CN108490472A - 一种基于模糊自适应滤波的无人艇组合导航方法 - Google Patents

一种基于模糊自适应滤波的无人艇组合导航方法 Download PDF

Info

Publication number
CN108490472A
CN108490472A CN201810082656.0A CN201810082656A CN108490472A CN 108490472 A CN108490472 A CN 108490472A CN 201810082656 A CN201810082656 A CN 201810082656A CN 108490472 A CN108490472 A CN 108490472A
Authority
CN
China
Prior art keywords
noise
filtering
matrix
value
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810082656.0A
Other languages
English (en)
Other versions
CN108490472B (zh
Inventor
赵玉新
姜春东
刘厂
刘利强
李刚
高峰
周学文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201810082656.0A priority Critical patent/CN108490472B/zh
Publication of CN108490472A publication Critical patent/CN108490472A/zh
Application granted granted Critical
Publication of CN108490472B publication Critical patent/CN108490472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Abstract

本发明公开了一种基于模糊自适应滤波的无人艇组合导航方法,由捷联惯性导航系统和全球定位系统组成。无人艇执行任务时其船体较小受环境影响较大,本发明目的是改善由于量测噪声统计特性随实际外部环境不同导致的常规卡尔曼滤波发散问题,并提高捷联惯性导航系统/全球卫星导航系统的滤波精度。该方法通过监测理论残差和实际残差的协方差一致程度,应用模糊推理系统不断调整滤波器的增益系数,对卡尔曼滤波器进行在线自适应调整,最终实现最优估计。本发明所设计的自适应滤波方法能够准确的估算出系统的实时量测噪声统计特性,使无人艇组合导航系统输出更精确的位置和速度信息。

