CN102096086A - 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法 - Google Patents

一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法 Download PDF

Info

Publication number
CN102096086A
CN102096086A CN 201010552746 CN201010552746A CN102096086A CN 102096086 A CN102096086 A CN 102096086A CN 201010552746 CN201010552746 CN 201010552746 CN 201010552746 A CN201010552746 A CN 201010552746A CN 102096086 A CN102096086 A CN 102096086A
Authority
CN
China
Prior art keywords
gps
ins
constantly
navigation system
integrated navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010552746
Other languages
English (en)
Other versions
CN102096086B (zh
Inventor
张海
常艳红
沈晓蓉
毛友泽
车欢
周启帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201010552746A priority Critical patent/CN102096086B/zh
Publication of CN102096086A publication Critical patent/CN102096086A/zh
Application granted granted Critical
Publication of CN102096086B publication Critical patent/CN102096086B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,该方法利用IMU测量得到的数据与INS的初始数据进行捷联惯导实时解算,建立GPS/INS速度位置组合滤波系统方程,并根据GPS/INS双系统测量互差分序列,统计计算GPS测量噪声协方差估计值,进行自适应的卡尔曼滤波解算。本发明实现了GPS测量噪声的实时跟踪,以及滤波增益矩阵的自适应调节,提高了组合导航系统定位精度。

