CN108467029A - 一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用 - Google Patents

一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用 Download PDF

Info

Publication number
CN108467029A
CN108467029A CN201810633873.4A CN201810633873A CN108467029A CN 108467029 A CN108467029 A CN 108467029A CN 201810633873 A CN201810633873 A CN 201810633873A CN 108467029 A CN108467029 A CN 108467029A
Authority
CN
China
Prior art keywords
preparation
paper
self
supporting
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810633873.4A
Other languages
English (en)
Inventor
李崭虹
朱志刚
宋润民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Polytechnic University
Original Assignee
Shanghai Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Polytechnic University filed Critical Shanghai Polytechnic University
Priority to CN201810633873.4A priority Critical patent/CN108467029A/zh
Publication of CN108467029A publication Critical patent/CN108467029A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用。本发明中采用简单的一锅法共还原,在聚乙烯吡咯烷酮的参与下,使用水浴加热法利用水合肼共还原PdCl2与氧化石墨烯,而后利用简单的真空抽滤方法制备柔性、自支撑的Pd/还原氧化石墨烯纸。本发明的有益效果在于:合成工艺简单,可大批量制备,适用于规模化生产和应用。将发明得到的柔性、自支撑材料制备成葡萄糖电化学传感器,该葡萄糖传感器对葡萄糖表现出快速的响应、较宽的线性响应范围,以及具有较高的灵敏度。

