CN108485151B - 一种高透明纳米纤维素增强聚合物基复合材料的制备方法 - Google Patents

一种高透明纳米纤维素增强聚合物基复合材料的制备方法 Download PDF

Info

Publication number
CN108485151B
CN108485151B CN201810135500.4A CN201810135500A CN108485151B CN 108485151 B CN108485151 B CN 108485151B CN 201810135500 A CN201810135500 A CN 201810135500A CN 108485151 B CN108485151 B CN 108485151B
Authority
CN
China
Prior art keywords
cellulose
nano
polymer matrix
transparency
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810135500.4A
Other languages
English (en)
Other versions
CN108485151A (zh
Inventor
刘红霞
刘馨月
管宇鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin Qi Hong Technology Co ltd
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201810135500.4A priority Critical patent/CN108485151B/zh
Publication of CN108485151A publication Critical patent/CN108485151A/zh
Application granted granted Critical
Publication of CN108485151B publication Critical patent/CN108485151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种高透明纳米纤维素增强聚合物基复合材料的制备方法。先通过纳米纤维素稳定的疏水性聚合物的Pickering乳液的凝胶化,然后再经抽滤洗涤干燥,进一步采用热压工艺而制得高透明的纳米纤维素增强聚合物基复合材料。本发明方法适用于从各种原材料提取制备的不同形貌的纳米纤维素以及疏水性的聚合物,易于大规模推广,且本发明方法中所用试剂都是常见试剂,价格便宜,且制备过程简便、快速、所得复合材料具有高透明度和优异的机械力学性能,且可设计性强等优点。