Description

一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法
技术领域
本发明涉及一种GPS/INS组合导航信息融合的自适应滤波方法,可有效抑制GPS时变噪声引起的标准卡尔曼滤波精度下降情况,用于提高GPS/INS组合导航定位精度。
背景技术
GPS/INS(全球定位系统/惯性导航系统)组合导航系统因其互补性和定位高精度性而被广泛应用,其信息融合技术通常为卡尔曼滤波算法。标准的卡尔曼滤波算法是已知噪声统计特性时的最优估计,但在实际情况中,由于可见卫星数目、多路径效应以及仪器内部测量噪声等多种因素会造成GPS测量噪声的变化,标准的卡尔曼滤波算法无法对此进行检测与调节,从而导致精度下降甚至发散,如何有效解决GPS时变噪声对GPS/INS组合导航滤波算法的影响,对于提高组合导航定位精度具有重要意义。
近年来,学者们提出了多种自适应算法,研究方向主要集中在:基于信息的自适应估计(IAE)和基于多模型的自适应估计(MMAE)。IAE是通过利用信息序列对噪声统计特性进行自适应估计(典型代表为sage-husa算法),但此过程中滤波参数间的迭代运算容易导致误差的耦合,影响滤波精度。MMAE是通过并行运算各滤波模型的状态估计,自适应加权得系统状态的总体估计,但由于其计算量大,并没有广泛应用于工程实际中。此外,与模糊逻辑、神经网络等思想相结合,又发展了一些自适应方法,但目前仍处于理论研究阶段。本发明基于GPS、INS的不同测量特性,充分利用导航子系统的测量信息,实现了对GPS测量噪声的自适应估计,具有实际的工程应用意义。
发明内容
在不知被测真值的情况下,若只存在一种测量手段,则测量噪声难以确定;若对同一量存在两种不同性质的测量,则可以实现部分噪声的估计。本发明的目的在于克服现有滤波技术的不足,鉴于INS、GPS误差传播的互补性以及惯导系统的短期高精度性,提供一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,通过本发明方法能够充分利用测量信息实时计算GPS测量噪声,有效提高GPS噪声未知情况下组合导航系统定位精度。
本发明一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,通过下述步骤来完成:
步骤一:利用IMU(惯性测量单元)的测量数据(沿载体轴相对于惯性空间的角速率和加速度分量信息)与INS(惯性导航系统)的初值(INS的初始位置、速度、姿态及初始姿态矩阵信息),通过捷联惯导实时解算,得到INS的输出值(INS位置、速度、姿态的输出值);
步骤二:根据INS动态误差(包括:INS的平台误差角方程、速度误差方程、位置误差方程以及陀螺、加速度计误差模型)以及INS与GPS的位置差、速度差,分别建立GPS/INS组合导航系统卡尔曼滤波器的状态方程与观测方程;
步骤三:通过连续系统离散化,建立离散型卡尔曼滤波器的递推方程;
步骤四:根据GPS数据采集频率,计算GPS/INS双系统测量互差分序列;
步骤五:设定时间阈值T,若组合导航系统滤波解算时刻k不大于时间阈值T,则对步骤四中得到的GPS/INS双系统测量互差分序列进行小样本统计的可信度判别;若组合导航系统滤波解算时刻k大于时间阈值T则直接进行步骤六;
步骤六:根据GPS/INS双系统测量互差分序列,采用连续滑动窗口法计算GPS测量噪声协方差估计值,将其代入步骤三所述的卡尔曼滤波器的递推方程,进行自适应的卡尔曼滤波解算。
通过上述方法,构造GPS/INS双系统测量互差分序列,消去真实值的相对变化量,获得含GPS测量噪声信息的有效序列,实现了GPS测量噪声协方差的实时测量统计,自适应调整滤波增益,提高组合系统输出精度和滤波稳定性。
本发明的优点在于:
1、本发明通过对GPS/INS双系统测量互差分序列进行统计分析,实现了GPS测量噪声的实时跟踪,以及滤波增益矩阵的自适应调节,提高了组合导航系统定位精度;
2、本发明充分利用GPS、陀螺、加速度计等测量信息完成对GPS测量噪声的自适应估计,有效避免了基于信息的自适应算法利用信息序列进行噪声统计特性估计时滤波参数间的误差耦合现象,具有良好的算法稳定性和系统鲁棒性;
3、本发明方法简单,易于操作。
附图说明
图1为本发明方法流程图;
图2a为陀螺随机常值漂移0.01°/h,随机漂移0.005°/h时,本发明方法、标准卡尔曼滤波算法、基于信息的自适应滤波算法间经度方向R值与GPS测量噪声经度方向预设参考值的仿真结果对比图;
图2b为陀螺随机常值漂移0.01°/h,随机漂移0.005°/h时,本发明方法与标准卡尔曼滤波算法、基于信息的自适应滤波算法间组合系统输出值的经度误差的仿真结果对比图;
图2c为陀螺随机常值漂移0.01°/h,随机漂移0.005°/h时,本发明方法、标准卡尔曼滤波算法、基于信息的自适应滤波算法间纬度方向R值与GPS测量噪声纬度方向预设参考值的仿真结果对比图;
图2d为陀螺随机常值漂移0.01°/h,随机漂移0.005°/h时,本发明方法与标准卡尔曼滤波算法、基于信息的自适应滤波算法间组合系统输出值的纬度误差的仿真结果对比图;
图3a为陀螺随机常值漂移增为0.1°/h,随机漂移增为0.05°/h时,本发明方法、标准卡尔曼滤波算法、基于信息的自适应滤波算法间经度方向R值与GPS测量噪声经度方向预设参考值的仿真结果对比图;
图3b为陀螺随机常值漂移增为0.1°/h,随机漂移增为0.05°/h时,本发明方法与标准卡尔曼滤波算法、基于信息的自适应滤波算法间组合系统输出值的经度误差的仿真结果对比图;
图3c为陀螺随机常值漂移增为0.1°/h,随机漂移增为0.05°/h时,本发明方法、标准卡尔曼滤波算法、基于信息的自适应滤波算法间纬度方向R值与GPS测量噪声纬度方向预设参考值的仿真结果对比图;
图3d为陀螺随机常值漂移增为0.1°/h,随机漂移增为0.05°/h时,本发明方法与标准卡尔曼滤波算法、基于信息的自适应滤波算法间组合系统输出值的纬度误差的仿真结果对比图。
具体实施方式
下面结合附图与实施例对本发明做进一步的详细说明。
本实施例中载体的初始位置为东经116°,北纬39.2°,高度1000m,速度300m/s,航向角35°,飞行7200s。陀螺随机常值漂移0.01°/h,随机漂移0.005°/h,加速度计随机常值漂移100μg,随机漂移50μg。GPS速度误差0.1m/s,高度误差120m,经纬度误差为15m。为了考察GPS/INS组合导航系统对GPS测量抗干扰的效果,GPS经纬度误差在1000s-3000s时段增为40m,如图2a、2c所示。应用本发明提供的一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,如图1所示流程图,通过下列步骤实现自适应滤波:
步骤一:利用IMU(惯性测量单元)测量得到沿载体轴相对于惯性空间的角速率和加速度分量信息),与INS(惯性导航系统)的初始位置、速度、姿态及初始姿态矩阵信息,进行捷联惯导实时解算,得到INS的位置、速度、姿态的输出值;
步骤二:根据INS动态误差(包括:INS的平台误差角方程、速度误差方程、位置误差方程以及陀螺、加速度计误差模型),建立GPS/INS组合导航系统卡尔曼滤波器的状态方程;根据INS与GPS的位置差、速度差,建立GPS/INS组合导航系统卡尔曼滤波器的观测方程;
a、状态方程为:
X · I ( t ) = F I ( t ) X I ( t ) + G I ( t ) W I ( t )
