CN108490047A - 一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用 - Google Patents

一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用 Download PDF

Info

Publication number
CN108490047A
CN108490047A CN201810210020.XA CN201810210020A CN108490047A CN 108490047 A CN108490047 A CN 108490047A CN 201810210020 A CN201810210020 A CN 201810210020A CN 108490047 A CN108490047 A CN 108490047A
Authority
CN
China
Prior art keywords
myoglobins
electrode
silicon nitride
nano silicon
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810210020.XA
Other languages
English (en)
Inventor
孙伟
文作瑞
翁文举
牛学良
李小宝
李晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN201810210020.XA priority Critical patent/CN108490047A/zh
Publication of CN108490047A publication Critical patent/CN108490047A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用,包括制备离子液体碳糊电极,离子液体碳糊电极表面修饰纳米氮化碳,纳米氮化碳表面固定肌红蛋白,肌红蛋白外修饰一层Nafion膜等程序。该电化学传感器的制备方法包括材料准备、离子液体碳糊电极表面修饰纳米氮化碳、滴涂肌红蛋白后用Nafion膜固定等步骤。用该氮化碳/肌红蛋白电化学传感器检测三氯乙酸的方法,包括以下步骤:用所述的氮化碳/肌红蛋白电化学传感器为工作电极,构建三电极系统,将三电极系统与电化学工作站连接,通过检测还原电流的大小来定量指示待测溶液中三氯乙酸的浓度。本发明制备的传感器具有成本低廉、制作简单、环境友好等优点可实现对三氯乙酸的高效检测。