Description

一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其 应用
技术领域
本发明涉及柔性材料设计与传感器技术领域,具体地说,涉及一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用。
背景技术
近年来,便携式和可穿戴设备的发展给人们的生活带来了极大的便利。然而,为便携式和可穿戴设备寻找一种低成本、质量轻的理想化功能材料仍然是一项挑战。由于柔性的、自支撑导电纸基材料在传感器、锂离子电池、超级电容器、燃料电池与储氢器件等领域的都具有潜在的应用,其可能成为便携式和可穿戴设备的功能化材料选项之一。
石墨烯是一种具有sp2杂化的碳二维(2D)原子薄片,由于其独特的热学、机械、化学和电学性质,其已然成为一种明星材料。氧化石墨烯(graphene oxide, GO)的基面与边缘上包含氧官能团,使其易于在水中分散。另一方面,由于含氧官能团破坏了sp2成键的网络,使得氧化石墨烯的导电性较差。然而,较差的电导率可能会限制GO在电学上或者电化学领域方面的应用,如超级电容器、燃料电池、锂离子电池和传感器。为了恢复GO的电导率,应除去其大部分含氧官能团,因此应实现GO的还原。而获得的还原氧化石墨烯(reducedgraphene oxide, rGO)由于其在水中的聚集趋势,难以在水中很好地分散。
现今,包括电、光、质敏、热等各类传感器已经被广泛地投入到环境分析、工业生产与医疗诊断等领域的基础研究和实际应用当中。其中,电化学传感器具有设备简单、廉价、响应快和易于微型化等优点,被广泛应用于葡萄糖传感器的制备。随着便携式与可穿戴设备的发展,制备一种新型的、柔性的、可自支撑的葡萄糖电化学传感器具有重要意义。糖尿病是与血糖浓度失调相关的最显著疾病,是继恶性肿瘤、心脑血管后致死率排名第3的非传染性疾病。持续性高血糖可对人体健康造成长期损害并伴随着多器官的功能衰竭(眼睛、肾脏、神经、心脏与血管)。糖尿病是世界性的公共健康问题,根据国际糖尿病联盟(IDF)统计,2017年,全球范围内,20-79岁成年人中有4.25亿患有糖尿病。因此,实现葡萄糖的检测,尤其是基于柔性的、可自支撑材料的葡萄糖检测具有重要意义。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用。本发明基于一锅法共还原制备Pd/还原氧化石墨烯纸,工艺简单;获得的Pd/还原氧化石墨烯纸可用作葡萄糖电化学传感器,其对葡萄糖表现出快速的响应、较宽的线性响应范围,以及具有较高的灵敏度。
本发明的目的是通过以下技术方案来实现的。
本发明提供一种柔性、自支撑的Pd/还原氧化石墨烯纸的制备方法,具体步骤如下:
(1)分别取2-20mL 1mg/mL GO,0.1-1mmol 可溶性含钯前驱体与5-2000mg聚乙烯吡咯烷酮PVP,而后使用去离子水稀释至70mL,搅拌、超声混合均匀,得到棕色溶液;
(2)将混合均匀后的溶液水浴加热至80-100℃后,逐滴加入2-30mL 85wt%的水合肼溶液,继续反应0.5-3 h;
(3)反应结束后,冷却至室温,再继续超声分散0.5-3h;
(4)将超声分散后的溶液倒入抽滤器中,使用孔径0.22-0.45μm的水系滤膜真空抽滤;
(5)溶液抽滤完全后,将滤膜从抽滤器上取下,于室温环境下放置10-15h,最后将获得的Pd/还原氧化石墨烯纸从滤膜上剥离。
本发明中,步骤(2)中,可溶性含钯前驱体选自PdCl2,H2PdCl4,Na2PdCl4或K2PdCl4中的一种或几种。
本发明中,步骤(2)中,5-10mL 1mg/mL GO,0.1-0.5mmol 可溶性含钯前驱体,50-100mg聚乙烯吡咯烷酮PVP。
本发明中,步骤(2)中,水浴加热至80-90℃,85wt%的水合肼溶液的体积为8~15mL。
本发明还提供一种上述的制备方法制得的柔性、自支撑的Pd/还原氧化石墨烯纸。
本发明进一步提供一种上述的柔性、自支撑的Pd/还原氧化石墨烯纸在制备葡萄糖传感器中的应用。
与现有技术相比,本发明的有益效果在于:
本发明采用简单的水浴加热合成法,一锅反应共还原得到Pd与rGO的混合物,而后通过简单的真空抽滤法得到柔性、自支撑的Pd/还原氧化石墨烯纸。该方法简化了真空抽滤法制备金属粒子修饰的还原氧化石墨烯纸(rGO paper, rGOP)步骤,并且可获得rGO层间掺杂Pd粒子的材料结构。将该材料裁剪直接使用,或者将材料贴附于电极表面,制备出一种葡萄糖电化学传感器,构建的电化学传感器对葡萄糖检测具有快速的响应(<5s)、较宽的线性响应范围(0.5-8 mM),以及具有较高的灵敏度(0.4176 µA mM-1)等优点。
附图说明
图1为实施例1制得的Pd/还原氧化石墨烯纸的数码照片。
图2为实施例1制得的Pd/还原氧化石墨烯纸的400倍的扫描电镜(SEM)照片。
图3为实施例1制得的Pd/还原氧化石墨烯纸的扫描电镜(SEM)照片。
图4为实施例2制得的Pd/还原氧化石墨烯纸的XRD图谱。
图5为实施例5制得的Pd/还原氧化石墨烯纸的扫描电镜(SEM)照片。
图6为实施例10制得的Pd/还原氧化石墨烯纸电极对葡萄糖的电化学循环伏安测试图。
图7为实施例11制得的Pd/还原氧化石墨烯纸电极对葡萄糖的在不同电位下的响应电流曲线图。