其中,
XI(t)=[φe,φn,φu,δve,δvn,δvu,δL,δλ,δh,εbx,εby,εbz,▽x,▽y,▽z]T
WI(t)=[wgx,wgy,wgz,wax,way,waz]T
G I ( t ) = C b n 0 3 × 3 0 3 × 3 C b n 0 9 × 6 15 × 6 , F I ( t ) = F 9 × 9 F S 0 6 × 15 15 × 15 , F S ( t ) = C b n 0 3 × 3 0 3 × 3 C b n 0 3 × 6 9 × 6
矩阵F9×9中非零元素为:
F ( 1,2 ) = w ie sin L + v e R n + h tan L
F ( 1,3 ) = - w ie cos L - v e R n + h
F ( 1,5 ) = - 1 R m + h
F ( 2,1 ) = - w ie sin L - v e R n + h tan L
F ( 2,3 ) = - v n R m + h
F ( 2,4 ) = 1 R n + h
F(2,7)=-wie sinL
F ( 3,1 ) = w ie cos L + v e R n + h
F ( 3,2 ) = v n R m + h
F ( 3,4 ) = 1 R n + h tan L
F ( 3,7 ) = w ie cos L + v e R n + h sec 2 L
F(4,2)=-fu  F(4,3)=fn
F ( 4,4 ) = v n R n + h tan L - v u R n + h
F ( 4,5 ) = 2 w ie sin L + v e R n + h tan L
F ( 4,6 ) = - 2 w ie cos L - v e R n + h
F ( 4,7 ) = 2 w ie v n cos L + v e v n R n + h sec 2 L + 2 w ie v u sin L
F(5,1)=fu  F(5,3)=-fe
F ( 5,4 ) = - 2 ( w ie sin L + v e R n + h tan L )
F ( 5,5 ) = - v u R m + h
F ( 5,6 ) = - v n R m + h
F ( 5,7 ) = - ( 2 w ie cos L + v e R n + h sec 2 L ) v e
F(6,1)=-fn  F(6,2)=fe
F ( 6,4 ) = 2 ( w ie cos L + v e R n + h )
F ( 6,5 ) = 2 v n R m + h
F(6,7)=-2wievesinL
F ( 7,5 ) = 1 R m + h
F ( 8,4 ) = sec L R n + h
F ( 8,7 ) = v e tan L ( R n + h ) cos L
F(9,6)=1
上述公式中,下标e、n、u为导航系的东、北、天轴向,下标x、y、z为载体系的右、前、上轴向,φe、φn、φu为平台误差角,δve、δvn、δvu,为速度误差,δL、δλ、δh分别为纬度误差、经度误差、高度误差,εbx、εby、εbz为陀螺的随机常值漂移,wgx、wgy、wgz为陀螺的随机漂移,▽x、▽y、▽z为加速度计的随机常值漂移,wax、way、waz为加速度计的随机漂移,
Figure BSA00000353964200066
为载体系到导航系的姿态转移矩阵,wie为地球自转角速度,Rm、Rn分别为子午圈、卯酉圈上各点的曲率半径,ve、vu、vn分别为沿东北天方向的速度,fe、fu、fn分别为沿东北天方向加速度值,λ、L、h分别为经度、纬度、高度。
b、观测方程为:
Z ( t ) = Z p ( t ) Z v ( t ) = H p ( t ) H v ( t ) X ( t ) + V p ( t ) V v ( t ) = H ( t ) X ( t ) + V ( t )
其中, Z p ( t ) = ( L INS - L GPS ) R m ( λ INS - λ GPS ) R n cos L h INS - h GPS , Z v ( t ) = v eINS - v eGPS v nINS - v nGPS v uINS - v uGPS
Hp(t)=[03×6    diag[Rm  Rn cosL  1]    03×6],Vp(t)=[Nn,Ne,Nu]T
Hv(t)=[03×3    diag[1  1  1]    03×12],Vv(t)=[Me,Mn,Mu]T
上述各式中,Zp(t)、Zv(t)分别为t时刻的位置测量矢量、速度测量矢量,Ne、Nn、Nu分别为GPS接收机沿东、北、天方向的位置误差,Me、Mn、Mu分别为GPS接收机的沿东、北、天方向的测速误差。
步骤三:通过连续系统离散化,建立离散型卡尔曼滤波器的递推方程;
A、将步骤二得到的状态方程和观测方程进行离散化,得到系统方程:
X k = Φ k , k - 1 X k - 1 + Γ k - 1 W k - 1 Z k = H k X k + V k
其中,k为组合导航系统滤波解算时刻,即GPS的数据采集时刻;Xk为k时刻的状态向量,即被估计向量;Zk为k时刻的观测向量;Φk,k-1为k-1到k时刻的状态转移矩阵;Wk-1为k-1时刻的系统噪声;Γk-1为系统噪声矩阵;Hk为k时刻的量测矩阵;Vk为k时刻的量测噪声;
B、建立离散型卡尔曼滤波器的递推方程:
X ^ k | k - 1 = Φ k , k - 1 X ^ k - 1 X ^ k = X ^ k | k - 1 + K k ( Z k - H k X ^ k | k - 1 ) K k = P k | k - 1 H T k ( H k P k | k - 1 H T k + R k ) - 1 P k | k - 1 = Φ k , k - 1 P k - 1 Φ T k , k - 1 + Γ k - 1 Q k - 1 Γ k - 1 T P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R k K T k
其中,
Figure BSA00000353964200073
为状态Xk-1的卡尔曼滤波估计值,
Figure BSA00000353964200074
为利用
Figure BSA00000353964200075
得到的对Xk的一步预测,Kk为k时刻的滤波增益矩阵,Pk|k-1为一步预测均方误差矩阵,Rk为观测噪声协方差矩阵,Qk-1为k-1时刻系统噪声协方差矩阵,Pk为估计均方误差矩阵,I为单位矩阵。
步骤四:根据GPS的数据采集频率,得到INS测量差分序列以及GPS测量差分序列,从而得到GPS/INS双系统测量互差分序列;
(1)INS测量差分序列为:
ΔINS ( k ) = Z INS ( k ) - Z INS ( k - 1 ) k ≤ t 0 Z ^ INS ( k ) - Z GPS / INS ( k - 1 ) k > t 0
其中,t0为惯性可信时间阈值,根据惯导系统测量精度而确定,一般为20s~40s;ZINS(k)为k时刻捷联惯导实时解算的位置、速度;ZGPS/INS(k-1)为k-1时刻的组合导航系统输出的位置、速度;
Figure BSA00000353964200077