Description

一种基于模糊自适应滤波的无人艇组合导航方法
技术领域
本发明涉及导航系统技术领域,具体涉及一种基于模糊自适应滤波的无人艇组合导航方法。
背景技术
无人艇(USV)具有体积小、隐身性好、智能、无人员伤亡等优点,在军事方面能够灵活作战,部署机动,使用方便,可以在危险区域或者不适宜派遣有人舰船的区域独立自主执行任务,拓展了海上作战范围,具有良好的费效比。我国作为海岸线广阔、海上争端频发的发展中大国,有必要加强无人艇技术研究,保护自身的海洋权益。而为其设计一款高性能的导航系统具有重要现实意义。就目前而言,对于无人艇导航系统的主要要求是小体积、高精度、高可靠性,能够适应不同海况,针对其特点,常采用捷联惯导系统(SINS)和全球定位系统(GPS)组成组合导航系统。
在传统组合导航系统中,卡尔曼滤波技术得到广泛的应用。当组合导航系统的数学模型精确已知,并忽略计算误差时,用常规卡尔曼滤波对系统的状态进行估计,可以得到状态的精确估计值。如果系统数学模型不精确或者噪声统计特性变化,常规卡尔曼滤波精度将大大降低,甚至发散。建立组合导航系统准确的数学模型需要做大量的试验,尤其是建立准确的系统噪声和量测噪声的统计特性。为了解决此问题,通常采用自适应滤波技术,在进行滤波的同时,利用观测数据带来的信息,不断地在线估计和修正模型参数、噪声统计特性以提高滤波精度,得到对象状态的最优估计值。
近年来,许多学者对自适应滤波进行了深入的研究。文献“抗野值自适应卡尔曼滤波方法的研究,中国惯性技术学报,2003”提出了抗野值自适应滤波方法,这种方法通过对信息的监测判断是否有野值出现,当有野值出现时,通过自适应调整增益矩阵,达到消除野值影响的目的。但是它仅仅解决了由于野值引起滤波发散的情况,而对其它原因引起的滤波发散无能为力。文献“A robust and self-stunning Kalman filter for autonomousspacecraft navigation,Degree of doctor of Washington University,2001”提出了多模型和基于信息的自适应滤波方法,由于这种方法多处出现矩阵求逆计算,实时性和稳定性难以满足要求。另外,这种方法要求系统可观测,而且它仅仅适合白噪声。在文献“神经网络辅助卡尔曼滤波技术在组合导航系统中的应用研究,中国惯性技术学报,2003”中指出,将人工智能技术和滤波技术融合是滤波技术的发展趋势。神经网络作为人工智能技术中的一个领域,其主要优点在于它对系统的模型没有特别要求,只要有足够的用于训练的先验数据,就可以用训练的神经网络近似代替原系统。但训练样本的获取一直是神经网络应用的一个瓶颈。
对无人艇组合导航系统而言,由于自身艇小更易受到复杂海况的影响,系统量测噪声统计特性随实际工作环境而改变,初始的先验值并不能代表实际工作时的噪声情况。经过对捷联式惯性导航系统的大量反复试验,可以获得试验时系统噪声的统计特性,但是实际工作时量测噪声的统计特性是未知的,因此需要一种在线估计量测噪声统计特性的自适应滤波方法。
发明内容
本发明的目的是为了解决上述问题,提出一种基于模糊自适应滤波的无人艇组合导航方法。本发明根据实时得到的量测新息的实际方差与理论方差的比值和差值,由设计的模糊推理系统(FIS)在线实时调整量测噪声矩阵。这就使滤波算法不需要得到准确的量测噪声矩阵的先验知识,且对于时变得量测噪声也能够得到精确的估计值。采用递推的方式逐步调整系统量测噪声方差阵逼近真实值,并可通过调整参数来调整逼近过程在快速性和稳定性之间达到最佳平衡,且以量测新息的实际方差与理论方差的差值和比值作为模糊推理系统的输入,使系统更具通用性。
本发明是一种基于模糊自适应滤波的无人艇组合导航方法,具体包括以下几个步骤:
步骤一:建立系统状态方程和量测方程:
在SINS/GPS组合导航模式下,SINS作为主导航系统建立系统的状态方程,并选取经纬度误差、速度误差以及失准角为状态变量,利用GPS与SINS所提供速度和位置的差值作为量测变量,建立组合导航系统的量测方程;
状态方程:Xk=Φk,k-1Xk-1k-1Wk-1
量测方程:Zk=HkXk+Vk
其中,Xk为系统状态向量,Zk为量测向量,Hk为量测矩阵,Φk,k-1为状态转移矩阵,Γk-1为系统噪声矩阵,Wk-1为系统噪声向量,Vk为量测噪声向量;Wk-1和Vk是不相关的高斯白噪声序列,均值和方差分别为:E{Wk}=0,E{WkWj T}=Qkδkj,E{Vk}=0,E{VkVj T}=Rkδkj,cov{WiVj}=0;式中,Qk为系统噪声方差阵;Rk为量测噪声方差矩阵,δkj是δ函数;
步骤二:根据常规卡尔曼滤波算法,建立模糊自适应滤波算法:
首先更新状态一步预测值及其均方误差,利用k时刻量测信息Zk和一步预测计算新息序列rk,求取增益矩阵和滤波方程;
一步预测:
预测均方误差:
增益矩阵:
新息序列:
滤波方程:
滤波均方误差:Pk=(I-KkHk)Pk/k-1