图8为实施例11制得的Pd/还原氧化石墨烯纸电极在电位0.4V下对不同浓度葡萄糖的计时电流响应图。
具体实施方式
以下提供本发明柔性、自支撑的Pd/还原氧化石墨烯纸葡萄糖电化学传感器的制备实施例。
实施例1:Pd/还原氧化石墨烯纸的制备
(1) 分别取5mL 1mg/mL GO,50mg PdCl2与50mg PVP,而后使用去离子水稀释至70mL,搅拌、超声混合均匀,得到棕色溶液;
(2)将混合均匀后的溶液转移至烧瓶中,水浴加热至90 ℃;
(3)向烧瓶中逐滴加入10mL 85%的水合肼溶液,继续反应1 h;
(4)冷却至室温后,将反应混合物转移至烧杯中,超声分散0.5h;
(5)将超声分散后的溶液倒入抽滤器中,使用孔径0.22μm的水系滤膜真空抽滤;
(6)溶液抽滤完全后,将滤膜从抽滤器上取下,于室温环境下放置过夜。使用前可将获得的Pd/还原氧化石墨烯纸从滤膜上剥离,其数码照片见图1,扫描电镜图见图2,图3。图2所示,所获得的Pd/还原氧化石墨烯纸表面褶皱较为明显,Pd粒子均匀点缀于还原石墨烯纸上,且隐约可见部分Pd粒子嵌于还原石墨烯层间。图3所示,a方框区域为位于还原石墨烯纸较靠近表面的Pd粒子;b方框区域为位于还原石墨烯纸表面以下若干层的Pd粒子。由此可见,所获得的Pd/还原氧化石墨烯纸为rGO层间掺杂Pd粒子的材料结构。
实施例2:Pd/还原氧化石墨烯纸的制备
将实施例1的步骤(1)中的PVP的质量为50mg,改为PVP的质量为100mg,其他步骤和条件都与实施例1相同,得到Pd/还原氧化石墨烯纸,其XRD图谱见图4。其中,22.6°的衍射峰应归因于还原石墨烯片中的C(200)短程有序排列。根据布拉格定律,碳(200)在22.6°的衍射峰对应于0.40nm的晶格间距。 除了C(200)的衍射峰之外,Pd/还原氧化石墨烯纸在40.2°,46.7°和68.3°处的衍射峰则分别对应Pd晶体的(111),(200)和(220) 晶面,表明晶体Pd的存在。
实施例3:Pd/还原氧化石墨烯纸的制备
将实施例1的步骤(1)中的PdCl2的质量为50mg,改为PdCl2的质量为20mg,其他步骤和条件都与实施例1相同,得到Pd/还原氧化石墨烯纸。
实施例4:Pd/还原氧化石墨烯纸的制备
将实施例1的步骤(2)中的90℃的水浴温度用80 ℃的水浴温度替换,其他步骤和条件都与实施例1相同,得到Pd/还原氧化石墨烯纸。
实施例5:Pd/还原氧化石墨烯纸的制备
将实施例1的步骤(1)中的PVP的质量为50mg改为PVP的质量为5mg,其他步骤和条件都与实施例1相同,得到Pd/还原氧化石墨烯纸,其扫描电镜图见图5。PVP的量减少后,所获得的还原石墨烯纸表面褶皱明显减少,Pd粒子的分布没有较大改变。
实施例6:Pd/还原氧化石墨烯纸的制备
将实施例1的步骤(1)中,5mL 1mg/mL GO改为10mL 1mg/mL GO,其他步骤和条件都与实施例1相同,得到Pd/还原氧化石墨烯纸。
实施例7:电极的制备
将Pd/还原氧化石墨烯纸裁切成0.5cm*1cm方条状,使用鳄鱼夹夹持电极后,测试其葡萄糖传感性能。
实施例8:电极的制备
使用打孔器将Pd/还原氧化石墨烯纸冲打出直径5mm圆片,贴附于电极上后使用孔径3mm聚四氟乙烯板夹持,测试其葡萄糖传感性能。
实施例9:电极的制备
使用打孔器将Pd/还原氧化石墨烯纸冲打出直径3mm圆片,贴附于电极上后,在电极表面滴加5μL 0.5% Nafion溶液将其固定,测试其葡萄糖传感性能。
实施例10:所制备电极对葡萄糖的电化学行为测试
使用CHI760e电化学工作站对实施例1方法获得的Pd/还原氧化石墨烯纸,使用实施例9方法所制备电极对葡萄糖的电化学行为测试。使用0.1M NaOH作为底液,测试加入30mM葡萄糖前后的电化学循环伏安曲线,扫描范围-0.8V-0.8V(vs.SCE),扫速50mVs-1。所制备电极在加入30mM葡萄糖前,在电位-0.46V处有Pd的氧吸附物种还原峰;加入30mM葡萄糖后,在电位-0.07V与-0.46V处分别有一个葡萄糖的氧化峰。表明所制备电极对葡萄糖有良好的电催化氧化性能,所得电化学循环伏安图如图6所示。
实施例11:所制备电极对葡萄糖的传感测试
使用CHI760e电化学工作站对实施例1方法获得的Pd/还原氧化石墨烯纸,使用实施例9方法所制备电极进行葡萄糖的电化学传感测试。分别在0.1M NaOH溶液中磁力搅拌情况下,控制不同电位,向溶液中加入2mM葡萄糖,测试所制备电极在不同电位下对葡萄糖的响应电流,测试结果如图7所示。在电位0.4V(vs.SCE)时,对2mM葡萄糖响应最大,约为1.21 µA。而后,在电位0.4V时,在磁力搅拌情况下,向20mL 0.1M NaOH溶液每隔50s滴加不同浓度葡萄糖,所得到的计时电流曲线图如图8所示。所制备电极对葡萄糖的响应时间在5s以内,线性范围为0.5-8 mM,其对应的电流灵敏度为0.4176 µA mM-1。说明Pd/还原氧化石墨烯纸电极对葡萄糖有良好的电化学传感性能。
以上实施例的说明仅是本发明的优选实施方式,应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以对本发明进行若有改进和修饰,这些改进和修饰也应视为本发明权利要求的保护范围内。