通过如下方式得到:以ZGPS/INS(k-1)为k-1时刻的初值,采用k-1~k时间段内IMU测量数据,通过捷联惯导解算步骤,进行k-1~k时间段的惯性递推运算,得到k时刻的位置、速度,即为
Figure BSA00000353964200081
(2)GPS测量差分序列为:
ΔGPS(k)=ZGPS(k)-ZGPS(k-1)    k=1,2,3,…
其中,ZGPS(k)为k时刻GPS输出的位置速度;
(3)GPS/INS双系统测量互差分序列为C(k):
C(k)=ΔINS(k)-ΔGPS(k)    k=1,2,3,…
步骤五:设定时间阈值T为300s,若组合导航系统滤波解算时刻k不大于时间阈值T,则对步骤四中得到的GPS/INS双系统测量互差分序列进行小样本统计的可信度判别;若组合导航系统滤波解算时刻k大于时间阈值T则直接进行步骤六;
其中,可信度判别过程为:
1)对GPS/INS双系统测量互差分序列,进行无重叠时间段的开窗统计,得到统计结果,即GPS/INS双系统测量的方差值序列D(k):
Figure BSA00000353964200082
其中,C(i)为GPS/INS的双系统测量互差分序列在i时刻的值,N为无重叠统计窗的窗口宽度,取为50s;
2)对1)中得到的GPS/INS双系统测量的方差值序列D(k),进行小样本统计的可信度判别,该判别条件为:
max ( | D ( j ) - 1 k - N + 1 &Sigma; i = N k D ( i ) | ) < 0.4 * 1 k - N + 1 &Sigma; i = N k D ( i ) , k &GreaterEqual; 3 N , j = { k - 2 N , k - N , k }
其中,max为求最大值的函数;
若组合导航系统滤波解算时刻k小于或等于时间阈值T时已满足上述可信度判别条件,则执行步骤六,且进入步骤六时的GPS测量噪声协方差估计值为:
R ^ k = 1 2 D ( k ) , k &le; T
若组合导航系统滤波解算时刻k等于时间阈值T时仍不满足所述的可信度判别条件,则执行步骤六,且进入步骤六时GPS测量噪声协方差估计值为:
R ^ k = 1 k - 1 &Sigma; i = 1 k [ C ( i ) - 1 k &Sigma; i = 1 k C ( i ) ] 2 / 2 , k = T
若组合导航系统滤波解算时刻k小于或等于时间阈值T时不满足上述可信度判别条件,则等待下一时刻的统计结果。
在上述可信度判别过程中,只进行小样本统计的可信度判别,不进行GPS测量噪声协方差的自适应调节,该值恒为初始时刻预设的经验值,GPS/INS组合导航滤波系统进行标准的卡尔曼滤波递推解算,并输出。
步骤六:根据GPS/INS双系统测量互差分序列,采用连续滑动窗口法计算GPS测量噪声协方差估计值,将其代入步骤三中卡尔曼滤波器的递推方程,进行自适应的卡尔曼滤波解算。
①将步骤四中的GPS/INS的双系统测量互差分序列C作为统计样本,计算该统计样本在连续滑动窗内的均值和方差,计算公式依次为:
E ( k ) = 1 M &Sigma; i = k - M + 1 k C ( i ) &sigma; 2 ( k ) = 1 M - 1 &Sigma; i = k - M + 1 k [ C ( i ) - E ( k ) ] 2 k &GreaterEqual; M
其中,M为连续滑动窗的窗口宽度,取为40s,C(i)为GPS/INS的双系统测量互差分序列在i时刻的值,E(k)为k时刻的均值,σ(k)为k时刻的标准差,σ2(k)为k时刻的方差;
②针对连续滑动窗内的GPS/INS的双系统测量互差分序列C,进行野值点判别,该判别条件为:
|C(i)-E(k)|>α·σ(k)    k-M+1≤i≤k
其中,α为可调剔除因子,2.5≤α≤3.5,若C(i)满足上述野值点判别条件,则将C(i)置为均值E(k),得到新的统计样本,再执行步骤①,重新计算该统计样本在连续滑动窗内的均值和方差,最后执行步骤③;否则直接执行步骤③;
③基于统计样本在连续滑动窗内的均值和方差,计算GPS测量噪声协方差的初步估值
Figure BSA00000353964200093
R ^ GPS ( k ) = 1 2 &sigma; 2 ( k )
④根据该GPS测量噪声协方差的初步估值
Figure BSA00000353964200102
计算GPS测量噪声协方差估计值,计算公式为:
d k = ( 1 - b ) / ( 1 - b k + 1 ) R ^ k = ( 1 - d k ) R ^ k - 1 + d k R ^ GPS ( k ) 0 < b < 1
其中,b为遗忘因子,0<b<1,一般取为0.95~0.995;dk为k时刻的权系数,
Figure BSA00000353964200104
为k时刻的GPS测量噪声协方差估计值;
Figure BSA00000353964200105
为k-1时刻的GPS测量噪声协方差估计值;
⑤将GPS测量噪声协方差估计值代入步骤三中卡尔曼滤波器的递推方程,实时调节滤波增益矩阵Kk,进行自适应卡尔曼滤波解算:
X ^ k | k - 1 = &Phi; k , k - 1 X ^ k - 1 X ^ k = X ^ k | k - 1 + K k ( Z k - H k X ^ k | k - 1 ) K k = P k | k - 1 H T k ( H k P k | k - 1 H T k + R k ^ ) - 1 P k | k - 1 = &Phi; k , k - 1 P k - 1 &Phi; T k , k - 1 + &Gamma; k - 1 Q k - 1 &Gamma; k - 1 T P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R ^ k K T k
卡尔曼滤波解算的结果为惯导系统INS的误差估计值,根据该误差估计值对捷联惯导实时解算结果进行修正,得到GPS/INS组合导航系统输出。
通过上述方法,构造GPS/INS双系统测量互差分序列,消去真实值的相对变化量,获得含GPS测量噪声信息的有效序列,实现了GPS测量噪声协方差的实时测量统计,自适应调整滤波增益,提高组合系统输出精度和滤波稳定性。
依据上述步骤,本实施例仿真结果如图2a~2d、图3a~3d细实线所示。图中:点虚线为标准卡尔曼滤波算法仿真结果,虚线为基于信息的自适应滤波算法(sage-husa算法)仿真结果,粗实线为GPS测量噪声预设参考值。
i、由图2a、图2c可看出:标准卡尔曼滤波算法的经纬度方向R始终为预设经验值(100m2),不能进行自适应调节;本发明方法与基于信息的自适应滤波算法的经纬度方向R可以跟踪实际的GPS测量噪声;
ii、由图2b、图2d可看出:标准卡尔曼滤波算法的经纬度误差抖动较大,尤其在1000s-3000s时段;本发明方法与基于信息的自适应滤波算法的误差值抖动较小,定位精度高;在4000s-6000s时段,基于信息的自适应滤波算法存在误差耦合现象,导致经纬度误差值偏离零值,而本发明的自适应算法的经纬度误差值保持零值附近抖动。
当将本实施例中陀螺随机常值漂移增为0.1°/h,随机漂移增为0.05°/h,其他条件保持不变时,滤波结果如图3a~3d所示。由图可看出,当惯导系统精度降低时,基于信息的自适应滤波算法中误差耦合现象更为严重,经度方向R的估计值已不可信,导致滤波误差很大,而本发明的自适应算法能保持较高精度和良好的滤波稳定性。