上述算法描述中,为滤波过程中对状态向量Xk的估计量,为状态一步预测,Kk为滤波增益,Pk为滤波误差的协方差阵,Pk/k-1为预测误差协方差阵,rk为新息序列,I为单位矩阵;
步骤三:确定模糊推理系统的输入输出参数:
定义残差方差的理论值为和残差方差的实际值为设计两个模糊推理系统(FIS),均为单输入单输出模式。将理论值和实际值的比值RORk作为模糊推理系统1的输入,输出为αk;理论值和实际值的差值DORk作为模糊推理系统2的输入,输出为b;
残差方差的理论值:
残差方差的实际值:
理论值和实际值的比值:
理论值和实际值的差值:
其中,为对最新的N个残差向量方差求平均值(N由经验选取,一般在10~30之间,主要起平滑作用),i0=k-N+1;ri即为残差序列;Tr(·)表示对矩阵求迹;
步骤四:设计模糊推理系统:
模糊推理系统1的输入为上一步求出的RORk,输出为αk,对输入输出模糊化,两者的隶属度函数均为三角形隶属度函数,反模糊化采用重心法,其模糊控制规则为:
IfRORk∈D(Decrease),thenαk∈D(Decrease)
IfRORk∈M(Maintain),thenαk∈M(Maintain)
IfRORk∈I(Increase),thenαk∈I(Increase)
模糊推理系统2的输入为上一步求出的DORk,输出为b,对输入输出模糊化,两者的隶属度函数均为三角形隶属度函数,反模糊化采用重心法,其模糊控制规则为:
IfDORk∈N(Negtive),thenb∈I(Increase)
IfDORk∈Z(Zero),thenb∈M(Maintain)
IfDORk∈P(Positive),thenb∈I(Increase)
步骤五:更新量测噪声估计值:
根据上一步求出的αk和b,更新量测噪声估计值,具体表达式为:
量测噪声估计值:
其中,表示第k步的量测噪声估计值,αk表示量测噪声的调整系数,b为指数调整系数,表示对αk的放大程度。若b>1,表示放大αk的调整作用,这样量测噪声变化时,可以在较少的步数内迅速逼近真实值。若b<1,表示缩小αk的调整作用。b的取值过大,则可能导致以真实量测噪声值为中心作小幅度震荡;b取值过小,则会导致调整到真实值的过渡时间稍长。
步骤六:重复执行滤波过程:
不断重复以上步骤二、三、五过程,利用自适应滤波方法对量测噪声进行在线估计,并实时修正捷联惯导系统输出的导航信息,直至SINS/GPS组合导航过程结束。
本发明的优点在于:
(1)本发明提出的一种基于模糊自适应滤波的无人艇组合导航方法,能够有效的解决无人艇受外部环境影响,量测噪声实时变化带来的导航精度下降甚至滤波发散等问题,克服了传统算法的缺点和不足;
(2)本发明提出的基于模糊自适应滤波的无人艇组合导航方法,通过监测理论残差和实际残差的协方差一致程度,应用模糊推理系统不断调整量测噪声和滤波器的增益系数,对卡尔曼滤波器进行在线自适应调整,保证了SINS/GPS组合导航精度,更为简单易行,具有通用性。
附图说明
图1:本发明提出的无人艇自适应滤波方法导航系统的结构框图。
图2:本发明提出的无人艇自适应滤波方法流程图。
图3:本发明中模糊推理系统1输入输出隶属度函数。
图4:本发明中模糊推理系统2输入输出隶属度函数。
图5:本发明中自适应滤波和常规卡尔曼滤波曲线图。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明提出的一种无人艇组合导航系统的模糊自适应滤波方法,结构框图和算法流程图分别如图1和图2所示,具体包括以下几个步骤:
步骤一:建立系统状态方程和量测方程:
在SINS/GPS组合导航模式下,SINS作为主导航系统建立系统的状态方程,并选取经纬度误差、速度误差以及失准角为状态变量,利用GPS与SINS所提供速度和位置的差值作为量测变量,建立组合导航系统的量测方程;
首先,建立连续系统的状态方程和量测方程:
状态方程:
量测方程:Z(t)=H(t)X(t)+V(t)
其中,状态变量:
状态转移阵:
系统噪声阵:
姿态角矩阵:
量测系数阵:
式中,δλ表示纬度、经度位置误差;δVE、δVN表示东向速度、北向速度误差;VE、VN表示东向、北向速度;表示东向、北向及垂向失准角;fe、fn、fu表示加速度计在东向、北向和垂向的加速度;wie表示地球自转角速度;R表示地球半径;γ、θ、φ表示纵摇角、横摇角和航向角;W(t)和V(t)分别为系统噪声和量测噪声;
将连续系统状态方程和量测方程离散化:
状态方程:Xk=Φk,k-1Xk-1k-1Wk-1
量测方程:Zk=HkXk+Vk
其中,Xk为系统状态向量,Zk为量测向量,量测矩阵Hk=H(t),系统噪声矩阵Γk-1=G(tk)Δt,状态转移矩阵Φk,k-1=I+F(tk)Δt(采样时间tk=k,采样周期Δt=1),I为单位矩阵,Wk-1为系统噪声向量,Vk为量测噪声向量;Wk-1和Vk是不相关的高斯白噪声序列,均值和方差分别为:
E{Wk}=0,E{WkWj T}=Qkδkj,E{Vk}=0,E{VkVj T}=Rkδkj,cov{WiVj}=0;
