧化层。
4.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的步骤(6)具体为,
通过热氧生长在沟槽表面形成屏蔽栅氧化层。
5.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的步骤(8)具体为,
淀积氧化层覆盖所述的沟槽。
6.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的步骤(12)具体为,
利用后段工艺,设置层间介质层,P+注入及金属连线在器件顶部形成源极。
7.一种屏蔽栅场效应晶体管,其特征在于,利用权利要求1至6中任一项所述的制造方法制成。
8.一种屏蔽栅场效应晶体管,其特征在于,所述的底部介质层的厚度为0.7至1.7μm。
CN201810351436.3A 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法 Pending CN108493251A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810351436.3A CN108493251A (zh) 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810351436.3A CN108493251A (zh) 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法

Publications (1)

Publication Number Publication Date
CN108493251A true CN108493251A (zh) 2018-09-04

Family

ID=63313601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810351436.3A Pending CN108493251A (zh) 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法

Country Status (1)

Country Link
CN (1) CN108493251A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211965A (zh) * 2006-12-25 2008-07-02 万国半导体股份有限公司 极度圆孔屏蔽的栅槽mosfet器件及其生产工艺
CN101615632A (zh) * 2008-06-26 2009-12-30 飞兆半导体公司 用于形成具有包括氮化层的极间电介质的屏蔽栅沟槽fet的结构和方法
US20100044785A1 (en) * 2008-01-15 2010-02-25 Murphy James J High aspect ratio trench structures with void-free fill material
CN103904119A (zh) * 2014-03-28 2014-07-02 中国科学院微电子研究所 一种具有纵向屏蔽栅的Trench MOSFET及其加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211965A (zh) * 2006-12-25 2008-07-02 万国半导体股份有限公司 极度圆孔屏蔽的栅槽mosfet器件及其生产工艺
US20100044785A1 (en) * 2008-01-15 2010-02-25 Murphy James J High aspect ratio trench structures with void-free fill material
CN101615632A (zh) * 2008-06-26 2009-12-30 飞兆半导体公司 用于形成具有包括氮化层的极间电介质的屏蔽栅沟槽fet的结构和方法
CN103904119A (zh) * 2014-03-28 2014-07-02 中国科学院微电子研究所 一种具有纵向屏蔽栅的Trench MOSFET及其加工方法

Similar Documents

Publication Publication Date Title
CN108400094A (zh) 屏蔽栅场效应晶体管及其制造方法(锤形)
US8445958B2 (en) Power semiconductor device with trench bottom polysilicon and fabrication method thereof
CN108598165A (zh) 屏蔽栅场效应晶体管及其制造方法(柱形)
US9960237B2 (en) Termination structure with multiple embedded potential spreading capacitive structures for trench MOSFET
CN101866946B (zh) 半导体装置
US20120241862A1 (en) Ldmos device and method for making the same
CN101299436A (zh) 应用hdp淀积的源-体注入阻挡块的器件结构及制造方法
CN101236991B (zh) 半导体器件及其制造方法
CN105742185B (zh) 屏蔽栅功率器件及其制造方法
CN102347220A (zh) 具有薄epi工艺的沟槽超结mosfet器件及其制造方法
CN111524976B (zh) 一种低栅电荷的功率mos器件及其制造方法
CN102299078A (zh) 半导体器件的制造方法
CN1725508A (zh) 横向双扩散金属氧化物半导体ldmos元件及其加工方法
CN109390393A (zh) 具有厚沟槽底部氧化物的mosfet器件
CN111785625A (zh) 超级结器件的工艺方法
CN108376647A (zh) 屏蔽栅场效应晶体管及其制造方法(哑铃形)
CN108807506A (zh) 带沟槽栅结构的深槽超结mosfet器件及其加工工艺
KR100364815B1 (en) High voltage device and fabricating method thereof
CN113078066A (zh) 一种分离栅功率mosfet器件的制造方法
CN107221500A (zh) 双沟槽场效应管及其制备方法
CN108493251A (zh) 屏蔽栅场效应晶体管及其制造方法
Chen et al. Progressive development of superjunction power MOSFET devices
CN110400833A (zh) 超结功率器件及其制造方法
CN106972061A (zh) 一种电子器件及其制备方法
CN112530805B (zh) 横向双扩散金属氧化物半导体器件及制作方法、电子装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191113

Address after: 510700 Room 303, building 1, No. 23, Jinzhong Road, Huangpu District, Guangzhou City, Guangdong Province

Applicant after: Guangzhou Anhai semiconductor Limited by Share Ltd

Address before: Room 302, room 88, 7, Guiping Road, Xuhui District, Shanghai

Applicant before: Zhang Shuai

Applicant before: Huang Cuan

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191204

Address after: Floor 12, building a1-3, Hanyu Jingu, no.7000, jingshidong Road, Jinan area, China (Shandong) pilot Free Trade Zone, Jinan City, Shandong Province, 250102

Applicant after: Jinan Anhai Semiconductor Co., Ltd

Address before: 510700 Room 303, building 1, No. 23, Jinzhong Road, Huangpu District, Guangzhou City, Guangdong Province

Applicant before: Guangzhou Anhai semiconductor Limited by Share Ltd

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904

RJ01 Rejection of invention patent application after publication