Claims (4)

1.一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,包括:
步骤一:利用IMU惯性测量单元测量得到沿载体轴相对于惯性空间的角速率和加速度分量信息,与INS惯性导航系统的初始位置、速度、姿态及初始姿态矩阵信息,进行捷联惯导实时解算,得到INS位置、速度、姿态的输出值;
步骤二:根据INS的平台误差角方程、速度误差方程、位置误差方程以及陀螺、加速度计误差模型,并根据INS与GPS的位置差、速度差,分别建立GPS/INS组合导航系统卡尔曼滤波器的状态方程与观测方程;
步骤三:通过连续系统离散化,建立离散型卡尔曼滤波器的递推方程;其特征在于:还包括下述步骤:
步骤四:根据GPS数据采集频率,计算GPS/INS双系统测量互差分序列;
步骤五:设定时间阈值T,若组合导航系统滤波解算时刻k不大于时间阈值T,则对步骤四中得到的GPS/INS双系统测量互差分序列进行小样本统计的可信度判别;若组合导航系统滤波解算时刻k大于时间阈值T则直接进行步骤六;
步骤六:根据GPS/INS双系统测量互差分序列,采用连续滑动窗口法计算GPS测量噪声协方差估计值,将其代入步骤三所述的卡尔曼滤波器的递推方程,进行自适应的卡尔曼滤波解算。
2.根据权利要求1所述的一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,其特征在于:步骤四中计算GPS/INS双系统测量互差分序列的步骤为:
(1)INS测量差分序列为:
&Delta;INS ( k ) = Z INS ( k ) - Z INS ( k - 1 ) k &le; t 0 Z ^ INS ( k ) - Z GPS / INS ( k - 1 ) k > t 0
其中,k为组合导航系统滤波解算时刻,即GPS的数据采集时刻;t0为惯性可信时间阈值,根据惯导系统测量精度而确定;ZINS(k)为k时刻捷联惯导实时解算的位置、速度;ZGPS/INS(k-1)为k-1时刻的组合导航系统输出的位置、速度;
Figure FSA00000353964100021
通过如下方式得到:以ZGPS/INS(k-1)为k-1时刻的初值,采用k-1~k时间段内IMU测量数据,通过捷联惯导解算步骤,进行k-1~k时间段的惯性递推运算,得到k时刻的位置、速度,即为
Figure FSA00000353964100022
(2)GPS测量差分序列为:
ΔGPS(k)=ZGPS(k)-ZGPS(k-1)  k=1,2,3,...
其中,ZGPS(k)为k时刻GPS输出的位置、速度;
(3)GPS/INS双系统测量互差分序列为C(k):
C(k)=ΔINS(k)-ΔGPS(k)  k=1,2,3,...。
3.根据权利要求1所述的一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,其特征在于:步骤五中所述可信度判别的过程为:
1)对GPS/INS双系统测量互差分序列,进行无重叠时间段的开窗统计,得到GPS/INS双系统测量的方差值序列D(k):
Figure FSA00000353964100023
其中,k为组合导航系统滤波解算时刻,即GPS的数据采集时刻;N为无重叠统计窗的窗口宽度,C(i)为GPS/INS的双系统测量互差分序列在i时刻的值;
2)对1)中得到的GPS/INS双系统测量的方差值序列D(k),进行小样本统计的可信度判别,该判别条件为:
max ( | D ( j ) - 1 k - N + 1 &Sigma; i = N k D ( i ) | ) < 0.4 * 1 k - N + 1 &Sigma; i = N k D ( i ) , k &GreaterEqual; 3 N , j = { k - 2 N , k - N , k }
其中,max为求最大值的函数;
若组合导航系统滤波解算时刻k小于或等于时间阈值T时已满足上述可信度判别条件,则执行步骤六,且进入步骤六时的GPS测量噪声协方差估计值为:
R ^ k = 1 2 D ( k ) , k &le; T
若组合导航系统滤波解算时刻k等于时间阈值T时仍不满足所述的可信度判别条件,则执行步骤六,且进入步骤六时GPS测量噪声协方差估计值为:
R ^ k = 1 k - 1 &Sigma; i = 1 k [ C ( i ) - 1 k &Sigma; i = 1 k C ( i ) ] 2 / 2 , k = T ;
若组合导航系统滤波解算时刻k小于或等于时间阈值T时不满足上述可信度判别条件,则等待下一时刻的统计结果。
4.根据权利要求1所述的一种基于GPS/INS组合导航系统不同测量特性的自适应滤波方法,其特征在于:步骤六具体方法为:
①将步骤四中的GPS/INS的双系统测量互差分序列C作为统计样本,计算该统计样本在连续滑动窗内的均值和方差,计算公式依次为:
E ( k ) = 1 M &Sigma; i = k - M + 1 k C ( i ) &sigma; 2 ( k ) = 1 M - 1 &Sigma; i = k - M + 1 k [ C ( i ) - E ( k ) ] 2 k &GreaterEqual; M
其中,k为组合导航系统滤波解算时刻,即GPS的数据采集时刻;M为连续滑动窗的窗口宽度,C(i)为GPS/INS的双系统测量互差分序列在i时刻的值,E(k)为k时刻的均值,σ(k)为k时刻的标准差,σ2(k)为k时刻的方差;
②针对连续滑动窗内的GPS/INS的双系统测量互差分序列,进行野值点判别,该判别条件为:
|C(i)-E(k)|>α·σ(k)    k-M+1≤i≤k
其中,α为可调剔除因子,若C(i)满足上述野值点判别条件,则将C(i)置为均值E(k),得到新的统计样本,再执行步骤①,重新计算该统计样本在连续滑动窗内的均值和方差,最后执行步骤③;否则直接执行步骤③;
③基于统计样本在连续滑动窗内的均值和方差,计算GPS测量噪声协方差的初步估值
R ^ GPS ( k ) = 1 2 &sigma; 2 ( k )
④根据该GPS测量噪声协方差的初步估值
Figure FSA00000353964100043
计算GPS测量噪声协方差估计值,计算公式为:
d k = ( 1 - b ) / ( 1 - b k + 1 ) R ^ k = ( 1 - d k ) R ^ k - 1 + d k R ^ GPS ( k ) 0 < b < 1
其中,b为遗忘因子,0<b<1;dk为k时刻的权系数,
Figure FSA00000353964100045
为k时刻的GPS测量噪声协方差估计值;
Figure FSA00000353964100046
为k-1时刻的GPS测量噪声协方差估计值;
⑤将GPS测量噪声协方差估计值
Figure FSA00000353964100047
代入步骤三中卡尔曼滤波器的递推方程,实时调节滤波增益矩阵Kk,进行自适应卡尔曼滤波解算:
X ^ k | k - 1 = &Phi; k , k - 1 X ^ k - 1 X ^ k = X ^ k | k - 1 + K k ( Z k - H k X ^ k | k - 1 ) K k = P k | k - 1 H T k ( H k P k | k - 1 H T k + R ^ k ) - 1 P k | k - 1 = &Phi; k , k - 1 P k - 1 &Phi; T k , k - 1 + &Gamma; k - 1 Q k - 1 &Gamma; k - 1 T P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R ^ k K T k
其中,Xk为k时刻的状态向量,即被估计向量,
Figure FSA00000353964100049
为状态Xk-1的卡尔曼滤波估计值,为利用
Figure FSA000003539641000411
得到的对Xk的一步预测,Φk,k-1为k-1到k时刻的状态转移矩阵,Γk-1为系统噪声矩阵,Kk为k时刻的滤波增益矩阵,Pk|k-1为一步预测均方误差矩阵,Rk为观测噪声协方差矩阵,Qk-1为k-1时刻系统噪声协方差矩阵,Pk为估计均方误差矩阵,Hk为k时刻的量测矩阵,Zk为k时刻的观测向量,I为单位矩阵。
CN201010552746A 2010-11-22 2010-11-22 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法 Expired - Fee Related CN102096086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010552746A CN102096086B (zh) 2010-11-22 2010-11-22 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010552746A CN102096086B (zh) 2010-11-22 2010-11-22 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法