其中,E、cov分别表示均值和方差、Qk为系统噪声方差阵;Rk为量测噪声方差矩阵,δkj是δ函数;
步骤二:根据常规卡尔曼滤波算法,建立模糊自适应滤波算法:
首先更新状态一步预测值及其均方误差,利用k时刻量测信息Zk和一步预测计算新息序列rk,求取增益矩阵和滤波方程;
一步预测:
预测均方误差:
增益矩阵:
新息序列:
滤波方程:
滤波均方误差:Pk=(I-KkHk)Pk/k-1
其中,为滤波过程中对状态向量Xk的估计量,为状态一步预测,Kk为滤波增益,Pk为滤波误差的协方差阵,Pk/k-1为预测误差协方差阵,rk为新息序列,I为单位矩阵;
步骤三:确定模糊推理系统的输入输出参数:
定义残差方差的理论值为和残差方差的实际值为设计两个模糊推理系统(FIS),均为单输入单输出模式。将理论值和实际值的比值RORk作为模糊推理系统1的输入,输出为αk;理论值和实际值的差值DORk作为模糊推理系统2的输入,输出为b;
残差方差的理论值:
残差方差的实际值:
理论值和实际值的比值:
理论值和实际值的差值:
其中,为对最新的N个残差向量方差求平均值(N由经验选取,一般在10~30之间,主要起平滑作用),i0=k-N+1;ri即为残差序列;Tr(·)表示对矩阵求迹;
步骤四:设计模糊推理系统:
模糊推理系统1的输入为上一步求出的RORk,输出为αk,对输入输出模糊化,两者的隶属度函数均为三角形隶属度函数,反模糊化采用重心法,隶属度函数如图3,其模糊控制规则为:
IfRORk∈D(Decrease),thenαk∈D(Decrease)
IfRORk∈M(Maintain),thenαk∈M(Maintain)
IfRORk∈I(Increase),thenαk∈I(Increase)
模糊推理系统2的输入为上一步求出的DORk,输出为b,对输入输出模糊化,两者的隶属度函数均为三角形隶属度函数,反模糊化采用重心法,隶属度函数如图4,其模糊控制规则为:
IfDORk∈N(Negtive),thenb∈I(Increase)
IfDORk∈Z(Zero),thenb∈M(Maintain)
IfDORk∈P(Positive),thenb∈I(Increase)
当模型准确时,的值趋近于相等,RORk的值在1附近,自适应调整系数使得维持不变。如果量测噪声少量增大,则随之增大,进而RORk增大,自适应调整系数增大(此时,b由FIS2控制的较小,防止震荡),则调整到合理值。如果量测噪声增大较大,则随之增大,进而RORk增大,自适应调整系数增大(此时,b由FIS2适量增大,减少过渡时间),则调整到合理值。量测噪声减小的过程与增大过程类似。模糊自适应滤波器的原理框图如图1所示。
步骤五:更新量测噪声估计值:
更新量测噪声估计值,具体表达式为:
量测噪声估计值:
其中,表示第k步的量测噪声估计值,αk表示量测噪声的调整系数,b为指数调整系数,表示对αk的放大程度。若b>1,表示放大αk的调整作用,这样量测噪声变化时,可以在较少的步数内迅速逼近真实值。若b<1,表示缩小αk的调整作用。b的取值过大,则可能导致以真实量测噪声值为中心作小幅度震荡;b取值过小,则会导致调整到真实值的过渡时间稍长。
步骤六:重复执行滤波过程:
不断重复以上步骤二、三、五过程,利用自适应滤波方法对量测噪声进行在线估计,并实时修正捷联惯导系统输出的导航信息,直至SINS/GPS组合导航过程结束。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
本发明的有益效果可以通过Matlab和FUZZY工具箱仿真实验进行验证,在0~250s区间保持初始模型不变,在251~500s区间将量测噪声变为初始值的9倍。分别用常规卡尔曼滤波和本发明提出的滤波方法对两段过程进行仿真。仿真曲线如图5所示。SINS/GPS组合导航系统中仿真参数设置如下:
初始位置为经度120°、纬度60°,初始速度为东向14m/s、北向14m/s,初始东北天平台角误差分别为2′、2′、5′,初始速度误差为0.01m/s,INS初始经度和纬度误差为2′。采样间隔为1s,仿真时间为500s。仿真开始条件为:P0=diag[22,22,52,0.012,0.012,22,22],R0=diag[0.22,0.22,22,22]。
仿真结果表明,采用传统的卡尔曼滤波,在0~250s保持随机噪声初始模型不变时,误差较小。251~500s后,随机噪声模型突变,量测噪声的方差发生了变化,仍然采用初始的量测噪声方差值滤波,滤波结果会随着噪声的增大而出现更大的波动,甚至可能发散。而采用本发明的滤波方法,后半段量测噪声突变时,滤波过程未发生明显变化,波形较为平稳,位置误差保持在较低水平。本发明提出的模糊自适应滤波方法通过在线调整量测噪声的方差阵,能很好地适应载体在不确定环境下的工作状态。即使系统量测噪声发生了变化,也不会影响滤波器的估计结果,仍然有很高的估计精度与很好的自适应性,具有广阔的工程应用前景。