Description

一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方 法及应用
技术领域:
本发明涉及电化学传感器领域,尤其涉及一种基于肌红蛋白的电化学传感器件的制备方法及应用 。
背景技术:
纳米氮化碳作为一类具有优异的热稳定性和化学稳定性的新型半导体材料,具有化学组成易调控、可见光响应、稳定性高等优点,在降解污染物,光催化分解水制氢和电催化等领域有广泛应用。此外纳米氮化碳不仅廉价稳定,满足人们对催化剂的基本要求,而且还具备聚合物半导体的化学组成和能带结构易调控等特点,被认为是催化研究领域值得深入探索的研究方向之一。
肌红蛋白是高等生物体内负责运载氧的一种蛋白质,它是由一条多肽链和一个辅基血红素构成,相对分子质量为16700,含153个氨基酸残基。血红素中的Fe(II)能与氧进行氧合作用,由于氧合作用是可逆的,所以肌红蛋白能够储存分子氧且增加其在细胞中的扩散速率。血红素类蛋白质在电极上的直接电化学行为的研究,对于理解和认识它们在生命体内的电子转移机制和生理作用、了解蛋白质分子的结构和各种物理化学性质、开发新型第三代电化学生物传感器和生物燃料电池等均具有重要意义。
第三代电化学酶传感器具有灵敏度高、检测范围宽和检测限低等优点,它是基于无媒介体的氧化还原蛋白质/酶的直接电化学行为,通过检测酶与电极之间的直接电子转移为特征的一种生物传感装置。由于这种传感器制作过程无媒介体,过程相对简单且无外加物质,是当前最理想的生物传感器。以氧化还原蛋白质的直接电化学为研究基础的第三代无媒介体传感器已成为电化学生物传感检测领域的重要内容。
三氯乙酸是一种易溶于水的有机小分子,它是饮用水消毒副产物卤乙酸中致癌能力最高的有机氯化物,因此快速精确检测三氯乙酸有着重要的意义。氧化还原蛋白质修饰电极可以催化三氯乙酸的电化学降解,并达到电催化检测的目的。当纳米氮化碳存在于电极表面后可以促进肌红蛋白在电极上的电子传递速率加快催化反应的进行。将肌红蛋白与纳米氮化碳相组装既可以保持其催化活性又可以缩短传质路径,提高传质速率,从而构建具有制备简单、响应快、催化活性高的第三代电化学酶传感器。
发明内容:
本发明提供一种成本低廉、制作简单、使用寿命长的一种基于纳米氮化碳/肌红蛋白的电化学传感器;利用所构建的电化学传感器实现对三氯乙酸快速灵敏检测的方法。
为了实现上述任务,本发明采取如下的技术解决方案:
所述离子液体碳糊电极按照质量比为(1~3):1称取石墨粉 和N-己基吡啶六氟磷酸盐混合,放入研钵中充分研磨2h。将其填入内径为4 mm的玻璃电极管中,插入铜丝作为导线,将玻璃电极管中的固体混合物压实即得离子液体碳糊电极。
本发明提供一种纳米氮化碳/肌红蛋白电化学传感器的制备方法,包括以下步骤:
(1)材料准备:制备离子液体碳糊电极,并配制纳米氮化碳分散液、肌红蛋白溶液和Nafion溶液;
(2)修饰纳米氮化碳:向所述的离子液体碳糊电极表面滴加纳米氮化碳分散液,晾干后在离子液体碳糊电极上形成纳米氮化碳层;
(3)固定肌红蛋白:在所述纳米氮化碳层上滴加肌红蛋白溶液,晾干备用;
(4)包裹肌红蛋白:用配置好的Nafion溶液滴加到吸附肌红蛋白的纳米氮化碳层上使其形成Nafion复合膜,得到一种纳米氮化碳/肌红蛋白电化学传感器。
该制备方法不经过任何化学修饰,仅借助滴涂法将肌红蛋白固定在离子液体碳糊电极表面,成本低廉、工艺简单、制作快速,能维持肌红蛋白的高活性并保持蛋白质的空间结构不被破坏。
4.上述的制备方法中,所述Nafion溶液的质量分数为0.5 %。
5.上述的制备方法中,所述纳米氮化碳溶液浓度为0.2~1.0 mg/mL,肌红蛋白溶液浓度为15~30 mg/mL。
6.本发明还提供一种用上述纳米氮化碳/肌红蛋白电化学传感器检测药品中三氯乙酸的方法,包括以下步骤:用所述的纳米氮化碳/肌红蛋白电化学传感器为工作电极,饱和甘汞电极为参比电极,铂电极为对电极,建立三电极系统,将所述三电极系统与电化学工作站连接,通过检测电催化还原电流的大小来检测待测液中三氯乙酸的浓度。
7.上述的检测方法中,所述三电极系统检测待测液的条件为:电解液为pH=7.0的磷酸盐缓冲液,扫速为100 mV/s。
与现有技术相比,本发明的优点在于:
1、本发明的纳米氮化碳/肌红蛋白电化学传感器的制备方法,成本低廉、工艺简单、制作快速,不经过任何化学修饰,仅借助滴涂法将纳米氮化硼和肌红蛋白固定在离子液体碳糊电极表面,能维持肌红蛋白的高活性并保持蛋白质的空间结构不被破坏;
2、本发明的一种纳米氮化碳/肌红蛋白的电化学传感器检测三氯乙酸的方法,由于传感器界面上氮化碳良好的生物相容性及电催化性能,能够显著提高电极和溶液间电子的转移速度,对于三氯乙酸能起到良好的电催化效果。用于三氯乙酸的检测具有线性范围宽、检测限低、响应速度快等优点。
附图说明
图1为本发明实施例中不同放大倍数下的C3N4透射电镜图。
图2为不同修饰电极(a)Nafion/Mb/C3N4/CILE,(b)Nafion/Mb/CILE,(c)Nafion/C3N4/CILE和(d)Nafion/CILE在pH 7.0 PBS中的循环伏安曲线;扫速为100 mV s-1
图3为不同扫速下Nafion/Mb/C3N4/CILE的循环伏安图(30, 50,100,200,300,400,500,600,700,800,900 mV s-1)。
图4为本发明实施例中不同修饰电极在(a)Nafion/C3N4/CILE, (b) Nafion/Mb/C3N4/CILE, (c)Nafion/CILE (d) Nafion/Mb/CILE 在10.0 mmol/L K3[Fe(CN)6]和0.1mol/L KCl混合溶液中的电化学阻抗图谱。
图5为本发明实施例中修饰电极在不同浓度三氯乙酸存在下的循环伏安图。