Publications (2)

Publication Number Publication Date
CN102096086A true CN102096086A (zh) 2011-06-15
CN102096086B CN102096086B (zh) 2012-09-05

Family

ID=44129255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010552746A Expired - Fee Related CN102096086B (zh) 2010-11-22 2010-11-22 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法

Country Status (1)

Country Link
CN (1) CN102096086B (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359788A (zh) * 2011-09-09 2012-02-22 华中科技大学 一种基于平台惯姿参数的序列图像目标递推识别方法
CN102508278A (zh) * 2011-11-28 2012-06-20 北京航空航天大学 一种基于观测噪声方差阵估计的自适应滤波方法
CN102636165A (zh) * 2012-04-27 2012-08-15 航天科工惯性技术有限公司 一种用于油气管道轨迹测绘的后处理组合导航方法
CN102749096A (zh) * 2012-06-25 2012-10-24 北京航空航天大学 一种对双观测系统量测噪声方差阵的自适应同步估计方法
CN103323007A (zh) * 2013-06-17 2013-09-25 南京航空航天大学 一种基于时变量测噪声的鲁棒联邦滤波方法
CN103454653A (zh) * 2012-12-28 2013-12-18 北京握奇数据系统有限公司 一种基于gps系统的野值替换方法及装置
CN103713297A (zh) * 2013-11-29 2014-04-09 航天恒星科技有限公司 一种基于ins辅助的卫星导航抗欺骗式干扰方法
CN103792561A (zh) * 2014-02-21 2014-05-14 南京理工大学 一种基于gnss通道差分的紧组合降维滤波方法
CN103941273A (zh) * 2014-03-31 2014-07-23 广东电网公司电力科学研究院 机载惯性/卫星组合导航系统的自适应滤波方法与滤波器
CN104062672A (zh) * 2013-11-28 2014-09-24 哈尔滨工程大学 基于强跟踪自适应Kalman滤波的SINSGPS组合导航方法
CN104200036A (zh) * 2014-09-11 2014-12-10 武汉大学 区域gps基准站坐标时间序列的噪声模型获得方法
CN104335369A (zh) * 2012-06-11 2015-02-04 罗克韦尔柯林斯公司 利用光束控制系统的卡尔曼优化的空对地天线指向
CN105180971A (zh) * 2015-09-14 2015-12-23 北京航空航天大学 一种基于α-β-γ滤波和二阶互差分的噪声方差测量方法
CN105222780A (zh) * 2015-09-07 2016-01-06 郑州轻工业学院 一种基于Stirling插值多项式逼近的椭球集员滤波方法
CN105699993A (zh) * 2016-02-01 2016-06-22 东南大学 载波环路自适应跟踪方法、自适应载波跟踪环路
CN105988129A (zh) * 2015-02-13 2016-10-05 南京理工大学 一种基于标量估计算法的ins/gnss组合导航方法
CN106949889A (zh) * 2017-03-17 2017-07-14 南京航空航天大学 针对行人导航的低成本mems/gps组合导航系统及方法
CN106989761A (zh) * 2017-05-25 2017-07-28 北京航天自动控制研究所 一种基于自适应滤波的空间飞行器制导工具在轨标定方法
CN108128308A (zh) * 2017-12-27 2018-06-08 长沙理工大学 一种分布式驱动电动汽车的车辆状态估计系统及方法
CN108369099A (zh) * 2015-12-21 2018-08-03 罗伯特·博世有限公司 用于测量在测量信号中的方差的方法、用于数据融合的方法、计算机程序、机器可读的存储介质和装置
CN108490472A (zh) * 2018-01-29 2018-09-04 哈尔滨工程大学 一种基于模糊自适应滤波的无人艇组合导航方法
CN109471102A (zh) * 2018-10-23 2019-03-15 湖北航天技术研究院总体设计所 一种惯组误差修正方法
CN110006427A (zh) * 2019-05-20 2019-07-12 中国矿业大学 一种低动态高振动环境下的bds/ins紧组合导航方法
CN110332933A (zh) * 2019-07-09 2019-10-15 西安中兴物联软件有限公司 车辆定位方法、终端及计算机可读存储介质
CN110729982A (zh) * 2019-09-30 2020-01-24 中国船舶重工集团公司第七0七研究所 一种基于矩阵稀疏性的Kalman滤波算法优化的方法
CN111308532A (zh) * 2018-12-12 2020-06-19 千寻位置网络有限公司 Gps/ins紧组合的导航方法及装置、定位系统
CN111366151A (zh) * 2018-12-26 2020-07-03 北京信息科技大学 一种极地范围船舶导航的信息融合方法
CN113534199A (zh) * 2021-06-17 2021-10-22 长沙理工大学 一种自适应的广义累计和gps欺骗攻击检测方法
WO2022222938A1 (zh) * 2021-04-21 2022-10-27 哈尔滨工程大学 一种基于运动状态监测的自适应水平姿态测量方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744100A (zh) * 2014-01-07 2014-04-23 北京航空航天大学 一种基于卫星导航与惯性导航的组合导航方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094971A1 (en) * 2000-06-07 2001-12-13 Qinetiq Limited Adaptive gps and ins integration system
US6907347B2 (en) * 2002-11-21 2005-06-14 Ford Global Technologies, Llc Systems and method for estimating speed and pitch sensor errors
CN101059349A (zh) * 2007-05-18 2007-10-24 南京航空航天大学 微型组合导航系统及自适应滤波方法
CN101464152B (zh) * 2009-01-09 2010-11-10 哈尔滨工程大学 一种sins/gps组合导航系统自适应滤波方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094971A1 (en) * 2000-06-07 2001-12-13 Qinetiq Limited Adaptive gps and ins integration system
US6907347B2 (en) * 2002-11-21 2005-06-14 Ford Global Technologies, Llc Systems and method for estimating speed and pitch sensor errors
CN101059349A (zh) * 2007-05-18 2007-10-24 南京航空航天大学 微型组合导航系统及自适应滤波方法