Claims (2)

1.一种基于模糊自适应滤波的无人艇组合导航方法,其特征在于,包括以下几个步骤:
步骤一:建立系统状态方程和量测方程:
在SINS/GPS组合导航模式下,SINS作为主导航系统建立系统的状态方程,并选取经纬度误差、速度误差以及失准角为状态变量,利用GPS与SINS所提供速度和位置的差值作为量测变量,建立组合导航系统的量测方程;
状态方程:Xk=Φk,k-1Xk-1k-1Wk-1
量测方程:Zk=HkXk+Vk
其中,Xk为系统状态向量,Zk为量测向量,Hk为量测矩阵,Φk,k-1为状态转移矩阵,Γk-1为系统噪声矩阵,Wk-1为系统噪声向量,Vk为量测噪声向量;Wk-1和Vk是不相关的高斯白噪声序列,均值和方差分别为:E{Wk}=0,E{Vk}=0,cov{WiVj}=0;式中,Qk为系统噪声方差阵;Rk为量测噪声方差矩阵,δkj是δ函数;
步骤二:根据常规卡尔曼滤波算法,建立模糊自适应滤波算法:
首先更新状态一步预测值及其均方误差,利用k时刻量测信息Zk和一步预测计算新息序列rk,求取增益矩阵和滤波方程;
一步预测:
预测均方误差:
增益矩阵:
新息序列:
滤波方程:
滤波均方误差:Pk=(I-KkHk)Pk/k-1
其中,为滤波过程中对状态向量Xk的估计量,为状态一步预测,Kk为滤波增益,Pk为滤波误差的协方差阵,Pk/k-1为预测误差协方差阵,rk为新息序列,I为单位矩阵;
步骤三:确定模糊推理系统的输入输出参数;
步骤四:设计模糊推理系统(包含两个子系统):
第一个模糊推理系统的输入为上一步求出的RORk,输出为αk,对输入输出模糊化,两者的隶属度函数均为三角形隶属度函数,反模糊化采用重心法;
第二个模糊推理系统的输入为上一步求出的DORk,输出为b,对输入输出模糊化,两者的隶属度函数均为三角形隶属度函数,反模糊化采用重心法;
步骤五:更新量测噪声估计值:
根据上一步求出的αk和b,更新量测噪声估计值,具体表达式为:
量测噪声估计值:
其中,表示第k步的量测噪声估计值,αk表示量测噪声的调整系数,b为指数调整系数,表示对αk的放大程度;
步骤六:重复执行滤波过程:
不断重复以上步骤二、三、五过程,利用自适应滤波方法对量测噪声进行在线估计,并实时修正捷联惯导系统输出的导航信息,直至SINS/GPS组合导航过程结束。
2.根据权利要求1所述的一种基于模糊自适应滤波的无人艇组合导航方法,其特征在于,
所述步骤三中:在确定模糊推理系统输入输出参数时,设残差方差的理论值为和残差方差的实际值为设计两个模糊推理系统,均为单输入单输出模式,将理论值和实际值的比值RORk作为第一个模糊推理系统的输入,输出为αk;理论值和实际值的差值DORk作为第二个模糊推理系统的输入,输出为b;
残差方差的理论值:
残差方差的实际值:
理论值和实际值的比值:
理论值和实际值的差值:
其中,为对最新的N个残差向量方差求平均值,i0=k-N+1;ri即为残差序列;Tr(·)表示对矩阵求迹。
CN201810082656.0A 2018-01-29 2018-01-29 一种基于模糊自适应滤波的无人艇组合导航方法 Active CN108490472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810082656.0A CN108490472B (zh) 2018-01-29 2018-01-29 一种基于模糊自适应滤波的无人艇组合导航方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810082656.0A CN108490472B (zh) 2018-01-29 2018-01-29 一种基于模糊自适应滤波的无人艇组合导航方法

Publications (2)

Publication Number Publication Date
CN108490472A true CN108490472A (zh) 2018-09-04
CN108490472B CN108490472B (zh) 2021-12-03

Family

ID=63343845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810082656.0A Active CN108490472B (zh) 2018-01-29 2018-01-29 一种基于模糊自适应滤波的无人艇组合导航方法

Country Status (1)