Description

一种高透明纳米纤维素增强聚合物基复合材料的制备方法
技术领域
本发明属于纳米纤维素增强聚合物基复合材料制备技术领域,特别涉及一种基于Pickering乳液技术的以纳米纤维素和疏水性聚合物作为基材来制备具有光学透明性的纳米纤维素增强聚合物基复合材料的方法。
背景技术
纳米纤维素是指至少一维的尺度在纳米范围内的纤维素材料,凭借其优异的机械性能、纳米尺寸、低密度、低热膨胀系数、可再生性、可生物降解性、非毒性和生物相容性引起人们广泛的关注。作为新一代环境友好的纳米材料,其在特殊纸张、食品包装、药物制剂、医学工程等领域,尤其在增强聚合物纳米复合材料方面具有巨大的应用潜能。研究表明,纳米纤维素在增强水溶性的聚合物如聚乙烯醇、壳聚糖、琼脂、海藻酸等时,在明显改善聚合物基体的力学性能的同时还能保持聚合物基体材料的光学性能。然而,纳米纤维素在增强疏水性的聚合物基体(例如天然橡胶、聚氨酯、聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚乳酸等)时存在着很大的问题,即亲水性的纳米纤维素与疏水性的聚合物不相容,纳米纤维素很难在疏水性聚合物基体中均匀分散,从而影响所得复合材料的形貌和性能。尤其纳米纤维素在增强透明性的聚合物(如聚甲基丙烯酸甲酯PMMA)时由于纳米纤维素的不均匀分散而直接影响所得复合材料的透明度。目前,关于纳米纤维素增强疏水性聚合物的报道中,大多采用溶剂置换、纳米纤维素表面改性、添加表面活性剂或特殊的相容剂、原位聚合等方法来提高纳米纤维素和聚合物基体的相容性和界面相互作用。然而这些方法中有些对纳米纤维素在聚合物基体中的均匀分散性的改善有限,有些所涉及的化学反应复杂、试剂成本昂贵、难以大规模化生产。由此可见,目前在纳米纤维素增强聚合物复合材料的研究中,关键问题仍然是如何有效地改善纳米纤维素在疏水性聚合物基体中的均匀分散性,以更好地提高聚合物基体的力学性能,同时还能保持聚合物基体材料的光学性能。因此,开发一种简便快捷、低成本的、适用范围广、高透明度的纳米纤维素增强疏水性聚合物复合薄膜材料制备方将具有非常重要的现实意义。
发明内容
本发明的目的是提供一种高透明纳米纤维素增强聚合物基复合材料的制备方法。
本发明思路:先通过纳米纤维素稳定的疏水性聚合物的Pickering乳液的凝胶化,然后再经抽滤洗涤干燥,进一步采用热压工艺而制得高透明的纳米纤维素增强聚合物基复合材料。
具体步骤为:
(1)将疏水性聚合物溶解在有机溶剂中,制得质量百分比浓度为2~4%的含有疏水性聚合物的有机溶液。
(2)将质量百分比浓度为0.1~0.5%的纳米纤维素的水分散液与步骤(1)中制得的含有疏水性聚合物的有机溶液按照体积比为2~5:1混合,制得混合液。
(3)将步骤(2)中制得的混合液在功率为100~1000W的超声波乳化仪中超声乳化至凝胶状,得到纳米纤维素稳定的水包油的Pickering乳液凝胶。
(4)将步骤(3)中制得的Pickering乳液凝胶进行抽滤,并用有机溶剂洗涤,然后将所得Pickering乳液凝胶滤饼进行烘干,除去其中的有机溶剂。
(5)将步骤(4)中烘干后的Pickering乳液凝胶滤饼放入模具中,将模具放入平板热压机中,先在低温低压的条件下热压,进一步去除滤饼中的有机溶剂,最后在高温高压的条件下热压成型,即制得高透明纳米纤维素增强聚合物基复合材料。
所述疏水性聚合物为聚苯乙烯、聚甲基丙烯酸甲酯或聚碳酸酯。
所述有机溶剂为疏水且能够溶解疏水性聚合物的有机溶剂,具体为二氯甲烷或1,2-二氯乙烷。
所述纳米纤维素是至少一维且尺度在纳米范围内的纤维素材料,具体为从棉花、木材、竹子或麻类中提取制备的具有形貌结构的纤维素纳米晶或纤维素纳米纤。
所述化学试剂及原料的纯度均为分析纯及以上纯度。
本发明方法的优点:
(1)本发明方法适用于从各种原材料提取制备的不同形貌的纳米纤维素以及疏水性的聚合物,易于大规模推广。
(2)本发明方法中所用试剂都是常见试剂,价格便宜,且制备过程简便、快速、所得复合材料具有高透明度且可设计性强等优点。
附图说明
图1为本发明实施例制备的不同剑麻纳米纤维素含量的聚甲基丙烯酸甲酯复合材料在不同波长下的透光率,内置图为制得的高透明纳米纤维素增强聚合物基复合材料PMMA-20%-CNF的数码相机照片。
图2为本发明实施例制备的不同剑麻纳米纤维素含量的聚甲基丙烯酸甲酯复合材料的动态力学性能。
具体实施方式
下面结合具体实施例对本发明做进一步描述,但本发明不局限于以下实施例,以下实施例中所使用的化学试剂和原料均为分析纯。
实施例:
(1)首先将12毫升的质量百分比浓度为0.4%的剑麻纤维素纳米纤(SCNF)的水分散液加入离心管中;然后,将4 毫升的质量百分比浓度为2%的聚甲基丙烯酸甲酯(PMMA)的1,2-二氯乙烷溶液与上述剑麻纤维素纳米纤的水分散液进行混合,纳米纤维素的水分散液与PMMA的1,2-二氯乙烷溶液的体积比为3:1。
(2)使用超声乳化仪将步骤(1)所得的水油相混合液在400W功率下超声乳化至形成凝胶状,即得到由SCNF稳定的油相中含有PMMA的Pickering乳液凝胶。
(3)将步骤(2)所得Pickering乳液凝胶倒入装有微孔过滤膜的砂芯漏斗中抽滤,并少量多次用1,2-二氯乙烷进行洗涤,抽滤后将所得滤饼放入烘箱中(温度设置为50℃)干燥到一定程度以除去大部分1,2-二氯乙烷,即得到一定湿度的Pickering乳液滤饼。
(4)将步骤(3)所得Pickering乳液滤饼放入模具中,在平板热压机中进行二步热压成型,首先在低温低压(70oC,1.5MPa)下热压20min以完全去除有机溶剂,然后在高温高压(120℃,75MPa)下热压20min,即经过二步热压成型工艺后制得高透明纳米纤维素增强聚合物基复合材料。
另外,通过改变油相中PMMA的质量百分比浓度和油水相体积比,就能够调节最终复合材料中SCNF的含量。实施例中制得的不同剑麻纳米纤维素含量的SCNF/PMMA复合材料分别标记为PMMA-13%-CNF、PMMA-20%-CNF、PMMA-37%-CNF和PMMA-42%-CNF。从它们的紫外光谱图、数码相机照片和动态力学性能图中,能够看出所得的SCNF/PMMA复合薄膜材料的透过率基本保持在85%以上,具有较高的光学透明性(见附图1);相比纯的PMMA材料,SCNF/PMMA复合材料的力学性能得到了明显的改善,且随着复合材料中SCNF量的增多,SCNF/PMMA复合材料的力学性能越优异(见附图2)。

Claims (1)