CN101464152B (zh) * 2009-01-09 2010-11-10 哈尔滨工程大学 一种sins/gps组合导航系统自适应滤波方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《IEEE SENSORS JOURNAL》 20070531 Dah-Jing Jwo et al. Adaptive fuzzy strong tracking extended kalman filtering for GPS navigation 778-789 1-4 第7卷, 第5期 *
《Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation》 20070808 Xu Tianlai et al. Fuzzy adaptive interacting multiple model algorithm for INS/GPS 2963-2967 1-4 , *
《上海交通大学学报》 20060630 卞鸿巍等 组合导航系统新息自适应卡尔曼滤波算法 1000-1003,1009 1-4 第40卷, 第6期 *
《青岛大学学报》 20010331 沈云峰等 简化的Sage-Husa自适应滤波算法在组合导航中的应用及仿真 44-47,51 1-4 第16卷, 第1期 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359788A (zh) * 2011-09-09 2012-02-22 华中科技大学 一种基于平台惯姿参数的序列图像目标递推识别方法
CN102508278A (zh) * 2011-11-28 2012-06-20 北京航空航天大学 一种基于观测噪声方差阵估计的自适应滤波方法
CN102636165A (zh) * 2012-04-27 2012-08-15 航天科工惯性技术有限公司 一种用于油气管道轨迹测绘的后处理组合导航方法
CN102636165B (zh) * 2012-04-27 2015-02-11 航天科工惯性技术有限公司 一种用于油气管道轨迹测绘的后处理组合导航方法
CN104335369A (zh) * 2012-06-11 2015-02-04 罗克韦尔柯林斯公司 利用光束控制系统的卡尔曼优化的空对地天线指向
CN102749096A (zh) * 2012-06-25 2012-10-24 北京航空航天大学 一种对双观测系统量测噪声方差阵的自适应同步估计方法
CN102749096B (zh) * 2012-06-25 2014-11-05 北京航空航天大学 一种对双观测系统量测噪声方差阵的自适应同步估计方法
CN103454653A (zh) * 2012-12-28 2013-12-18 北京握奇数据系统有限公司 一种基于gps系统的野值替换方法及装置
CN103454653B (zh) * 2012-12-28 2015-08-05 北京握奇数据系统有限公司 一种基于gps系统的野值替换方法及装置
CN103323007B (zh) * 2013-06-17 2015-08-19 南京航空航天大学 一种基于时变量测噪声的鲁棒联邦滤波方法
CN103323007A (zh) * 2013-06-17 2013-09-25 南京航空航天大学 一种基于时变量测噪声的鲁棒联邦滤波方法
CN104062672A (zh) * 2013-11-28 2014-09-24 哈尔滨工程大学 基于强跟踪自适应Kalman滤波的SINSGPS组合导航方法
CN103713297B (zh) * 2013-11-29 2017-01-04 航天恒星科技有限公司 一种基于ins辅助的卫星导航抗欺骗式干扰方法
CN103713297A (zh) * 2013-11-29 2014-04-09 航天恒星科技有限公司 一种基于ins辅助的卫星导航抗欺骗式干扰方法
CN103792561B (zh) * 2014-02-21 2016-04-20 南京理工大学 一种基于gnss通道差分的紧组合降维滤波方法
CN103792561A (zh) * 2014-02-21 2014-05-14 南京理工大学 一种基于gnss通道差分的紧组合降维滤波方法
CN103941273A (zh) * 2014-03-31 2014-07-23 广东电网公司电力科学研究院 机载惯性/卫星组合导航系统的自适应滤波方法与滤波器
CN104200036A (zh) * 2014-09-11 2014-12-10 武汉大学 区域gps基准站坐标时间序列的噪声模型获得方法
CN105988129A (zh) * 2015-02-13 2016-10-05 南京理工大学 一种基于标量估计算法的ins/gnss组合导航方法
CN105222780A (zh) * 2015-09-07 2016-01-06 郑州轻工业学院 一种基于Stirling插值多项式逼近的椭球集员滤波方法
CN105180971A (zh) * 2015-09-14 2015-12-23 北京航空航天大学 一种基于α-β-γ滤波和二阶互差分的噪声方差测量方法
CN108369099A (zh) * 2015-12-21 2018-08-03 罗伯特·博世有限公司 用于测量在测量信号中的方差的方法、用于数据融合的方法、计算机程序、机器可读的存储介质和装置
CN105699993A (zh) * 2016-02-01 2016-06-22 东南大学 载波环路自适应跟踪方法、自适应载波跟踪环路
CN105699993B (zh) * 2016-02-01 2017-10-31 东南大学 载波环路自适应跟踪方法、自适应载波跟踪环路
CN106949889A (zh) * 2017-03-17 2017-07-14 南京航空航天大学 针对行人导航的低成本mems/gps组合导航系统及方法
CN106989761B (zh) * 2017-05-25 2019-12-03 北京航天自动控制研究所 一种基于自适应滤波的空间飞行器制导工具在轨标定方法
CN106989761A (zh) * 2017-05-25 2017-07-28 北京航天自动控制研究所 一种基于自适应滤波的空间飞行器制导工具在轨标定方法
CN108128308A (zh) * 2017-12-27 2018-06-08 长沙理工大学 一种分布式驱动电动汽车的车辆状态估计系统及方法
CN108490472A (zh) * 2018-01-29 2018-09-04 哈尔滨工程大学 一种基于模糊自适应滤波的无人艇组合导航方法
CN108490472B (zh) * 2018-01-29 2021-12-03 哈尔滨工程大学 一种基于模糊自适应滤波的无人艇组合导航方法
CN109471102A (zh) * 2018-10-23 2019-03-15 湖北航天技术研究院总体设计所 一种惯组误差修正方法
CN111308532A (zh) * 2018-12-12 2020-06-19 千寻位置网络有限公司 Gps/ins紧组合的导航方法及装置、定位系统
CN111366151A (zh) * 2018-12-26 2020-07-03 北京信息科技大学 一种极地范围船舶导航的信息融合方法
CN110006427A (zh) * 2019-05-20 2019-07-12 中国矿业大学 一种低动态高振动环境下的bds/ins紧组合导航方法
CN110332933A (zh) * 2019-07-09 2019-10-15 西安中兴物联软件有限公司 车辆定位方法、终端及计算机可读存储介质
CN110729982A (zh) * 2019-09-30 2020-01-24 中国船舶重工集团公司第七0七研究所 一种基于矩阵稀疏性的Kalman滤波算法优化的方法
CN110729982B (zh) * 2019-09-30 2023-03-10 中国船舶重工集团公司第七0七研究所 一种基于矩阵稀疏性的Kalman滤波算法优化的方法
WO2022222938A1 (zh) * 2021-04-21 2022-10-27 哈尔滨工程大学 一种基于运动状态监测的自适应水平姿态测量方法
CN113534199A (zh) * 2021-06-17 2021-10-22 长沙理工大学 一种自适应的广义累计和gps欺骗攻击检测方法