Country Link
CN (1) CN108490472B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844540A (zh) * 2018-09-11 2018-11-20 北京机械设备研究所 一种结合协方差和Sage-Husa滤波技术的自适应滤波方法
CN109443355A (zh) * 2018-12-25 2019-03-08 中北大学 基于自适应高斯pf的视觉-惯性紧耦合组合导航方法
CN109974695A (zh) * 2019-04-09 2019-07-05 东南大学 基于Krein空间的水面舰艇导航系统的鲁棒自适应滤波方法
CN110187282A (zh) * 2019-06-03 2019-08-30 珠海东帆科技有限公司 电池荷电状态估算方法和估算装置
CN111044049A (zh) * 2019-12-30 2020-04-21 东南大学 一种用于恶劣海况下无人船对准的改进ukf算法
CN112556721A (zh) * 2019-09-26 2021-03-26 中国科学院微电子研究所 导航装置滤波器的随机误差的标定方法及系统
CN112946641A (zh) * 2021-01-27 2021-06-11 北京航空航天大学 一种基于卡尔曼滤波新息与残差相关的数据滤波方法
CN113932815A (zh) * 2021-10-19 2022-01-14 北京京航计算通讯研究所 稳健性优化的Kalman滤波方法、装置、电子设备和存储介质

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087029A1 (en) * 2007-08-22 2009-04-02 American Gnc Corporation 4D GIS based virtual reality for moving target prediction
US20100033370A1 (en) * 2003-12-02 2010-02-11 Gmv Aerospace And Defence, S.A. Gnss navigation solution integrity in non-controlled environments
EP2187223A1 (en) * 2008-11-14 2010-05-19 Robert Bosch GmbH System and method for compensating vehicle sensor signals
JP2010117147A (ja) * 2008-11-11 2010-05-27 Seiko Epson Corp 位置算出方法及び位置算出装置
CN101825903A (zh) * 2010-04-29 2010-09-08 哈尔滨工程大学 一种遥控水下机器人水面控制方法
CN102096086A (zh) * 2010-11-22 2011-06-15 北京航空航天大学 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法
CN102654404A (zh) * 2011-03-02 2012-09-05 浙江中科无线授时与定位研发中心 一种提高航姿参考系统解算精度和系统抗干扰能力的方法
CN102779238A (zh) * 2012-08-09 2012-11-14 北京航空航天大学 一种基于自适应卡尔曼滤波的无刷直流电机系统辨识方法
CN102829777A (zh) * 2012-09-10 2012-12-19 江苏科技大学 自主式水下机器人组合导航系统及方法
CN103454665A (zh) * 2013-08-26 2013-12-18 哈尔滨工程大学 一种双差gps/sins组合导航姿态测量方法
CN103759742A (zh) * 2014-01-22 2014-04-30 东南大学 基于模糊自适应控制技术的捷联惯导非线性对准方法
CN103956956A (zh) * 2014-05-13 2014-07-30 北京理工大学 一种基于扩展卡尔曼滤波器的无刷直流电机状态估计方法
CN103983996A (zh) * 2014-05-09 2014-08-13 北京航空航天大学 一种抗gps野值的紧组合自适应滤波方法
CN104062672A (zh) * 2013-11-28 2014-09-24 哈尔滨工程大学 基于强跟踪自适应Kalman滤波的SINSGPS组合导航方法
CN104112079A (zh) * 2014-07-29 2014-10-22 洛阳理工学院 一种模糊自适应变分贝叶斯无迹卡尔曼滤波方法
EP2846631A1 (en) * 2012-05-10 2015-03-18 President and Fellows of Harvard College A system and method for automatically discovering, characterizing, classifying and semi-automatically labeling animal behavior and quantitative phenotyping of behaviors in animals
CN104714188A (zh) * 2015-03-31 2015-06-17 桂林电子科技大学 量测噪声方差阵相匹配的电池电荷状态估计方法与系统
CN105737828A (zh) * 2016-05-09 2016-07-06 郑州航空工业管理学院 一种基于强跟踪的相关熵扩展卡尔曼滤波的组合导航方法
CN106203698A (zh) * 2016-07-11 2016-12-07 国网青海省电力公司 一种基于无迹卡尔曼滤波和神经网络的光伏发电预测方法
CN106199580A (zh) * 2016-07-01 2016-12-07 中国人民解放军海军航空工程学院 一种基于模糊推理系统的Singer模型改进算法
CN106199652A (zh) * 2016-06-24 2016-12-07 南京理工大学 一种gps接收机的自适应矢量跟踪方法
US20170059318A1 (en) * 2015-08-26 2017-03-02 Magnachip Semiconductor, Ltd. Method and apparatus of correcting output value of geomagnetic sensor
CN106933106A (zh) * 2016-05-26 2017-07-07 哈尔滨工程大学 一种基于模糊控制多模型算法的目标跟踪方法