具体实施方式
以下结合具体实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
实施例1
一种纳米氮化碳/肌红蛋白的电化学传感器的制备方法,包括以下步骤:
1、按照质量比1:1称取石墨粉和N-己基吡啶六氟磷酸盐,即取0.8 g石墨粉和0.8 g N-己基吡啶六氟磷酸盐,放入研钵中充分研磨。待充分研磨将其填入内径为4 mm的玻璃电极管中,插入铜丝作为导线,将玻璃电极管中的固体混合物压实即得离子液体碳糊电极;
2、取8 μL 1.0 mg mL-1 C3N4溶液滴涂在电极表面,室温条件下避光自然晾干,得到C3N4/CILE修饰电极;
3、取8 μL 15 mg mL-1 Mb溶液滴涂在C3N4/CILE电极表面,在室温下避光自然晾干,得到Mb/C3N4/CILE电极;
4、取6 μL 0.5% Nafion溶液滴涂在Mb/C3N4/CILE电极表面,室温下避光晾干后,即得到Nafion/Mb/C3N4/CILE电极。
实施例2
一种纳米氮化碳/肌红蛋白电化学传感器的制备方法,包括以下步骤:
1、按照质量比2:1取石墨粉和N-己基吡啶六氟磷酸盐,即取1.6 g石墨粉和0.8 g N-己基吡啶六氟磷酸盐混合,放入研钵中充分研磨。待充分研磨将其填入内径为4 mm的玻璃电极管中,插入铜丝作为导线,将玻璃电极管中的固体混合物压实即得离子液体碳糊电极;
2、取8 μL 0.4 mg mL-1 C3N4溶液滴涂在电极表面,室温条件下避光自然晾干,得到C3N4/CILE修饰电极;
3、取8 μL 15 mg mL-1 Mb溶液滴涂在C3N4/CILE电极表面,在室温下避光自然晾干,得到Mb/C3N4/CILE电极;
4、取6 μL 0.5% Nafion溶液滴涂在Mb/C3N4/CILE电极表面,室温下避光晾干后,即得到Nafion/Mb/C3N4/CILE电极。
实施例3
一种纳米氮化碳/肌红蛋白的电化学传感器的制备方法,包括以下步骤:
1、按照质量比3:1取石墨粉和N-己基吡啶六氟磷酸盐混,即取2.4 g石墨粉和0.8 g N-己基吡啶六氟磷酸盐混合,放入研钵中充分研磨。待充分研磨将其填入内径为4 mm的玻璃电极管中,插入铜丝作为导线,将玻璃电极管中的固体混合物压实即得离子液体碳糊电极;
2、取8 μL 0.4 mg mL-1 C3N4溶液滴涂在电极表面,室温条件下避光自然晾干,得到C3N4/CILE修饰电极;
3、取8 μL 30 mg mL-1 Mb溶液滴涂在C3N4/CILE电极表面,在室温下避光自然晾干,得到Hb/C3N4/CILE电极;
4、取6 μL 0.5% Nafion溶液滴涂在Hb/C3N4/CILE电极表面,室温下避光晾干后,即得到Nafion/Mb/C3N4/CILE电极。
实施例4
图1为不同倍数下的纳米氮化碳透射电镜图。
实施例5
如图2所示,不同修饰电极在pH 7.0的PBS中的循环伏安图。在Nafion/C3N4/CILE曲线(c), Nafion/CILE曲线(d), CILE曲线(e)上没有出现氧化还原特征峰,表明电极表面不存在电活性物质。在Nafion/Mb/CILE曲线(b)上出现一对明显的不对称的氧化还原峰,说明Mb和CILE之间存在电子传输但速度不快。而在Nafion/Mb/C3N4/CILE曲线(a)上出现一对良好且准可逆的氧化还原峰,氧化还原峰电流之比接近于1,表现出Mb内血红素辅基Fe(III)/Fe(II)氧化还原电对的特征电化学行为。
实施例6
如图3所示,在30-900 mV s-1扫速范围内研究Nafion/Mb/C3N4/CILE的循环伏安图,并求解相关的电化学参数。根据Laviron理论可求得电子转移数(n)为0.98,电子传递系数(α)为0.63,反应的速率常数(k s )值为2.47s-1。结果表明N-GQDs复合膜的存在可以为Mb提供一个合适的微环境,加快速电子转移速率。
实施例7
电化学交流阻抗谱(EIS)能够有效提供电极表面修饰过程的阻抗变化信息,由阻抗图半圆的直径可获得电子转移电阻(Ret)。图4为本发明实施例中不同修饰电极 (a) Nafion/C3N4/CILE, (b) Nafion/Mb/C3N4/CILE, (c) Nafion/CILE和 (d) Nafion/Mb/CILE 在10.0 mmol/L K3[Fe(CN)6]和0.1 mol/L KCl混合溶液中的电化学阻抗图谱。Nafion/CILE的阻抗为37.29 Ω,当C3N4加入到电极表面时,Nafion/C3N4/CILE电极的阻抗变为25.13Ω,这说明C3N4具有高导电性而降低界面电阻。Nafion/Mb/CILE的阻抗值为98.37 Ω,说明电极上Mb的存在阻碍了铁氰化钾在电极表面的电子转移。而Nafion/Mb/C3N4/CILE的阻抗值为59.24 Ω介于二者之间,阻抗值明显的减小也说明C3N4和Mb的共同存在改变了界面的导电性。因此电极表面修饰不同类型的物质导致了的界面电阻的差异,也说明了修饰过程的完成。
实施例8
以本发明实施例中制得的Nafion/Mb/C3N4/CILE为工作电极,饱和甘汞电极(SCE)为参比电极,铂电极为对电极,组成三电极系统。将pH 7.0的PBS经过30分钟的氮气除氧后作为支持电解质溶液对TCA进行电化学检测,考察该修饰电极对TCA的电催化还原能力,结果如图5所示。随着TCA加入量的增加,还原峰电流明显增大,并在-0.298V出现一个还原峰,氧化峰逐渐消失,这是典型的TCA电催化还原过程。还原峰电流和TCA的浓度在0.8~64.0 mmolL-1的范围内呈良好的线性关系,检测限为0.267 mmol L-1,表明该修饰电极对TCA具有良好的电催化性能,进而可用于低浓度的TCA的检测。