Also Published As

Publication number Publication date
CN102096086B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
CN102096086B (zh) 一种基于gps/ins组合导航系统不同测量特性的自适应滤波方法
US8510044B2 (en) Position sensing device and method
Iqbal et al. An integrated reduced inertial sensor system—RISS/GPS for land vehicle
CN101082493B (zh) 一种农业机械导航的组合定位方法
CN106643714B (zh) 一种自主实时机载地形辅助惯性导航方法和系统
CN105606094B (zh) 一种基于mems/gps组合系统的信息条件匹配滤波估计方法
CN101788679B (zh) 一种基于新息正交的sins/gps自适应野值检测与实时补偿方法
Georgy et al. Vehicle navigator using a mixture particle filter for inertial sensors/odometer/map data/GPS integration
CN103941273B (zh) 机载惯性/卫星组合导航系统的自适应滤波方法与滤波器
CN102508278A (zh) 一种基于观测噪声方差阵估计的自适应滤波方法
US10809390B2 (en) Positioning apparatus
CN102706366A (zh) 一种基于地球自转角速率约束的sins初始对准方法
CN106840211A (zh) 一种基于kf和stupf组合滤波的sins大方位失准角初始对准方法
Shabani et al. Improved underwater integrated navigation system using unscented filtering approach
Han et al. Land vehicle navigation with the integration of GPS and reduced INS: performance improvement with velocity aiding
Rahman et al. Earth-centered earth-fixed (ecef) vehicle state estimation performance
Georgy et al. Nonlinear filtering for tightly coupled RISS/GPS integration
Cheng et al. Data fusion via Kalman filter: GPS and INS
Kis et al. Development of state estimation system with INS, magnetometer and carrier phase GPS for vehicle navigation
Georgy et al. Mixture particle filter for low cost INS/Odometer/GPS integration in land vehicles
Erfianti et al. GNSS/IMU Sensor Fusion Performance Comparison of a Car Localization in Urban Environment Using Extended Kalman Filter
Georgy et al. Quantitative comparison between Kalman filter and Particle filter for low cost INS/GPS integration
Zhang Autonomous underwater vehicle navigation using an adaptive Kalman filter for sensor fusion
Tsaregorodtsev et al. Integration of GNSS with non-radio sensors with separation of the state vector for transport navigation tasks
Nie et al. Comparison of nonlinear filtering approach in tightly-coupled GPS/INS navigation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20141122

EXPY Termination of patent right or utility model