Claims (6)

1.一种柔性、自支撑的Pd/还原氧化石墨烯纸的制备方法,其特征在于,具体步骤如下:
(1)分别取2-20mL 1mg/mL GO,0.1-1mmol 可溶性含钯前驱体与5-2000mg聚乙烯吡咯烷酮PVP,而后使用去离子水稀释至70mL,搅拌、超声混合均匀,得到棕色溶液;
(2)将混合均匀后的溶液水浴加热至80-100℃后,逐滴加入2-30mL 85wt%的水合肼溶液,继续反应0.5-3 h;
(3)反应结束后,冷却至室温,再继续超声分散0.5-3h;
(4)将超声分散后的溶液倒入抽滤器中,使用孔径0.22-0.45μm的水系滤膜真空抽滤;
(5)溶液抽滤完全后,将滤膜从抽滤器上取下,于室温环境下放置10-15h,最后将获得
的Pd/还原氧化石墨烯纸从滤膜上剥离。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,可溶性含钯前驱体选自PdCl2,H2PdCl4,Na2PdCl4或K2PdCl4中的一种或几种。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,5-10mL 1mg/mL GO,0.1-0.5mmol 可溶性含钯前驱体,50-100mg聚乙烯吡咯烷酮PVP。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,水浴加热至80-90℃,85wt%的水合肼溶液的体积为8~15mL。
5.一种根据权利要求1~4之一所述的制备方法制得的柔性、自支撑的Pd/还原氧化石墨烯纸。
6.一种根据权利要求5所述的柔性、自支撑的Pd/还原氧化石墨烯纸在制备葡萄糖传感器中的应用。
CN201810633873.4A 2018-06-20 2018-06-20 一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用 Pending CN108467029A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810633873.4A CN108467029A (zh) 2018-06-20 2018-06-20 一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810633873.4A CN108467029A (zh) 2018-06-20 2018-06-20 一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN108467029A true CN108467029A (zh) 2018-08-31

Family

ID=63260000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810633873.4A Pending CN108467029A (zh) 2018-06-20 2018-06-20 一种柔性、自支撑的Pd/还原氧化石墨烯纸、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108467029A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557138A (zh) * 2018-10-25 2019-04-02 北京镭硼科技有限责任公司 一种金属钯负载的石墨烯基气敏传感材料及制备与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143405A2 (en) * 2008-05-22 2009-11-26 The University Of North Carolina At Chapel Hill Synthesis of graphene sheets and nanoparticle composites comprising same
CN101797502A (zh) * 2010-03-24 2010-08-11 南京大学 一种贵金属-石墨烯纳米复合物的制法
WO2011119961A2 (en) * 2010-03-26 2011-09-29 Virginia Commonwealth University Production of graphene and nanoparticle catalysts supported on graphene using microwave radiation
CN102507693A (zh) * 2011-11-03 2012-06-20 桂林医学院 基于功能化材料的葡萄糖生物传感器及其制备方法
CN103007930A (zh) * 2013-01-08 2013-04-03 江苏大学 一种高催化活性Pd纳米粒子电催化剂的制备方法
CN104310387A (zh) * 2014-10-14 2015-01-28 山西大学 一种电极表面修饰材料及其制备方法和应用
CN105217606A (zh) * 2015-08-19 2016-01-06 厦门大学 一种低温还原氧化石墨烯的方法
CN106744837A (zh) * 2016-12-02 2017-05-31 陕西科技大学 一种钯催化氩氢混合气体还原氧化石墨烯的方法
BR102016027701A2 (pt) * 2016-11-16 2018-06-12 Fundação Universidade Federal De Mato Grosso Do Sul Processo de purificação e recuperação da eficiência catalítica de catalisadores a base de pd suportados em carbono
CN108845007A (zh) * 2018-04-25 2018-11-20 上海第二工业大学 一种用于检测过氧化氢的铂/石墨烯纸纳米复合电极材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143405A2 (en) * 2008-05-22 2009-11-26 The University Of North Carolina At Chapel Hill Synthesis of graphene sheets and nanoparticle composites comprising same
CN101797502A (zh) * 2010-03-24 2010-08-11 南京大学 一种贵金属-石墨烯纳米复合物的制法
WO2011119961A2 (en) * 2010-03-26 2011-09-29 Virginia Commonwealth University Production of graphene and nanoparticle catalysts supported on graphene using microwave radiation
CN102507693A (zh) * 2011-11-03 2012-06-20 桂林医学院 基于功能化材料的葡萄糖生物传感器及其制备方法
CN103007930A (zh) * 2013-01-08 2013-04-03 江苏大学 一种高催化活性Pd纳米粒子电催化剂的制备方法
CN104310387A (zh) * 2014-10-14 2015-01-28 山西大学 一种电极表面修饰材料及其制备方法和应用
CN105217606A (zh) * 2015-08-19 2016-01-06 厦门大学 一种低温还原氧化石墨烯的方法
BR102016027701A2 (pt) * 2016-11-16 2018-06-12 Fundação Universidade Federal De Mato Grosso Do Sul Processo de purificação e recuperação da eficiência catalítica de catalisadores a base de pd suportados em carbono
CN106744837A (zh) * 2016-12-02 2017-05-31 陕西科技大学 一种钯催化氩氢混合气体还原氧化石墨烯的方法
CN108845007A (zh) * 2018-04-25 2018-11-20 上海第二工业大学 一种用于检测过氧化氢的铂/石墨烯纸纳米复合电极材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557138A (zh) * 2018-10-25 2019-04-02 北京镭硼科技有限责任公司 一种金属钯负载的石墨烯基气敏传感材料及制备与应用