CN107179081A (zh) * 2017-06-23 2017-09-19 南京康派电子有限公司 一种船用卫星导航装置
CN107290688A (zh) * 2017-08-24 2017-10-24 合肥工业大学 一种基于自适应模糊卡尔曼滤波的锂电池soc估计方法
CN107621264A (zh) * 2017-09-30 2018-01-23 华南理工大学 车载微惯性/卫星组合导航系统的自适应卡尔曼滤波方法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033370A1 (en) * 2003-12-02 2010-02-11 Gmv Aerospace And Defence, S.A. Gnss navigation solution integrity in non-controlled environments
US20090087029A1 (en) * 2007-08-22 2009-04-02 American Gnc Corporation 4D GIS based virtual reality for moving target prediction
JP2010117147A (ja) * 2008-11-11 2010-05-27 Seiko Epson Corp 位置算出方法及び位置算出装置
EP2187223A1 (en) * 2008-11-14 2010-05-19 Robert Bosch GmbH System and method for compensating vehicle sensor signals
CN101825903A (zh) * 2010-04-29 2010-09-08 哈尔滨工程大学 一种遥控水下机器人水面控制方法
CN102096086A (zh) * 2010-11-22 2011-06-15 北京航空航天大学 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法
CN102654404A (zh) * 2011-03-02 2012-09-05 浙江中科无线授时与定位研发中心 一种提高航姿参考系统解算精度和系统抗干扰能力的方法
EP2846631A1 (en) * 2012-05-10 2015-03-18 President and Fellows of Harvard College A system and method for automatically discovering, characterizing, classifying and semi-automatically labeling animal behavior and quantitative phenotyping of behaviors in animals
CN102779238A (zh) * 2012-08-09 2012-11-14 北京航空航天大学 一种基于自适应卡尔曼滤波的无刷直流电机系统辨识方法
CN102829777A (zh) * 2012-09-10 2012-12-19 江苏科技大学 自主式水下机器人组合导航系统及方法
CN103454665A (zh) * 2013-08-26 2013-12-18 哈尔滨工程大学 一种双差gps/sins组合导航姿态测量方法
CN104062672A (zh) * 2013-11-28 2014-09-24 哈尔滨工程大学 基于强跟踪自适应Kalman滤波的SINSGPS组合导航方法
CN103759742A (zh) * 2014-01-22 2014-04-30 东南大学 基于模糊自适应控制技术的捷联惯导非线性对准方法
CN103983996A (zh) * 2014-05-09 2014-08-13 北京航空航天大学 一种抗gps野值的紧组合自适应滤波方法
CN103956956A (zh) * 2014-05-13 2014-07-30 北京理工大学 一种基于扩展卡尔曼滤波器的无刷直流电机状态估计方法
CN104112079A (zh) * 2014-07-29 2014-10-22 洛阳理工学院 一种模糊自适应变分贝叶斯无迹卡尔曼滤波方法
CN104714188A (zh) * 2015-03-31 2015-06-17 桂林电子科技大学 量测噪声方差阵相匹配的电池电荷状态估计方法与系统
US20170059318A1 (en) * 2015-08-26 2017-03-02 Magnachip Semiconductor, Ltd. Method and apparatus of correcting output value of geomagnetic sensor
CN105737828A (zh) * 2016-05-09 2016-07-06 郑州航空工业管理学院 一种基于强跟踪的相关熵扩展卡尔曼滤波的组合导航方法
CN106933106A (zh) * 2016-05-26 2017-07-07 哈尔滨工程大学 一种基于模糊控制多模型算法的目标跟踪方法
CN106199652A (zh) * 2016-06-24 2016-12-07 南京理工大学 一种gps接收机的自适应矢量跟踪方法
CN106199580A (zh) * 2016-07-01 2016-12-07 中国人民解放军海军航空工程学院 一种基于模糊推理系统的Singer模型改进算法
CN106203698A (zh) * 2016-07-11 2016-12-07 国网青海省电力公司 一种基于无迹卡尔曼滤波和神经网络的光伏发电预测方法
CN107179081A (zh) * 2017-06-23 2017-09-19 南京康派电子有限公司 一种船用卫星导航装置
CN107290688A (zh) * 2017-08-24 2017-10-24 合肥工业大学 一种基于自适应模糊卡尔曼滤波的锂电池soc估计方法
CN107621264A (zh) * 2017-09-30 2018-01-23 华南理工大学 车载微惯性/卫星组合导航系统的自适应卡尔曼滤波方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J.Z. SASIADEK: "Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion", 《AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, INC》 *
徐田来: "基于模糊自适应卡尔曼滤波的INS/GPS组合导航系统算法研究", 《宇航学报》 *