1.一种高透明纳米纤维素增强聚合物基复合材料的制备方法,其特征在于具体步骤为:
(1)将12毫升的质量百分比浓度为0.4%的剑麻纤维素纳米纤维的水分散液加入离心管中,然后,将4毫升的质量百分比浓度为2%的聚甲基丙烯酸甲酯的1,2-二氯乙烷与上述剑麻纤维素纳米纤维的水分散液进行混合,剑麻纤维素纳米纤维的水分散液与PMMA的1,2-二氯乙烷溶液的体积比为3:1混合;
(2)将步骤(1)中制得的混合液在功率为400W的超声波乳化仪中超声乳化至凝胶状,得到纳米纤维素稳定的水包油的Pickering乳液凝胶;
(3)将步骤(2)中制得的Pickering乳液凝胶进行抽滤,并用1,2二氯乙烷进行洗涤,然后将所得Pickering乳液凝胶滤饼进行烘干,除去其中的有机溶剂;
(4)将步骤(3)中烘干后的Pickering乳液凝胶滤饼放入模具中,将模具放入平板热压机中,先在低温低压70℃,1.5MPa的条件下热压20min,进一步去除滤饼中的有机溶剂,最后在高温高压120℃,75MPa的条件下热压成型,即制得高透明纳米纤维素增强聚合物基复合材料。
CN201810135500.4A 2018-02-09 2018-02-09 一种高透明纳米纤维素增强聚合物基复合材料的制备方法 Active CN108485151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810135500.4A CN108485151B (zh) 2018-02-09 2018-02-09 一种高透明纳米纤维素增强聚合物基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810135500.4A CN108485151B (zh) 2018-02-09 2018-02-09 一种高透明纳米纤维素增强聚合物基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108485151A CN108485151A (zh) 2018-09-04
CN108485151B true CN108485151B (zh) 2020-11-24

Family

ID=63340094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810135500.4A Active CN108485151B (zh) 2018-02-09 2018-02-09 一种高透明纳米纤维素增强聚合物基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108485151B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094441A (zh) * 2019-06-18 2020-12-18 中国科学技术大学 一种基于纳米纤维素的复合板材及其制备方法
CN112592553B (zh) * 2020-12-14 2021-09-24 江南大学 一种低结晶度纳米纤维素/pmma复合材料的制备方法
CN114748451B (zh) * 2022-05-20 2023-08-25 武汉大学 一种马来酸噻吗洛尔外用剂及其制备方法
CN115678162B (zh) * 2022-11-01 2023-09-26 吉林大学 一种纤维素纳米纤维/聚丙烯复合材料制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827315A (zh) * 2012-08-30 2012-12-19 合肥工业大学 一种氧化石墨烯/聚苯乙烯纳米复合材料及其制备方法
CN103665398A (zh) * 2013-12-15 2014-03-26 桂林理工大学 可完全生物降解和生物相容的复合微球的制备方法
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024818A (ja) * 2012-07-30 2014-02-06 Josho Gakuen ゲル体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827315A (zh) * 2012-08-30 2012-12-19 合肥工业大学 一种氧化石墨烯/聚苯乙烯纳米复合材料及其制备方法
CN103665398A (zh) * 2013-12-15 2014-03-26 桂林理工大学 可完全生物降解和生物相容的复合微球的制备方法
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法

Also Published As

Publication number Publication date
CN108485151A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108485151B (zh) 一种高透明纳米纤维素增强聚合物基复合材料的制备方法
Dai et al. 3D printing using plant-derived cellulose and its derivatives: A review
Ye et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films
Li et al. Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits
Mishra et al. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect
Zhang et al. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid
Oksman et al. Review of the recent developments in cellulose nanocomposite processing
Xiong et al. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics
Li et al. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites
Mohan et al. Extending cellulose-based polymers application in additive manufacturing technology: A review of recent approaches
Gupta et al. Ice-templated porous nanocellulose-based materials: Current progress and opportunities for materials engineering
Brinchi et al. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications
Peng et al. Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective
Olsson et al. Extraction of microfibrils from bacterial cellulose networks for electrospinning of anisotropic biohybrid fiber yarns
US20130345416A1 (en) Method for processing nanofibrillar cellulose and product obtained by the method
AU2021105044A4 (en) Cellulose/aramid nanofiber composite film and preparation method and application therof
Zhao et al. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin
Cao et al. Cellulose nanocrystals-based nanocomposites: fruits of a novel biomass research and teaching platform
Oksman et al. Novel bionanocomposites: processing, properties and potential applications
WO2010018808A1 (ja) 複合材料、機能材料、複合材料の製造方法、及び、複合材料薄膜の製造方法
CN110818920B (zh) 一种纤维素纳米晶/聚乳酸复合材料及其制备方法和应用
Suenaga et al. Self-sustaining cellulose nanofiber hydrogel produced by hydrothermal gelation without additives
CN104624130A (zh) 一种制备再生甲壳素微球的方法
CN107238576B (zh) 一种光响应印迹识别膜的制备方法
Li et al. Robust all-cellulose nanofiber composite from stack-up bacterial cellulose hydrogels via self-aggregation forces

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230410

Address after: Room 103, Enterprise Zone, Innovation and Entrepreneurship Base, Guilin University of Technology, No. 12, Jiangan Road, Qixing District, Guilin City, Guangxi Zhuang Autonomous Region, 541010

Patentee after: Guilin Qi Hong Technology Co.,Ltd.

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin City Seven Star District Building Road No. 12

Patentee before: GUILIN University OF TECHNOLOGY

TR01 Transfer of patent right