Similar Documents

Publication Publication Date Title
Justice Babu et al. Three-dimensional dendrite Cu–Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection
Shu et al. Ni and NiO nanoparticles decorated metal–organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum
Wu et al. Nickel–cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection
Chen et al. In situ synthesis of a sandwich-like graphene@ ZIF-67 heterostructure for highly sensitive nonenzymatic glucose sensing in human serums
Khan et al. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications
Su et al. Controllable cobalt oxide/Au hierarchically nanostructured electrode for nonenzymatic glucose sensing
Zhu et al. Hierarchical flower-like zinc oxide nanosheets in-situ growth on three-dimensional ferrocene-functionalized graphene framework for sensitive determination of epinephrine and its oxidation derivative
Song et al. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection
Wei et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II): an interesting favorable mutual interference
Riaz et al. Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms
Hai et al. Carbon cloth supported NiAl-layered double hydroxides for flexible application and highly sensitive electrochemical sensors
Choudhary et al. Organic–inorganic hybrid supramolecular assembly: an efficient platform for nonenzymatic glucose sensor
Wang et al. Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing
Balasubramanian et al. Facile synthesis of spinel-type copper cobaltite nanoplates for enhanced electrocatalytic detection of acetylcholine
Ma et al. Structural engineering of hollow microflower-like CuS@ C hybrids as versatile electrochemical sensing platform for highly sensitive hydrogen peroxide and hydrazine detection
Tashkhourian et al. A new bifunctional nanostructure based on Two-Dimensional nanolayered of Co (OH) 2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: Impedimetric and amperometric detection
Liu et al. Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor
Gao et al. Synergetic effects between a bipyridyl-functionalized metal-organic framework and graphene for sensitive electrochemical detection of norepinephrine
Gao et al. Short rod-like Ni-MOF anchored on graphene oxide nanosheets: A promising voltammetric platform for highly sensitive determination of p-chloronitrobenzene
JP2010038840A (ja) 化学物質センシング素子、化学物質センシング装置、表面修飾カーボンナノ構造体の製造方法、及び、化学物質センシング素子の製造方法
Poolakkandy et al. Nickel cobaltite/multi-walled carbon nanotube flexible sensor for the electrochemical detection of dopamine released by human neural cells
Zhao et al. NiCo2O4 nanorods decorated MoS2 nanosheets synthesized from deep eutectic solvents and their application for electrochemical sensing of glucose in red wine and honey
CN109164149B (zh) 一种基于纸芯片结合丝网印刷电极在线检测细胞内过氧化氢的电化学生物传感器
Zhang et al. In situ synthesis of CuO nanoparticles decorated hierarchical Ce-metal-organic framework nanocomposite for an ultrasensitive non-enzymatic glucose sensor
CN113588751B (zh) MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180831

WD01 Invention patent application deemed withdrawn after publication