Claims (7)

1.一种纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用,其特征在于制备离子液体碳糊电极,所述离子液体碳糊电极的电极表面修饰纳米氮化碳,所述纳米氮化碳表面固定肌红蛋白,所述肌红蛋白外修饰一层Nafion薄膜。
2.根据权利要求书1所述的氮化碳/肌红蛋白电化学传感器,其特征在于:所述离子液体碳糊电极按照质量比为(1~3):1称取石墨粉和N-己基吡啶六氟磷酸盐,放入研钵中充分研磨2h后将部分碳糊填入内径为4 mm的玻璃电极管中,插入铜丝作为导线,将玻璃电极管中的固体混合物压实即得离子液体碳糊电极。
3.一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法,包括以下步骤:
材料准备:制备离子液体碳糊电极,并配制纳米氮化碳分散液、肌红蛋白溶液和Nafion溶液;
修饰纳米氮化碳:向所述的离子液体碳糊电极表面滴加纳米氮化碳溶液,晾干后在离子液体碳糊电极上形成纳米氮化碳层;
固定肌红蛋白:在所述纳米氮化碳层上滴加肌红蛋白溶液,晾干备用;
包裹肌红蛋白:用配置好的Nafion溶液滴加到吸附肌红蛋白的纳米氮化碳层上使其形成Nafion复合膜,得到一种纳米氮化碳/肌红蛋白电化学传感器。
4.根据权利要求3所述的制备方法,其特征在于:所述Nafion溶液的质量分数为0.5 %。
5.根据权利要求3所述的制备方法,其特征在于:所述纳米氮化碳溶液浓度为0.2~1.0mg/mL,肌红蛋白溶液浓度为15~30 mg/mL。
6.一种如权利要求1或2所述的纳米氮化碳/肌红蛋白电化学传感器检测三氯乙酸的方法,包括以下步骤:用所述纳米氮化碳/肌红蛋白电化学传感器为工作电极,饱和甘汞电极为参比电极,铂电极为对电极,建立三电极系统,将所述三电极系统与电化学工作站连接,通过检测电催化还原电流的大小来检测待测液中三氯乙酸的浓度。
7.根据权利要求6所述的方法,其特征在于:所述三电极系统检测待测液的条件为:电解液为pH=7.0的磷酸盐缓冲液,扫速为100 mV/s。
CN201810210020.XA 2018-03-14 2018-03-14 一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用 Pending CN108490047A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810210020.XA CN108490047A (zh) 2018-03-14 2018-03-14 一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810210020.XA CN108490047A (zh) 2018-03-14 2018-03-14 一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用

Publications (1)

Publication Number Publication Date
CN108490047A true CN108490047A (zh) 2018-09-04

Family

ID=63339249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810210020.XA Pending CN108490047A (zh) 2018-03-14 2018-03-14 一种基于纳米氮化碳/肌红蛋白的电化学传感器件的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108490047A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161098A (zh) * 2019-06-10 2019-08-23 海南师范大学 一种基于肌红蛋白-石墨烯管修饰电极的电化学酶传感器的构建及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353709A (zh) * 2011-06-17 2012-02-15 同济大学 合金氧化物纳米管阵列上固定的肌红蛋白电化学生物传感器的制备方法及其应用
CN104977341A (zh) * 2015-06-18 2015-10-14 青岛科技大学 石墨烯-类水滑石片-石墨相氮化碳复合材料固定蛋白修饰电极及其制备方法和应用
CN105784825A (zh) * 2016-05-27 2016-07-20 海南师范大学 一种基于单壁碳纳米角修饰电极的电化学酶传感器制备及应用
CN107037104A (zh) * 2017-05-15 2017-08-11 海南师范大学 一种基于石墨烯量子点修饰电极的蛋白质电化学传感器件及其制备与应用
CN107328839A (zh) * 2017-07-13 2017-11-07 海南师范大学 基于Nafion/血红蛋白/氮掺杂石墨烯量子点修饰电极的制备及其电催化性能研究

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353709A (zh) * 2011-06-17 2012-02-15 同济大学 合金氧化物纳米管阵列上固定的肌红蛋白电化学生物传感器的制备方法及其应用
CN104977341A (zh) * 2015-06-18 2015-10-14 青岛科技大学 石墨烯-类水滑石片-石墨相氮化碳复合材料固定蛋白修饰电极及其制备方法和应用
CN105784825A (zh) * 2016-05-27 2016-07-20 海南师范大学 一种基于单壁碳纳米角修饰电极的电化学酶传感器制备及应用
CN107037104A (zh) * 2017-05-15 2017-08-11 海南师范大学 一种基于石墨烯量子点修饰电极的蛋白质电化学传感器件及其制备与应用
CN107328839A (zh) * 2017-07-13 2017-11-07 海南师范大学 基于Nafion/血红蛋白/氮掺杂石墨烯量子点修饰电极的制备及其电催化性能研究

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QING HAN 等: "Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution", ACS NANO, vol. 10, pages 2745 *
TIANRONG ZHAN 等: "Hemoglobin immobilized in g-C3N4 nanoparticle decorated 3D graphene-LDH network: Direct electrochemistry and electrocatalysis to trichloroacetic acid", SENSORS AND ACTUATORS B, vol. 255, pages 149, XP085228977, DOI: 10.1016/j.snb.2017.08.048 *
王新军 等: "Hb在GR-LDH-g-C3N4 纳米复合膜上的直接电化学及电催化性能", 中国化学会第十五届胶体与界面化学会议论文集(第二分会), pages 80 - 81 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161098A (zh) * 2019-06-10 2019-08-23 海南师范大学 一种基于肌红蛋白-石墨烯管修饰电极的电化学酶传感器的构建及应用

Similar Documents

Publication Publication Date Title
Lu et al. Carbon nanofiber-based composites for the construction of mediator-free biosensors
Wu et al. Construction of a zinc porphyrin–fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite
Wang et al. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol–gel film
Qiu et al. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose
Karyakin et al. The electrochemical polymerization of methylene blue and bioelectrochemical activity of the resulting film
Salimi et al. Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives
Liu et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor
Dong et al. Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies
Wang et al. Synthesis of redox polymer nanobeads and nanocomposites for glucose biosensors
Sun et al. Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier
Chen et al. A nitrite biosensor based on the immobilization of Cytochrome c on multi-walled carbon nanotubes–PAMAM–chitosan nanocomposite modified glass carbon electrode
Sun et al. Electrochemistry of myoglobin in Nafion and multi-walled carbon nanotubes modified carbon ionic liquid electrode
Kang et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic–inorganic film of chitosan/sol–gel/carbon nanotubes
Lee et al. Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties
CN107328839A (zh) 基于Nafion/血红蛋白/氮掺杂石墨烯量子点修饰电极的制备及其电催化性能研究
Mani et al. Electropolymerization of cobalt tetraamino-phthalocyanine at reduced graphene oxide for electrochemical determination of cysteine and hydrazine
Salimi et al. Carbon Nanotubes‐Ionic Liquid and Chloropromazine Modified Electrode for Determination of NADH and Fabrication of Ethanol Biosensor
Saadati et al. Direct electron transfer and electrocatalytic properties of immobilized hemoglobin onto glassy carbon electrode modified with ionic-liquid/titanium-nitride nanoparticles: application to nitrite detection
CN107037104A (zh) 一种基于石墨烯量子点修饰电极的蛋白质电化学传感器件及其制备与应用
CN101603940A (zh) MWCNTs-TiO2/Nafion 复合介质的酶电极的制备方法
Saadati et al. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: study of direct voltammetry and bioelectrocatalytic activity
CN107941881A (zh) 基于三维石墨烯修饰电极的肌红蛋白电化学生物传感器制备及其电催化研究
CN107219281A (zh) 一种铂‑三维石墨烯气凝胶基酶传感器件的制备及应用
CN107500264A (zh) 一种榕树叶基生物质多孔碳的制备方法及其在蛋白质(酶)传感器中应用
Prakash et al. Direct electrochemistry of catalase at multiwalled carbon nanotubes-nafion in presence of needle shaped DDAB for H2O2 sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180904