徐田来: "车载组合导航信息融合算法研究与系统实现", 《中国博士学位论文全文数据库信息科技辑》 *
许丽佳: "GPS/INS 组合导航系统中的信息融合算法研究", 《计算机仿真》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844540A (zh) * 2018-09-11 2018-11-20 北京机械设备研究所 一种结合协方差和Sage-Husa滤波技术的自适应滤波方法
CN109443355A (zh) * 2018-12-25 2019-03-08 中北大学 基于自适应高斯pf的视觉-惯性紧耦合组合导航方法
CN109443355B (zh) * 2018-12-25 2020-10-27 中北大学 基于自适应高斯pf的视觉-惯性紧耦合组合导航方法
CN109974695A (zh) * 2019-04-09 2019-07-05 东南大学 基于Krein空间的水面舰艇导航系统的鲁棒自适应滤波方法
CN110187282A (zh) * 2019-06-03 2019-08-30 珠海东帆科技有限公司 电池荷电状态估算方法和估算装置
CN110187282B (zh) * 2019-06-03 2021-09-10 珠海东帆科技有限公司 电池荷电状态估算方法和估算装置
CN112556721A (zh) * 2019-09-26 2021-03-26 中国科学院微电子研究所 导航装置滤波器的随机误差的标定方法及系统
CN112556721B (zh) * 2019-09-26 2022-10-28 中国科学院微电子研究所 导航装置滤波器的随机误差的标定方法及系统
CN111044049A (zh) * 2019-12-30 2020-04-21 东南大学 一种用于恶劣海况下无人船对准的改进ukf算法
CN112946641A (zh) * 2021-01-27 2021-06-11 北京航空航天大学 一种基于卡尔曼滤波新息与残差相关的数据滤波方法
CN113932815A (zh) * 2021-10-19 2022-01-14 北京京航计算通讯研究所 稳健性优化的Kalman滤波方法、装置、电子设备和存储介质
CN113932815B (zh) * 2021-10-19 2023-07-18 北京京航计算通讯研究所 稳健性优化Kalman滤波相对导航方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN108490472B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN108490472A (zh) 一种基于模糊自适应滤波的无人艇组合导航方法
CN108197350B (zh) 一种无人船速度和不确定性估计系统及设计方法
Merckelbach et al. Vertical water velocities from underwater gliders
CN102829777B (zh) 自主式水下机器人组合导航系统及方法
CN103389506B (zh) 一种用于捷联惯性/北斗卫星组合导航系统的自适应滤波方法
Kraus Wave glider dynamic modeling, parameter identification and simulation
CN108844536B (zh) 一种基于量测噪声协方差矩阵估计的地磁导航方法
CN107179693A (zh) 基于Huber估计的鲁棒自适应滤波和状态估计方法
Langelaan et al. Wind field estimation for autonomous dynamic soaring
Song et al. Long-term inertial navigation aided by dynamics of flow field features
CN107589748A (zh) 基于UnscentedFastSLAM算法的AUV自主导航方法
CN104316025B (zh) 一种基于船体姿态信息估计海浪浪高的系统
CN110794409B (zh) 一种可估计未知有效声速的水下单信标定位方法
CN108613674A (zh) 一种基于自适应差分进化bp神经网络的姿态误差抑制方法
Randeni P et al. Parameter identification of a nonlinear model: replicating the motion response of an autonomous underwater vehicle for dynamic environments
CN102654406A (zh) 基于非线性预测滤波与求容积卡尔曼滤波相结合的动基座初始对准方法
CN110926466A (zh) 一种面向无人船组合导航信息融合的多尺度数据分块算法
CN104061930B (zh) 一种基于捷联惯性制导和多普勒计程仪的导航方法
RU2647205C2 (ru) Адаптивная бесплатформенная инерциальная курсовертикаль
Eichhorn et al. Modeling for the performance of navigation, control and data post-processing of underwater gliders
Karmozdi et al. Implementation of translational motion dynamics for INS data fusion in DVL outage in underwater navigation
Geng et al. Hybrid derivative-free EKF for USBL/INS tightly-coupled integration in AUV
Guo et al. Sins/gnss-integrated navigation of surface vessels based on various nonlinear kalman filters and large ship dynamics
Cahyadi et al. Performance of GPS and IMU sensor fusion using unscented Kalman filter for precise i-Boat navigation in infinite wide waters
CN103697887B (zh) 一种基于捷联惯导系统和多普勒计程仪的优化导航方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant